Investigation of Single Point Incremental Sheet Forming Process: Extraction of Constitutive Models and Parameters Optimization

' Investigation of Single Point Incremental Sheet Forming Process: Extraction of Constitutive Models and Parameters Optimization' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 공학, 공업일반
  • Design of experiments
  • Digital image correlation
  • Grey relational analysis
  • Taguchi method
  • anova
  • constitutive modeling
  • damagemodel
  • energy-dispersive X-ray spectroscopy (EDS)
  • field emission scanning electron microscopy (FESEM)
  • hot-deformation
  • incremental sheet forming
  • microstructure investigation
  • response surface methodology
  • surface morphology
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
6,066 0

0.0%

' Investigation of Single Point Incremental Sheet Forming Process: Extraction of Constitutive Models and Parameters Optimization' 의 참고문헌

  • “ ‘ Prediction of temperature distribution and required energy in hot forging process by coupling neural networks and finite element analysis ’ ”
    Siamak , Serajzadeh In : Materials Letters61 ( 14-15 ) , pp . 3296 ? 3300 . DOI : 10.1016/j.matlet . 2006.11.056 [2007]
  • “ ‘ Phase transformation and constitutive models of a hot compressed TC18 titanium alloy in the a+b regime ’ ”
    Lin , Y. C. et al In : Vacuum 157 , pp . 83 ? 91 . DOI : 10.1016/j.vacuum.2018.08.020 [2018]
  • “ ‘ Microstructural evolution and support vector regression model for an aged Ni-based superalloy during two-stage hot forming with stepped strainrates ’ ”
    HeDao Guang et al In : Materials and Design 154 , pp . 51 ? 62 . DOI : 10.1016/j.matdes.2018.05.022
  • “ ‘ Isothermal tensile deformation behaviors and fracture mechanism of Ti-5Al-5Mo-5V-1Cr-1Fe alloy in b phase field ’ ”
    Jiang , Yu Qiang et al In : Vacuum 156 , 187 ? ? 197 . DOI : 10.1016/j.vacuum.2018.08.020 [2018]
  • “ ‘ Dynamic behavior and a modified Johnson ? Cook constitutive model of Inconel 718 at high strain rate and elevated temperature ’ ”
    Wang , Xiangyu et al In : Materials Science and Engineering A 580 , pp . 385 ? 390 . DOI : 10.1016/j.msea . 2013.05.062 [2013]
  • “ ‘ Dislocation substructures evolution and an adaptivenetwork- based fuzzy inference system model for constitutive behavior of a Nibased superalloy during hot deformation ’ ”
    Chen , Dong-Dong et al In : Journal of Alloys and Compounds 708 , pp . 938 ? 946 . DOI : 10.1016/j.jallcom.2017.03.029 [2017]
  • “ ‘ A simple Zerilli ? Armstrong constitutive equation for modeling and prediction of hot deformation flow stress of steels ’ ”
  • “ ‘ A modified Zerilli-Armstrong model for alloy IC10 over a wide range of temperatures and strain rates ’ ”
    Zhang , Hongjian et al In : Materials Science and Engineering A 527 ( 1-2 ) , pp . 328 ? 333 . DOI : 10.1016/j.msea.2009.08.008 [2009]
  • “ ‘ A modified Johnson-Cook model for titanium matrix composites reinforced with titanium carbide particles at elevated temperatures ’ ”
    Song , Weidong et al In : Materials Science and Engineering A 576 , pp . 280 ? 289 . DOI : 10.1016/j.msea . 2013.04.014 [2013]
  • “ ‘ A modified Johnson-Cook constitutive model for Mg ? Gd ? Y alloy extended to a wide range of temperatures ’
  • “ ‘ A modified Johnson ? Cook model for tensile flow behaviors of 7050-T7451 aluminum alloy at high strain rates ’ ”
    Tan , Jin Qiang et al In : Materials Science and Engineering A 631 , pp . 214 ? 219 . DOI : 10.1016/j.msea.2015.02.010 [2015]
  • “ ‘ A modified Johnson ? Cook model for tensile behaviors of typical high-strength alloy steel ’
    LinY. C.Xiao Min ChenGe Liu In : Materials Science and Engineering A 527 , pp . 6980 ? 6986 . DOI : 10.1016/j.msea.2010.07.061 [2010]
  • “ ‘ A critical review of experimental results and constitutive descriptions for metals and alloys in hot working ’ ”
    LinY. C.Xiao Min Chen In : Materials and Design 32 ( 4 ) , pp . 1733 ? 1759 . DOI : 10.1016/j.matdes.2010.11.048 [2011]
  • “ ‘ A comparative study on modified Johnson Cook , modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict the hot deformation behavior in 28CrMnMoV steel ’ ”
    LiHong Ying et al In : Materials and Design 49 , pp . 493 ? 501 . DOI : 10.1016/j.matdes.2012.12.083
  • “ ‘ A comparative study on Johnson ? Cook , modified Johnson- Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel ’ ”
    He , An et al In : Materials and Design 52 , pp . 677 ? 685 . DOI : 10.1016/j.matdes.2013.06.010 [2013]
  • “ Whole field sheet-metal tensile test using digital image correlation ”
    WangY. H. et al In : Experimental Techniques 34.2 , pp . 54 ? 59 . DOI : 10.1111/j.1747- 1567.2009.00483.x [2010]
  • “ Two flow stress models for describing hot deformation behavior of AISI-1045 medium carbon steel at elevated temperatures ”
    Murugesan , MohanrajDong Won Jung In : Heliyon 5.4 , e01347 . DOI : 10.1016/j.heliyon.2019.e01347
  • “ Tool path strategies and deformation analysis in multi-pass incremental sheet forming process ”
    Liu , ZhaobingYanle LiPaul A. Meehan In : The International Journal of Advanced Manufacturing Technology 75.1-4 , pp . 395 ? 409 . DOI : 10.1007/s00170-014-6143-6 [2014]
  • “ Tool path programming optimization for incremental sheet forming applications ”
    Rauch , Matthieu et al In : Computer-Aided Design 41.12 , pp . 877 ? 885 . DOI : 10.1016/j.cad.2009.06.006 [2009]
  • “ The use of grey relational analysis in solving multiple attribute decision-making problems ”
    Kuo , YiyoTaho YangGuan-Wei Huang In : Computers & Industrial Engineering 55.1 , pp . 80 ? 93 . DOI : 10.1016/j.cie.2007.12.002 [2008]
  • “ The Strain-Compensated Constitutive Equation for High Temperature Flow Behavior of an Al-Zn-Mg-Cu Alloy ”
    RokniM. R. et al In : Journal of Materials Engineering and Performance 23.11 , pp . 4002 ? 4009 . DOI : 10.1007/s11665-014- 1195-1 [2014]
  • “ The Application of DIC Technique to Evaluate Residual Tensile Strength of Aluminum Alloy Plates with Multi-Site Damage of Collinear and Non-Collinear Cracks ”
    Chen , Yajun et al In : Metals 9.2 , p. 118 . DOI : 10.3390/met9020118 [2019]
  • “ Surface finish analysis of wire electric discharge machined specimens by RSM and ANN modeling ”
    Singh , BhupinderJ.P. Misra In : Measurement 137 , pp . 225 ? 237 . DOI : 10.1016/j.measurement.2019.01.044 [2019]
  • “ Study on the Formability of Magnesium Alloy Sheets in the Incremental Forming Process with External Heating Sources ”
    Lee , Chang-WhanDong-Yol Yang In : International Journal of Precision Engineering and Manufacturing 21.8 , pp . 1519 ? 1527 . DOI : 10.1007/s12541-020-00352-6 [2020]
  • “ Study on optimization of radiological worker allocation problem based on nonlinear programming functionfmincon ”
    Chuan , WangYu LeiZhang Jianguo In : 2014 IEEE International Conference on Mechatronics and Automation . IEEE . DOI : 10.1109/icma.2014.6885847 [2014]
  • “ Strain measurement and determining coefficient of plastic anisotropy using digital image correlation ( DIC ) ”
    Hedayati , N.R. MadoliatR. Hashemi In : Mechanics & Industry 18.3 , p. 311 . DOI : 10.1051/meca/2016060 [2017]
  • “ Strain distribution and failure mode in single point incremental forming ( SPIF ) of multiple commercially pure aluminum sheets ”
    Raju , C.Neelkamal HaloiC. Sathiya Narayanan In : Journal of Manufacturing Processes 30 , pp . 328 ? 335 . DOI : 10.1016/j.jmapro.2017.09.033 [2017]
  • “ Simulation of incremental sheet forming using partial sheet models ”
    Memicoglu , P. , O . MusicC. Karadogan In : Procedia Engineering 207 , pp . 831 ? 835 . DOI : 10.1016/j.proeng.2017.10.837 [2017]
  • “ Removal of aromatic and hydrophobic fractions of natural organic matter ( NOM ) using surfactant modified magnetic nanoadsorbents ( MNPs )
  • “ RSM and BPNN Modeling in Incremental Sheet Forming Process for AA5052 Sheet : Multi-Objective Optimization Using Genetic Algorithm ”
    Xiao , Xiao et al In : Metals 10.8 , p. 1003 . DOI : 10.3390/met10081003 [2020]
  • “ Quasi-Static Loading Responses and Constitutive Modeling of Al ? Si ? Mg alloy
    Liang , ZhenglongQi Zhang In : Metals 8.10 , p. 838 . DOI : 10.3390/ met8100838 [2018]
  • “ Prediction of high temperature flow stress in 9Cr ? 1Mo ferritic steel during hot compression
  • “ Prediction of flow stress in a wide temperature range involving phase transformation for as-cast Ti ? 6Al ? 2Zr ? 1Mo ? 1V alloy by artificial neural network
  • “ Prediction of flow stress for hot deformation processing ”
    Amit Kumar In : Computational Materials Science 69 , pp . 350 ? 358 . DOI : 10.1016/j . commatsci.2012.11.054 [2013]
  • “ Predicting software project effort : A grey relational analysis based method ”
    Song , QinbaoMartin Shepperd In : Expert Systems with Applications 38.6 , pp . 7302 ? 7316 . DOI : 10.1016/j.eswa.2010.12.005 [2011]
  • “ Physical Modelling and Numerical Simulation of the Deep Drawing Process of a Box-Shaped Product Focused on Material Limits Determination ”
    Miroslav et al In : Metals 9.10 , p. 1058 . DOI : 10.3390/met9101058 [2019]
  • “ Optimization of pyramid shaped single point incremental forming of AA5052 alloy sheet ”
    Ganesh , P. et al In : Materials Today : Proceedings 45 , pp . 5892 ? 5898 . DOI : 10.1016/j.matpr.2020.08.573 [2021]
  • “ Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing ”
    Salehi , M.M. SaadatmandJ. Aghazadeh Mohandesi In : Transactions of Nonferrous Metals Society of China 22.5 , pp . 1055 ? 1063 . DOI : 10.1016/s1003-6326 ( 11 ) 61283-1 [2012]
  • “ Optimisation of hardness and tensile strength of friction stir welded AA6061 alloy using response surface methodology coupled with grey relational analysis and principle component analysis ”
    P Umamaheswarrao International Journal of Engineering , Science and Technology 7.4 , p. 21 . DOI : 10.4314/ijest.v7i4.3 [2016]
  • “ On the selection of Johnson- Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cutting ”
    Zhanga , Y.J.C. OuteirobT. Mabroukic In : In Proceedings of the 15th CIRP Conference on Modelling of Machining Operations , pp . 112 ? 117 [2015]
  • “ On the calibration strategies of the Johnson ? Cook strength model : Discussion and applications to experimental data
  • “ Numerical prediction of the ductile damage in single point incremental forming process ”
    SaidL. Ben et al International Journal of Mechanical Sciences 131-132 , pp . 546 ? 558 . DOI : 10.1016/j.ijmecsci.2017.08.026 [2017]
  • “ Numerical prediction of failure in single point incremental forming using a phenomenological ductile fracture criterion
    Mohammad JavadMohsen Shamsari Journal of Materials Processing Technology 244pp . 17 ? 43 . DOI : 10.1016/j.jmatprotec.2017.01.029 [2017]
  • “ New Method for Evaluating Surface Roughness Parameters Acquired by Laser Scanning ”
    Tonietto , Leandro et al In : Scientific Reports 9.1 . DOI : 10.1038/ s41598-019-51545-7 [2019]
  • “ Multi-attribute decision making parametric optimization and modeling in hard turning using ceramic insert through grey relational analysis : A case study ”
    Panda , AmlanaAshok Kumar SahooArun Kumar Rout pp . 581 ? 592 . DOI : 10.5267/j.dsl.2016.3.001 [2016]
  • “ Multi-Objective Optimization of MRR , TWR and Radial Overcut of EDMed AISI D2 Tool Steel Using Response Surface Methodology , Grey Relational Analysis And Entropy Measurement
  • “ Multi-Objective Optimization of Cutting Parameters in Turning AISI 304 Austenitic Stainless Steel ”
    Su , Yu et al In : Metals 10.2 , p. 217 . DOI : 10.3390/ met10020217 [2020]
  • “ Multi-Objective Design Optimization of Composite Stiffened Panel Using Response Surface Methodology ”
    Mohanraj , MurugesanKang Beom-SooLee Kyunghoon In : Composites Research 28.5 , pp . 297 ? 310 . DOI : 10.7234/composres . 2015.28.5.297 [2015]
  • “ Modelling of ductile fracture in single point incremental forming using a modified GTN model ”
    Gatea , Shakir et al In : Engineering Fracture Mechanics 186 , pp . 59 ? 79 . DOI : 10.1016/j.engfracmech.2017.09.021 [2017]
  • “ Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels ”
    Sun , Mingyue et al Journal of Nuclear Materials 418.1-3 , pp . 269 ? 280 . DOI : 10.1016/j.jnucmat.2011.07.011 [2011]
  • “ Modeling and optimization of sustainable manufacturing process in machining of 17-4 PH stainless steel ”
    Sivaiah , P.D. Chakradhar In : Measurement 134 , pp . 142 ? 152 . DOI : 10.1016/j.measurement.2018.10.067 [2019]
  • “ Modeling Flow Stress of 70Cr3Mo Steel Used for Back-Up Roll During Hot Deformation Considering Strain Compensation ” . In :
    Fa caiJun Chen Journal of Iron and Steel Research International 20.11 , pp . 118 ? 124 . DOI : 10.1016/ s1006-706x ( 13 ) 60206-x [2013]
  • “ Microstructure and Properties of As-Cast and Heat-Treated 2017A Aluminium Alloy Obtained from Scrap Recycling ”
    Graz˙yna , Mrwka-Nowotnik et al In : Materials 14.1 , p. 89 . DOI : 10.3390/ma14010089 [2020]
  • “ Microstructure Evaluation and Constitutive Modeling of AISI-1045 Steel for Flow Stress Prediction under HotWorking Conditions ”
    In : Symmetry 12.5 , p. 782 . DOI : 10.3390/sym12050782
  • “ Microstructural investigation and lubrication study for single point incremental forming of copper ”
    Jawale , Kishore et al In : International Journal of Solids and Structures 151 , pp . 145 ? 151 . DOI : 10.1016/j.ijsolstr.2017.09.018 [2018]
  • “ Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing ”
    Jeon , Chi-Hoon et al In : International Journal of Precision Engineering and Manufacturing 15.6 , pp . 1235 ? 1239 . DOI : 10.1007/ s12541-014-0462-2 [2014]
  • “ Longitudinal Bow Estimation of U-Shape Profile in Cold Roll Formed for Commercial Aluminum Alloys ”
    Sajjad , MuhammadMohanraj MurugesanDongWon Jung In : International Journal of Mechanical Engineering and Robotics Research , pp . 1097 ? 1103 . DOI : 10.18178/ijmerr.9.8.1097-1103 [2020]
  • “ Joint effect of micro-sized Si particles and nano-sized dispersoids on the flow behavior and dynamic recrystallization of near-eutectic Al ? Si based alloys during hot compression ”
    Wu , Yuna et al In : Journal of Alloys and Compounds 856 , p. 158072 . DOI : 10.1016/j.jallcom.2020.158072 [2021]
  • “ Johnson Cook Material and Failure Model Parameters Estimation of AISI-1045 Medium Carbon Steel for Metal Forming Applications ”
    Murugesan , MohanrajDong Jung In : Materials 12.4 , p. 609 . DOI : 10.3390/ma12040609
  • “ Investigation on the influence of springback on precision of symmetric-cone-like parts in sheet metal incremental forming process ”
    Wei , Hongyu et al In : International Journal of Lightweight Materials and Manufacture 2.2 , pp . 140 ? 145 . DOI : 10.1016/j.ijlmm.2019.05.002 [2019]
  • “ Investigation into the process parameter of single point incremental forming ( SPIF )
  • “ Investigation On Single Point Incremental Forming Process Considering Various Tool Path Definitions ”
    In : International Journal of Mechanical and Production Engineering Research and Development 9.6 , pp . 511 ? 524 . DOI : 10.24247/ ijmperddec201944
  • “ In-situ springback compensation in incremental sheet forming ”
    Ren , Huaqing et al CIRP Annals 68.1 , pp . 317 ? 320 . DOI : 10.1016/j.cirp.2019.04.042 [2019]
  • “ Hybrid Machine Learning Optimization Approach to Predict Hot Deformation Behavior of Medium Carbon Steel Material ”
    Murugesan , MohanrajMuhammad SajjadDongWon Jung In : Metals 9.12 , p. 1315 . DOI : 10 . 3390 / met9121315
  • “ Hot incremental forming of magnesium and aluminum alloy sheets by using direct heating system ”
    Le VanNguyen Thanh Nam In : Proceedings of the Institution of Mechanical Engineers , Part B : Journal of Engineering Manufacture 227.8 , pp . 1099 ? 1110 . DOI : 10.1177/0954405413484014 [2013]
  • “ Hot Single Point Incremental Forming of Ti-6Al-4V Alloy ”
    Ortiz , Mikel et al In : Key Engineering Materials 611-612 , pp . 1079 ? 1087 . DOI : 10.4028/www . scientific.net/kem.611-612.1079 [2014]
  • “ Hot Deformation Behavior and Constitutive Modeling of H13-Mod Steel ”
    Li , Changmin et al In : Metals 8.10 , p. 846 . DOI : 10.3390/met8100846 [2018]
  • “ Heat-assisted incremental sheet forming : a state-of-the-art review
  • “ Friction stir spot welding of AA5052-H32/HDPE/AA5052-H32 sandwich sheets at varying plunge speeds ”
    Pritam KumarR. Ganesh NarayananSatish V. Kailas In : Thin-Walled Structures 138 , pp . 415 ? 429 . DOI : 10.1016/j.tws . 2019.02.016 [2019]
  • “ Formability evaluation of aluminum alloy sheets in incremental sheet forming process using various forming parameters ”
    In : International Journal of Mechanical and Production Engineering Research and Development 10.3 , pp . 6621 ? 6632 . DOI : 10.24247/ijmperdjun2020630
  • “ Formability and Failure Evaluation of AA3003-H18 Sheets in Single- Point Incremental Forming Process through the Design of Experiments ”
    Murugesan , Mohanraj In : Materials 14.4 , p. 808 . DOI : 10.3390/ma14040808 [2021]
  • “ Flow stress prediction at hot working conditions ”
    Mirzadeh , H.A. Najafizadeh In : Materials Science and Engineering : A 527.4-5 , pp . 1160 ? 1164 . DOI : 10.1016/j.msea.2009.09.060 [2010]
  • “ Finite Element Analysis of hot Single Point Incremental forming of hip prostheses ”
    Sbayti , Manel et al In : MATEC Web of Conferences 80 . Ed . by K. Saanouni , p. 14006 . DOI : 10.1051/matecconf/20168014006 [2016]
  • “ Experimental investigation and optimization of surface roughness in negative incremental forming ”
    Kumar , AjayVishal Gulati In : Measurement 131 , pp . 419 ? 430 . DOI : 10.1016/j.measurement.2018.08.078 [2019]
  • “ Experimental force measurements in single point incremental sheet forming SPIF ”
    Saidi , Badreddine et al In : Mechanics & Industry 16.4 , p. 410 . DOI : 10.1051/meca/2015018 [2015]
  • “ Experimental and numerical investigation on incremental sheet forming with flexible die-support from metallic foam ”
    Min , Junying et al In : Journal of Manufacturing Processes 31 , pp . 605 ? 612 . DOI : 10.1016/j.jmapro.2017.12.013 [2018]
  • “ Experimental and numerical investigation of the hot incremental forming of Ti-6Al-4V sheet using electrical current ”
    Honarpisheh , M.M. J. AbdolhoseiniS. Amini In : The International Journal of Advanced Manufacturing Technology 83.9-12 , pp . 2027 ? 2037 . DOI : 10.1007/s00170-015-7717-7 [2015]
  • “ Experimental and Numerical Study on Force Reduction in SPIF by Using Response Surface ”
    Saidi , Badreddine et al In : pp . 835 ? 844 . DOI : 10.1007/978-3- 319-66697-6_81 [2017]
  • “ Experimental and Numerical Investigation of the Influence of Process Parameters in Incremental Sheet Metal Forming on Residual Stresses ”
    Maqbool , FawadMarkus Bambach In : Journal of Manufacturing and Materials Processing 3.2 , p. 31 . DOI : 10.3390/jmmp3020031 [2019]
  • “ Experimental and Numerical Investigation of AA5052-H32 Al Alloy with U-Profile in Cold Roll Forming ”
    In : Materials 14.2 , p. 470 . DOI : 10.3390/ ma14020470
  • “ Experimental Methodology for Obtaining the Flow Curve of Sheet Materials in aWide Range of Strains ”
    Zhuang , Xincun et al In : steel research international 84.2 , pp . 146 ? 154 . DOI : 10.1002/srin.201200104 [2012]
  • “ Experimental Investigations on Incremental Sheet Forming of Commercial Aluminum Alloys for Maximum Production Quality ”
    In : International Journal of Mechanical Engineering and Robotics Research , pp . 1264 ? 1270 . DOI : 10 . 18178/ijmerr.9.9.1264-1270
  • “ Establishment and application of flow stress models of Mg-Y-MM-Zr alloy ”
    MA , Ming long et al In : Transactions of Nonferrous Metals Society of China 21.4 , pp . 857 ? 862 . DOI : 10.1016/s1003-6326 ( 11 ) 60793-0 [2011]
  • “ Electric hot incremental sheet forming of Ti-6Al-4V titanium , AA6061 aluminum , and DC01 steel sheets
  • “ Electric hot incremental forming : A novel technique ”
    Fan , Guoqiang et al In : International Journal of Machine Tools and Manufacture 48.15 , pp . 1688 ? 1692 . DOI : 10.1016/j.ijmachtools.2008.07.010 [2008]
  • “ Effects of the tool path strategies on incremental sheet metal forming process ”
    L. Ben et al In : Mechanics & Industry 17.4 , p. 411 . DOI : 10.1051/ meca/2015094 [2016]
  • “ Effects of incremental depth and tool rotation on failure modes and microstructural properties in Single Point Incremental Forming of polymers ”
    DavarpanahMohammad Ali et al Journal of Materials Processing Technology 222 , pp . 287 ? 300 . DOI : 10.1016/j.jmatprotec.2015.03.014 [2015]
  • “ Dominant deformation mechanisms in single point incremental forming ( SPIF ) and their effect on geometrical accuracy
    Maqbool , FawadMarkus Bambach International Journal of Mechanical Sciences 136 , pp . 279 ? 292 . DOI : 10.1016/j.ijmecsci.2017.12.053 [2018]
  • “ Digital Image Correlation Used for Experimental Investigations of Al/Mg Compounds ”
    Kirbach , C. et al In : Strain 51.3 , pp . 223 ? 234 . DOI : 10.1111/str . 12135 [2015]
  • “ Determination of Johnson ? Cook parameters from machining simulations ”
    Shrot , AviralMartin Baker In : Computational Materials Science 52.1 , pp . 298 ? 304 . DOI : 10.1016/j.commatsci.2011.07.035 [2012]
  • “ Deformation Characteristic and Constitutive Modeling of 2707 Hyper Duplex Stainless Steel under Hot Compression ”
    Li , Huabing et al In : Metals 6.9 , p. 223 . DOI : 10.3390/met6090223 [2016]
  • “ Constitutive relationships of hot stamping boron steel B1500HS based on the modified Arrhenius and Johnson ? Cook model
  • “ Constitutive relationship model of TC21 alloy based on artificial neural network ”
    GUO , La fengBao cheng LIZhi min ZHANG In : Transactions of Nonferrous Metals Society of China 23.6 , pp . 1761 ? 1765 . DOI : 10.1016/s1003- 6326 ( 13 ) 62658-8 [2013]
  • “ Constitutive modelling of the flow behaviour of a titanium alloy at high strain rates and elevated temperatures using the Johnson ? Cook and modified Zerilli ? Armstrong models
  • “ Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel ”
    Mandal , Sumantra et al In : Materials Science and Engineering : A 500.1-2 , pp . 114 ? 121 . DOI : 10.1016/j.msea.2008.09.019 [2009]
  • “ Constitutive equations for high temperature flow stress prediction of 6063 Al alloy considering compensation of strain ”
  • “ Constitutive analysis of wrought magnesium alloy Mg ? Al4 ? Zn1
    Slooff , F.A . et al Scripta Materialia 57.8 , pp . 759 ? 762 . DOI : 10.1016/j.scriptamat.2007.06 . 023 [2007]
  • “ Constitutive Relationship Modeling and Characterization of Flow Behavior under Hot Working for Fe ? Cr ? Ni ? W ? Cu ? Co Super- Austenitic Stainless Steel
    Yang , Li-Chih et al In : Metals 5.3 , pp . 1717 ? 1731 . DOI : http : //dx.doi . org/10.3390/met5031717 [2015]
  • “ Constitutive Equation of Mg-3.5Zn-0.6Y-0.5Zr Alloy under Hot Compression Deformation ”
    Ren , Feng Zhang et al In : Advanced Materials Research 800 , pp . 271 ? 275 . DOI : 10.4028/www.scientific.net/amr.800.271 [2013]
  • “ Constitutive Analysis on High-Temperature Flow Behavior of 3Cr-1Si-1Ni Ultra-High Strength Steel for Modeling of Flow Stress ”
    Lei , Bingwang et al In : Metals 9.1 , p. 42 . DOI : http : //dx.doi.org/10.3390/met9010042 [2019]
  • “ Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models ”
    Peng , Wenwen et al In : Materials & Design 51 , pp . 95 ? 104 . DOI : 10.1016/j.matdes.2013.04.009 [2013]
  • “ Calculation of plastic strain ratio of AA1050 Al alloy sheet processed by heavy asymmetric rolling ? annealing followed by light rolling ? annealing
  • “ Avrami Kinetic-Based Constitutive Relationship for Armco- Type Pure Iron in Hot Deformation ”
    Zhang , Yan et al In : Metals 9.3 , p. 365 . DOI : 10 . 3390 / met9030365 [2019]
  • “ Assessing Material Properties of Commercial Magnesium Alloy with Digital Image Correlation ( DIC ) Technique for Forming Applications ”
    In : Materials Science Forum 1033 , pp . 8 ? 12 . DOI : 10.4028/www.scientific.net/msf . 1033.8
  • “ Artificial neural networks for mechanical strength prediction of lightweight mortar ”
    Razavi , S V et al In : Scientific Research and Essays 6.16 , pp . 3406 ? 3417 . DOI : 10.5897/sre11.311 [2011]
  • “ Artificial neural network approach to predict the flow stress in the isothermal compression of as-cast TC21 titanium alloy ”
    Zhu , Yanchun et al In : Computational Materials Science 50.5 , pp . 1785 ? 1790 . DOI : 10.1016/j.commatsci.2011 . 01.015 [2011]
  • “ Applying Machine Learning to the Phenomenological Flow Stress Modeling of TNM-B1 ”
    Stendal , Johan et al In : Metals 9.2 , p. 220 . DOI : 10.3390/ met9020220 [2019]
  • “ Application of artificial neural network and constitutive equations to describe the hot compressive behavior of 28CrMnMoV steel ”
    Li , Hong-Ying et al In : Materials & Design 35 , pp . 557 ? 562 . DOI : 10.1016/j.matdes.2011.08.049 [2012]
  • “ Application of artificial cognitive system to incremental sheet forming machine tools for part precision improvement ”
    Fiorentino , A.C. GiardiniE. Ceretti In : Precision Engineering 39 , pp . 167 ? 172 . DOI : 10.1016/j.precisioneng . 2014.08.005 [2015]
  • “ An enhanced Johnson ? Cook strength model for splitting strain rate and temperature effects on lower yield stress and plastic flow ”
    Gambirasio , LucaEgidio Rizzi In : Computational Materials Science 113 , pp . 231 ? 265 . DOI : 10.1016/ j.commatsci.2015.11.034 [2016]
  • “ An empirical evaluation and optimization of performance parameters of wire electrical discharge machining in cutting of Inconel 718 ”
    Hulas RajAnand Mukut Tigga In : Measurement 140 , pp . 185 ? 196 . DOI : 10.1016/j . measurement.2019.04.003 [2019]
  • “ A novel hybrid MCDM model combining the SAW , TOPSIS and GRA methods based on experimental design ”
  • “ A modified Johnson-Cook model for 10 % Cr steel at elevated temperatures and a wide range of strain rates ”
    He , Jianli et al2018b In : Materials Science and Engineering : A 715 , pp . 1 ? 9 . DOI : 10.1016/j.msea.2017.10.037
  • “ A modified Johnson Cook model for elevated temperature flow behavior of T24 steel ”
    Li , HongYing et al In : Materials Science and Engineering : A 577 , pp . 138 ? 146 . DOI : http : //dx.doi.org/10.1016/j.msea.2013.04.041
  • “ A local viewpoint for evaluating the influence of stress triaxiality and Lode angle on ductile failure and hardening ”
    Mirone , G.D. Corallo In : International Journal of Plasticity 26.3 , pp . 348 ? 371 . DOI : 10.1016/j.ijplas.2009.07 . 006 [2010]
  • “ A comparative study on constitutive relationship of as-cast 904L austenitic stainless steel during hot deformation based on Arrhenius-type and artificial neural network models ”
    Han , Ying et al In : Computational Materials Science 67 , pp . 93 ? 103 . DOI : 10.1016/j.commatsci.2012.07.028 [2013]
  • “ A comparative study on Johnson Cook , modified Zerilli ? Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr ? 1Mo steel
  • “ A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet100 steel ”
    Ji , Guoliang et al In : Materials Science and Engineering : A 528.13- 14 , pp . 4774 ? 4782 . DOI : https : //doi.org/10.1016/j.msea.2011.03.017 [2011]
  • “ A comparative study on Arrhenius-type constitutive equations and artificial neural network model to predict high-temperature deformation behaviour in 12Cr3WV steel ”
    Xiao , X. et al In : Computational Materials Science 62 , pp . 227 ? 234 . DOI : 10.1016/j.commatsci.2012.05.053 [2012]
  • “ A Modified Back Propagation Artificial Neural Network Model Based on Genetic Algorithm to Predict the Flow Behavior of 5754 Aluminum Alloy ”
    Huang , ChangqingXiaodong JiaZhiwu Zhang In : Materials 11.5 , p. 855 . DOI : 10.3390/ma11050855 [2018]
  • “ A Comparative Study on Arrhenius-Type Constitutive Models with Regression Methods ”
    Kyunghoon , Lee et al In : Transactions of Materials Processing 26.1 , pp . 18 ? 27 . DOI : 10.5228/KSTP.2017.26.1.18 [2017]
  • “ A Comparative Study of Ductile Damage Models Approaches for Joint Strength Prediction in Hot Shear Joining Process ”
    Murugesan , Mohanraj et al In : Procedia Engineering 207 , pp . 1689 ? 1694 . DOI : 10.1016/j.proeng.2017.10 . 923 [2017]
  • Ion Braga , and Anisor Nedelcu“ Evaluating the Quality Surface Performance of Additive Manufacturing Systems : Methodology and a Material Jetting Case Study ”
    Udroiu , Razvan In : Materials 12.6 , p. 995 . DOI : 10.3390/ma12060995 [2019]