(A) study on aggregation-induced emission based diketopyrrolopyrrole and their application in light-converting films for the enhancement of lipid production from Chlorella sp.

황태규 2020년
논문상세정보
' (A) study on aggregation-induced emission based diketopyrrolopyrrole and their application in light-converting films for the enhancement of lipid production from Chlorella sp.' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 기술과 연합작용
  • Photosynthetic photon flux density
  • Deep red emission
  • Diketopyrrolopyrrole
  • Light-converting film
  • Lipid production
  • Triphenylamine
  • aggregation-induced emission
  • micro-algae
  • 광변환 필름
  • 광합성 광양자속 밀도
  • 디케토피롤로피롤
  • 미세조류
  • 심적색 발광
  • 응집 유도 발광
  • 지질 생산
  • 트리페닐아민
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
726 0

0.0%

' (A) study on aggregation-induced emission based diketopyrrolopyrrole and their application in light-converting films for the enhancement of lipid production from Chlorella sp.' 의 참고문헌

  • Y. K. , Wavelength Shift Strategy to Enhance Lipid Productivity of Nannochloropsis Gaditana
    11 , 70 . [2018]
  • Y. Aggregation-Induced Fluorescence Behavior of Triphenylamine-Based Schiff Bases : The Combined Effect of Multiple Forces
    78 , 10344-10359 . [2013]
  • Use of Tar Color Additives as a Light Filter to Enhance Growth and Lipid Production by the Microalga Nannochloropsis Gaditana
    23 , 205-209 [2018]
  • Twisted Intramolecular Charge Transfer and Aggregation-Induced Emission of Bodipy Derivatives .
    113 , 15845-15853 . [2009]
  • The First Aggregation-Induced Emission Fluorophore as a Solution Processed Host Material in Hybrid White Organic Light-Emitting Diodes
    4 , 7020-7025 . [2016]
  • Tailoring Microalgae for Efficient Biofuel Production .
    5 [2018]
  • Synthesis and Characterization of Fluorescent Dyes and Their Applications for the Enhancement of Growth Rate of Chlorella Vulgaris
    158 , 142-150 [2018]
  • SpectralConversion of Light for Enhanced Microalgae Growth Rates and Photosynthetic Pigment Production
    125 , 75- 81 [2012]
  • Solar SpectralConversion for Improving the Photosynthetic Activity in Algae Reactors
    4 , 2047 . [2013]
  • Solar SpectralConversion and Extrinsic Sensitization in Natural and Artificial Photosynthesis
    2 , 1500218 . [2015]
  • Red Emissive Aie Nanodots with High Two-Photon Absorption Efficiency at 1040 Nm for Deep-Tissue in Vivo Imaging
    6 , 3783-94 . [2015]
  • Recent Progress of Metal Halide Perovskite Photodetectors
    5 , 11369-11394 [2017]
  • Recent Developments in Synthetic Biology and Metabolic Engineering in Microalgae Towards Biofuel Production
    11 , 185 . [2018]
  • Prediction and Understanding of Aie Effect by Quantum Mechanics-Aided Machine-Learning Algorithm
    54 , 7955-7958 . [2018]
  • P. Thiophene-Based Donor- Acceptor Co-Oligomers by Copper-Catalyzed 1,3-Dipolar Cycloaddition
    8 , 683-692 . [2012]
  • P. , Red Light and Carbon Dioxide Differentially Affect Growth , Lipid Production , and Quality in the Microalga , Ettlia Oleoabundans
    99 , 489-99 . [2015]
  • J. P. , Synthesis and Characterization of Some Perylene Dyes for Dye-Based Lcd Color Filters
    90 , 82-88 . [2011]
  • J. P. , Fluorescence Quenching of 4,4 ’ - Dimethoxytriphenylamine-Substituted Diketopyrrolopyrrole Via Intramolecular Photoinduced Electron Transfer
    123 , 24263-24274 . [2019]
  • J. P. , Aggregation Induced Emission of Diketopyrrolopyrrole ( Dpp ) Derivatives for Highly Fluorescent Red Films
    18 , 1064-1074 [2019]
  • Intramolecular Charge-Transfer Interaction of Donor-Acceptor-Donor Arrays Based on Anthracene Bisimide .
    81 , 4076-80 . [2016]
  • Fluorescent Sensors Based on Aggregation-Induced Emission : Recent Advances and Perspectives .
    2 , 1382-1399 . [2017]
  • Fluorescence Spectral Changes of Perylene in Polymer Matrices During the Solvent Evaporation Process
    117 , 3675-81 . [2013]
  • F. d. r. ; Boilot , J.-P. , Photostability of Dye Molecules Trapped in Solid Matrices
    35 , 3193-3199 . [1996]
  • Enhancement of Dunaliella Salina Growth by Using Wavelength Shifting Dyes
    31 , 2791-2796 . [2019]
  • Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles
    124 , 14410-14415 [2002]
  • Enabling Dpp Derivatives to Show Multistate Emission and Developing the Multifunctional Materials by Rational Branching Effect
    159 , 290-297 [2018]
  • Effect of Green and Red Light in Lipid Accumulation and Transcriptional Profile of Genes Implicated in Lipid Biosynthesis in Chlamydomonas Reinhardtii
    32 , 1404-1411 [2016]
  • Direct Observation of the Photoinduced Electron Transfer Processes of Bis ( 4-Arylphenylamino Benzo ) -Ortho-Carborane Using Transient Absorption Spectroscopic Measurements
    19 , 24485-24492 . [2017]
  • Biomass and Lipid Induction Strategies in Microalgae for Biofuel Production and Other Applications
    18 , 178 [2019]
  • Anthraquinone-Based Intramolecular Charge-Transfer Compounds : Computational Molecular Design , Thermally Activated Delayed Fluorescence , and Highly Efficient Red Electroluminescence .
    136 , 18070-81 [2014]
  • Algae as a Source of Renewable Chemicals : Opportunities and Challenges
    13 , 1399-1405 . [2011]
  • Aggregation-Induced Fluorescence Behavior of Triphenylamine-Based Schiff Bases : The Combined Effect of Multiple Forces
    78 , 10344-59 [2013]
  • Aggregation-Induced Emission of 1-Methyl- 1,2,3,4,5-Pentaphenylsilole .
    1740-1 [2001]
  • Aggregation-Induced Blue Shift of Fluorescence Emission Due to Suppression of Tict in a Phenothiazine-Based Organogel
    339 , 527-32 . [2009]
  • A. Red- Emitting Aiegen for Luminescent Solar Concentrators
    1 , 1406-1412 . [2017]
  • A. Epr and Uv ? Vis Spectroelectrochemical Studies of Diketopyrrolopyrroles Disubstituted with Alkylated Thiophenes .
    216 , 75-82 . [2016]
  • A. Bodipy-Based Fluorescent Probes for Sensing Protein Surface-Hydrophobicity .
    5 , 18337 . [2015]
  • A Novel Compact Dpp Dye with Enhanced Light Harvesting and Charge Transfer Properties for Highly Efficient Dscs
    1 , 4858-4864 . [2013]
  • , H. Highly Luminescent Encapsulated Narrow Bandgap Polymers Based on
    , 140 , 1622-1626
  • (9) Ooms, M. D.; Dinh, C. T.; Sargent, E. H.; Sinton, D., Photon Management for Augmented Photosynthesis. Nat. Commun. 2016, 7, 12699.
  • (8) Schuwer, N.; Klok, H. A., A Potassium-Selective Quartz Crystal Microbalance Sensor Based on Crown-Ether Functionalized Polymer Brushes. Adv. Mater. 2010, 22, 3251-5.
  • (8) Schulze, P. S.; Barreira, L. A.; Pereira, H. G.; Perales, J. A.; Varela, J. C., Light Emitting Diodes (Leds) Applied to Microalgal Production. Trends Biotechnol. 2014, 32, 422-30.
  • (8) Rettig, W.; Klock, A. Intramolecular Fluorescence Quenching in Aminocoumarines. Identification of an Excited State with Full Charge Separation. Can. J. Chem. 1985, 63, 1649-1653.
  • (8) Raeisossadati, M.; Moheimani, N. R.; Parlevliet, D., Red and Blue Luminescent Solar Concentrators for Increasing Arthrospira Platensis Biomass and Phycocyanin Productivity in Outdoor Raceway Ponds. Bioresour. Technol. 2019, 291, 121801.
  • (8) Abiusi, F.; Wijffels, R. H.; Janssen, M., Doubling of Microalgae Productivity by Oxygen Balanced Mixotrophy. ACS Sustainable Chem. Eng. 2020, 8, 6065-6074.
  • (7) Wondraczek, L.; Batentschuk, M.; Schmidt, M. A.; Borchardt, R.; Scheiner, S.; Seemann, B.; Schweizer, P.; Brabec, C. J., Solar Spectral Conversion for Improving the Photosynthetic Activity in Algae Reactors. Nat. Commun. 2013, 4, 2047.
  • (7) Sasaki, S.; Igawa, K.; Konishi, G.-i. The Effect of Regioisomerism on the Solid-State Fluorescence of Bis(Piperidyl)Anthracenes: Structurally Simple but Bright Aie Luminogens. J. Mater. Chem. C 2015, 3, 5940-5950.
  • (7) Pierobon, S. C.; Cheng, X.; Graham, P. J.; Nguyen, B.; Karakolis, E. G.; Sinton, D., Emerging Microalgae Technology: A Review. Sustain. Energy Fuels 2018, 2, 13-38.
  • (7) Hu, L.; Duan, Y.; Xu, Z.; Yuan, J.; Dong, Y.; Han, T., Stimuli- Responsive Fluorophores with Aggregation-Induced Emission: Implication for Dual-Channel Optical Data Storage. J. Mater. Chem. C 2016, 4, 5334-5341.
  • (7) Eroglu, E.; Eggers, P. K.; Winslade, M.; Smith, S. M.; Raston, C. L., Enhanced Accumulation of Microalgal Pigments Using Metal Nanoparticle Solutions as Light Filtering Devices. Green Chem. 2013, 15, 3155-3159.
  • (6) Kunjapur, A. M.; Eldridge, R. B., Photobioreactor Design for Commercial Biofuel Production from Microalgae. Ind. Eng. Chem. Res. 2010, 49, 3516-3526.
  • (6) Banal, J. L.; Ghiggino, K. P.; Wong, W. W., Efficient Light Harvesting of a Luminescent Solar Concentrator Using Excitation Energy Transfer from an Aggregation-Induced Emitter. Phys. Chem. Chem. Phys. 2014, 16, 25358-63.
  • (6) Abiusi, F.; Wijffels, R. H.; Janssen, M., Doubling of Microalgae Productivity by Oxygen Balanced Mixotrophy. ACS Sustainable Chem. Eng. 2020, 8, 6065-6074.
  • (5) Schuwer, N.; Klok, H.-A. A Potassium-Selective Quartz Crystal Microbalance Sensor Based on Crown-Ether Functionalized Polymer Brushes. Adv. Mater. 2010, 22, 3251-3255.
  • (5) Qi, Y.; Wang, Y.; Yu, Y.; Liu, Z.; Zhang, Y.; Qi, Y.; Zhou, C., Exploring Highly Efficient Light Conversion Agents for Agricultural Film Based on Aggregation Induced Emission Effects. J. Mater. Chem. C 2016, 4, 11291-11297.
  • (5) Dickinson, S.; Mientus, M.; Frey, D.; Amini-Hajibashi, A.; Ozturk, S.; Shaikh, F.; Sengupta, D.; El-Halwagi, M. M., A Review of Biodiesel Production from Microalgae. Clean Techn Environ Policy 2016, 19, 637-668.
  • (5) Abiusi, F.; Wijffels, R. H.; Janssen, M., Doubling of Microalgae Productivity by Oxygen Balanced Mixotrophy. ACS Sustainable Chem. Eng. 2020, 8, 6065-6074.
  • (41) Quinton, C.; Alain-Rizzo, V.; Dumas-Verdes, C.; Miomandre, F.; Clavier, G.; Audebert, P. Redox-Controlled Fluorescence Modulation (Electrofluorochromism) in Triphenylamine Derivatives. RSC Adv. 2014, 4, 34332-34342.
  • (4) Wang, H.; Xie, L.; Peng, Q.; Meng, L.; Wang, Y.; Yi, Y.; Wang, P., Novel Thermally Activated Delayed Fluorescence Materials- Thioxanthone Derivatives and Their Applications for Highly Efficient Oleds. Adv. Mater. 2014, 26, 5198-204.
  • (4) Pierobon, S. C.; Cheng, X.; Graham, P. J.; Nguyen, B.; Karakolis, E. G.; Sinton, D., Emerging Microalgae Technology: A Review. Sustain. Energy Fuels 2018, 2, 13-38.
  • (4) Han, T.; Feng, X.; Chen, D.; Dong, Y. A Diethylaminophenol Functionalized Schiff Base: Crystallization-Induced Emission- Enhancement, Switchable Fluorescence and Application for Security Printing and Data Storage. J. Mater. Chem. C 2015, 3, 7446-7454.
  • (4) Dickinson, S.; Mientus, M.; Frey, D.; Amini-Hajibashi, A.; Ozturk, S.; Shaikh, F.; Sengupta, D.; El-Halwagi, M. M., A Review of Biodiesel Production from Microalgae. Clean Techn Environ Policy 2016, 19, 637-668.
  • (39) Rosspeintner, A.; Vauthey, E. Bimolecular Photoinduced Electron Transfer Reactions in Liquids under the Gaze of Ultrafast Spectroscopy. Phys. Chem. Chem. Phys. 2014, 16, 25741-25754.
  • (38) Kim, S. Y.; Cho, Y. J.; Son, H. J.; Cho, D. W.; Kang, S. O. Photoinduced Electron Transfer in a Bodipy- Ortho-Carborane Dyad Investigated by Time-Resolved Transient Absorption Spectroscopy. J. Phys. Chem. A 2018, 122, 3391-3397.
  • (36) Filatov, M. A.; et al. Generation of Triplet Excited States Via Photoinduced Electron Transfer in Meso-Anthra-Bodipy: Fluorogenic Response toward Singlet Oxygen in Solution and in Vitro. J Am Chem Soc 2017, 139, 6282-6285.
  • (35) Hou, Y.; et al. Spin?Orbit Charge Recombination Intersystem Crossing in Phenothiazine?Anthracene Compact Dyads: Effect of Molecular Conformation on Electronic Coupling, Electronic Transitions, and Electron Spin Polarizations of the Triplet States. The Journal of Physical Chemistry C 2018, 122, 27850-27865.
  • (35) Bujdak, J., Hybrid Systems Based on Organic Dyes and Clay Minerals: Fundamentals and Potential Applications. Clay Miner. 2018, 50, 549-571.
  • (34) Wang, Z.; Zhao, J. Bodipy-Anthracene Dyads as Triplet Photosensitizers: Effect of Chromophore Orientation on Triplet-State Formation Efficiency and Application in Triplet-Triplet Annihilation Upconversion. Org Lett 2017, 19, 4492-4495.
  • (34) Lee, R. A.; Lavoie, J.-M., From First- to Third-Generation Biofuels: Challenges of Producing a Commodity from a Biomass of Increasing Complexity. Anim. Front. 2013, 3, 6-11.
  • (34) Gaytan-Luna, D. E.; Ochoa-Alfaro, A. E.; Rocha-Uribe, A.; Perez-Martinez, A. S.; Alpuche-Solis, A. G.; Soria-Guerra, R. E., Effect of Green and Red Light in Lipid Accumulation and Transcriptional Profile of Genes Implicated in Lipid Biosynthesis in Chlamydomonas Reinhardtii. Biotechnol. Prog. 2016, 32, 1404-1411.
  • (33) Zou, J.; Yin, Z.; Ding, K.; Tang, Q.; Li, J.; Si, W.; Shao, J.; Zhang, Q.; Huang, W.; Dong, X. Bodipy Derivatives for Photodynamic Therapy: Influence of Configuration Versus Heavy Atom Effect. ACS Appl. Mater. Interfaces 2017, 9, 32475-32481.
  • (33) Yang, Y.; Weathers, P., Red Light and Carbon Dioxide Differentially Affect Growth, Lipid Production, and Quality in the Microalga, Ettlia Oleoabundans. Appl. Microbiol. Biotechnol. 2015, 99, 489-99.
  • (33) Tang, H.; Chen, M.; Garcia, M. E.; Abunasser, N.; Ng, K. Y.; Salley, S. O., Culture of Microalgae Chlorella Minutissima for Biodiesel Feedstock Production. Biotechnol. Bioeng. 2011, 108, 2280-7.
  • (33) Qi, Y.; Wang, Y.; Yu, Y.; Liu, Z.; Zhang, Y.; Qi, Y.; Zhou, C., Exploring Highly Efficient Light Conversion Agents for Agricultural Film Based on Aggregation Induced Emission Effects. J. Mater. Chem. C 2016, 4, 11291-11297.
  • (33) Dobretsov, G. E.; Syrejschikova, T. I.; Smolina, N. V., On Mechanisms of Fluorescence Quenching by Water. Biophysics 2014, 59, 183-188.
  • (32) Zou, J.; Yin, Z.; Wang, P.; Chen, D.; Shao, J.; Zhang, Q.; Sun, L.; Huang, W.; Dong, X. Photosensitizer Synergistic Effects: D-a-D Structured Organic Molecule with Enhanced Fluorescence and Singlet Oxygen Quantum Yield for Photodynamic Therapy. Chem. Sci. 2018, 9, 2188-2194.
  • (32) Ma, W.; Li, W.; Cao, M.; Liu, R.; Zhao, X.; Gong, X., Large Stokes-Shift Aie Fluorescent Materials for High-Performance Luminescent Solar Concentrators. Org. Electron. 2019, 73, 226-230.
  • (32) Gierschner, J.; Luer, L.; Milian-Medina, B.; Oelkrug, D.; Egelhaaf, H.-J., Highly Emissive H-Aggregates or Aggregation-Induced Emission Quenching? The Photophysics of All-Trans Para- Distyrylbenzene. J. Phys. Chem. Lett. 2013, 4, 2686-2697.
  • (32) Davis, N. J. L. K.; MacQueen, R. W.; Jones, S. T. E.; Orofino- Pena, C.; Cortizo-Lacalle, D.; Taylor, R. G. D.; Credgington, D.; Skabara, P. J.; Greenham, N. C., Star-Shaped Fluorene?Bodipy Oligomers: Versatile Donor?Acceptor Systems for Luminescent Solar Concentrators. J. Mater. Chem. C 2017, 5, 1952-1962.
  • (31) Yu, Z.; Wu, Y.; Peng, Q.; Sun, C.; Chen, J.; Yao, J.; Fu, H. Accessing the Triplet State in Heavy-Atom-Free Perylene Diimides. Chem. Eur. J. 2016, 22, 4717-4722.
  • (31) Tang, B. Z.; Geng, Y.; Lam, J. W. Y.; Li, B.; Jing, X.; Wang, X.; Wang, F.; Pakhomov, A. B.; Zhang, X. X., Processible Nanostructured Materials with Electrical Conductivity and Magnetic Susceptibility: Reparation and Properties of Maghemite/Polyaniline Nanocomposite Films. Chem. Mater. 1999, 11, 1581-1589.
  • (31) Gierschner, J.; Luer, L.; Milian-Medina, B.; Oelkrug, D.; Egelhaaf, H.-J., Highly Emissive H-Aggregates or Aggregation-Induced Emission Quenching? The Photophysics of All-Trans Para- Distyrylbenzene. J. Phys. Chem. Lett. 2013, 4, 2686-2697.
  • (30) Zhu, H.; Li, M.; Hu, J.; Wang, X.; Jie, J.; Guo, Q.; Chen, C.; Xia, A., Ultrafast Investigation of Intramolecular Charge Transfer and Solvation Dynamics of Tetrahydro[5]-Helicene-Based Imide Derivatives. Sci. Rep. 2016, 6, 24313.
  • (30) Zheng, Z.; Li, D.; Liu, Z.; Peng, H. Q.; Sung, H. H. Y.; Kwok, R. T. K.; Williams, I. D.; Lam, J. W. Y.; Qian, J.; Tang, B. Z., Aggregation-Induced Nonlinear Optical Effects of Aiegen Nanocrystals for Ultradeep in Vivo Bioimaging. Adv. Mater. 2019, 31, 1904799.
  • (30) Seo, Y. H.; Lee, Y.; Jeon, D. Y.; Han, J. I., Enhancing the Light Utilization Efficiency of Microalgae Using Organic Dyes. Bioresour. Technol. 2015, 181, 355-9.
  • (30) Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718-11940.
  • (3) Pierobon, S. C.; Cheng, X.; Graham, P. J.; Nguyen, B.; Karakolis, E. G.; Sinton, D., Emerging Microalgae Technology: A Review. Sustain. Energy Fuels 2018, 2, 13-38.
  • (3) Kim, G.-Y.; Roh, K.; Han, J.-I., The Use of Bicarbonate for Microalgae Cultivation and Its Carbon Footprint Analysis. Green Chem. 2019, 21, 5053-5062.
  • (3) Gong, J.; You, F., Value-Added Chemicals from Microalgae: Greener, More Economical, or Both? ACS Sustainable Chem. Eng. 2014, 3, 82-96.
  • (3) Chiba, T.; Pu, Y. J.; Kido, J., Solution-Processed White Phosphorescent Tandem Organic Light-Emitting Devices. Adv. Mater. 2015, 27, 4681-7.
  • (3) Chiba, T.; Pu, Y. J.; Kido, J. Solution-Processed White Phosphorescent Tandem Organic Light-Emitting Devices. Adv. Mater. 2015, 27, 4681-4687.
  • (29) Zhu, L.; Yang, C.; Qin, J., An Aggregation-Induced Blue Shift of Emission and the Self-Assembly of Nanoparticles from a Novel Amphiphilic Oligofluorene. ChemComm 2008, 6303-5.
  • (29) Garces R, M. M., One-Step Lipid Extraction and Fatty Acid Methyl Esters Preparation from Fesh Plant Tissues. Anal Biochem. 1993, 211, 139-143.
  • (28) Leung, N. L.; Xie, N.; Yuan, W.; Liu, Y.; Wu, Q.; Peng, Q.; Miao, Q.; Lam, J. W.; Tang, B. Z., Restriction of Intramolecular Motions: The General Mechanism Behind Aggregation-Induced Emission. Chem. Eur. J. 2014, 20, 15349-53.
  • (28) Ito, F.; Kogasaka, Y.; Yamamoto, K., Fluorescence Spectral Changes of Perylene in Polymer Matrices During the Solvent Evaporation Process. J. Phys. Chem. B 2013, 117, 3675-81.
  • (28) Han, J.; Sun, J.; Li, Y.; Duan, Y.; Han, T., One-Pot Synthesis of a Mechanochromic Aie Luminogen: Implication for Rewritable Optical Data Storage. J. Mater. Chem. C 2016, 4, 9287-9293.
  • (27) Tang, B. Z.; Zhan, X.; Yu, G.; Sze Lee, P. P.; Liu, Y.; Zhu, D. Efficient Blue Emission from Siloles. J. Mater. Chem. 2001, 11, 2974- 2978.
  • (27) Luo, J., et al., Aggregation-Induced Emission of 1-Methyl- 1,2,3,4,5-Pentaphenylsilole. Chem. Comm. 2001, 1740-1.
  • (27) Garces, R.; Mancha, M., One-Step Lipid Extraction and Fatty Acid Methyl Esters Preparation from Fesh Plant Tissues. Anal Biochem. 1993, 211, 139-143.
  • (26) Wang, F.; DeRosa, C. A.; Daly, M. L.; Song, D.; Fraser, C. L. Multi-Stimuli Responsive Luminescent Azepane-Substituted Beta- Diketones and Difluoroboron Complexes. Mater. Chem. Front. 2017, 1, 1866-1874.
  • (26) Grzybowski, M.; Gryko, D. T., Diketopyrrolopyrroles: Synthesis, Reactivity, and Optical Properties. Adv. Opt. Mater. 2015, 3, 280-320.
  • (25) Sasaki, S.; Drummen, G. P. C.; Konishi, G.-i. Recent Advances in Twisted Intramolecular Charge Transfer (Tict) Fluorescence and Related Phenomena in Materials Chemistry. J. Mater. Chem. C 2016, 4, 2731-2743.
  • (25) Jin, Y.; Xu, Y.; Liu, Y.; Wang, L.; Jiang, H.; Li, X.; Cao, D., Synthesis of Novel Diketopyrrolopyrrole-Based Luminophores Showing Crystallization-Induced Emission Enhancement Properties. Dyes Pigm. 2011, 90, 311-318.
  • (25) Jiang, T.; Li, D.; Hang, Y.; Gao, Y.; Zhang, H.; Zhao, X.; Li, X.; Li, B.; Qian, J.; Hua, J., Tetraphenylethene End-Capped Diketopyrrolopyrrole Fluorogens with Aie and Large Two-Photon Absorption Cross-Sections Features and Application in Bioimaging. Dyes Pigm. 2016, 133, 201-213.
  • (25) Guo, E. Q.; Ren, P. H.; Zhang, Y. L.; Zhang, H. C.; Yang, W. J., Diphenylamine End-Capped 1,4-Diketo-3,6-Diphenylpyrrolo[3,4- C]Pyrrole (Dpp) Derivatives with Large Two-Photon Absorption Cross- Sections and Strong Two-Photon Excitation Red Fluorescence. Chem. Comm. 2009, 5859-61.
  • (24) Singh, S. P.; Singh, P., Effect of Temperature and Light on the Growth of Algae Species: A Review. Renew. Sust. Energ. Rev. 2015, 50, 431-444.
  • (24) Huang, K.; Wu, H.; Shi, M.; Li, F.; Yi, T.; Huang, C., Reply to Comment on 'Aggregation-Induced Phosphorescent Emission (Aipe) of Iridium(Iii) Complexes': Origin of the Enhanced Phosphorescence. Chem. Commun. 2009, 1243-5.
  • (24) Guo, E. Q.; Ren, P. H.; Zhang, Y. L.; Zhang, H. C.; Yang, W. J., Diphenylamine End-Capped 1,4-Diketo-3,6-Diphenylpyrrolo[3,4- C]Pyrrole (Dpp) Derivatives with Large Two-Photon Absorption Cross- Sections and Strong Two-Photon Excitation Red Fluorescence. Chem. Comm. 2009, 5859-61.
  • (23) Yang, J. H.; Shi, L.; Wang, L. W.; Wei, S. H. Non-Radiative Carrier Recombination Enhanced by Two-Level Process: A First- Principles Study. Sci. Rep. 2016, 6, 21712.
  • (23) Li, H.; Chi, Z.; Xu, B.; Zhang, X.; Li, X.; Liu, S.; Zhang, Y.; Xu, J., Aggregation-Induced Emission Enhancement Compounds Containing Triphenylamine-Anthrylenevinylene and Tetraphenylethene Moieties. J. Mater. Chem. 2011, 21.
  • (23) Kaiser, T. E.; Wang, H.; Stepanenko, V.; Wurthner, F., Supramolecular Construction of Fluorescent J-Aggregates Based on Hydrogen-Bonded Perylene Dyes. Angew. Chem. Int. Ed. 2007, 119, 5637-5640.
  • (23) Grzybowski, M.; Gryko, D. T., Diketopyrrolopyrroles: Synthesis, Reactivity, and Optical Properties. Adv. Opt. Mater. 2015, 3, 280-320.
  • (23) Davis, N. J. L. K.; MacQueen, R. W.; Jones, S. T. E.; Orofino Pena, C.; Cortizo-Lacalle, D.; Taylor, R. G. D.; Credgington, D.; Skabara, P. J.; Greenham, N. C., Star-Shaped Fluorene?Bodipy Oligomers: Versatile Donor?Acceptor Systems for Luminescent Solar Concentrators. J. Mater. Chem. C 2017, 5, 1952-1962.
  • (22) Menke, S. M.; Ran, N. A.; Bazan, G. C.; Friend, R. H. Understanding Energy Loss in Organic Solar Cells: Toward a New Efficiency Regime. Joule 2018, 2, 25-35.
  • (22) Hu, R., et al., Twisted Intramolecular Charge Transfer and Aggregation-Induced Emission of Bodipy Derivatives. J. Phys. Chem. C 2009, 113, 15845-15853.
  • (22) Burak, H.; Dunbar, A.; Gilmour, D. J., Enhancement of Dunaliella Salina Growth by Using Wavelength Shifting Dyes. J. Appl. Phycol. 2019, 31, 2791-2796.
  • (21) Wan, Q.; Tong, J.; Zhang, B.; Li, Y.; Wang, Z.; Tang, B. Z., Exploration of High Efficiency Aie?Active Deep/near?Infrared Red Emitters in Oleds with High?Radiance. Adv. Opt. Mater. 2019, 8, 1901520.
  • (21) Leung, N. L.; Xie, N.; Yuan, W.; Liu, Y.; Wu, Q.; Peng, Q.; Miao, Q.; Lam, J. W.; Tang, B. Z., Restriction of Intramolecular Motions: The General Mechanism Behind Aggregation-Induced Emission. Chem. Eur. J. 2014, 20, 15349-53.
  • (21) Han, G. R.; Hwang, D.; Lee, S.; Lee, J. W.; Lim, E.; Heo, J.; Kim, S. K. Shedding New Light on an Old Molecule: Quinophthalone Displays Uncommon N-to-O Excited State Intramolecular Proton Transfer (Esipt) between Photobases. Sci. Rep. 2017, 7, 3863.
  • (21) Gao, B.-R., et al., Time-Resolved Fluorescence Study of Aggregation-Induced Emission Enhancement by Restriction of Intramolecular Charge Transfer State. J. Phys. Chem. B 2010, 114, 128- 134.
  • (20) Yu, Z.; Duan, Y.; Cheng, L.; Han, Z.; Zheng, Z.; Zhou, H.; Wu, J.; Tian, Y., Aggregation Induced Emission in the Rotatable Molecules: The Essential Role of Molecular Interaction. J. Mater. Chem. 2012, 22.
  • (20) Mori, R.; Iasilli, G.; Lessi, M.; Munoz-Garcia, A. B.; Pavone, M.; Bellina, F.; Pucci, A., Luminescent Solar Concentrators Based on Pmma Films Obtained from a Red-Emitting Atrp Initiator. Polym. Chem. 2018, 9, 1168-1177.
  • (20) Janiak, C., A Critical Account on バ?バ Stacking in Metal Complexes with Aromatic Nitrogen-Containing Ligands J. Chem. Soc., Dalton Trans. 2000, 21, 3885-3896.
  • (20) Grubb, M. P.; Orr-Ewing, A. J.; Ashfold, M. N. Koala: A Program for the Processing and Decomposition of Transient Spectra. Rev. Sci. Instrum. 2014, 85, 064104.
  • (20) An, B.-K.; Kwon, S.-K.; Jung, S.-D.; Park, S. Y., Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles. J. Am. Chem. Soc. 2002, 124, 14410-5.
  • (2) Medipally, S. R.; Yusoff, F. M.; Banerjee, S.; Shariff, M., Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production. Biomed Res. Int. 2015, 2015, 519513.
  • (2) Lee, C. W.; Lee, J. Y., Above 30% External Quantum Efficiency in Blue Phosphorescent Organic Light-Emitting Diodes Using Pyrido[2,3-B]Indole Derivatives as Host Materials. Adv. Mater. 2013, 25, 5450-4.
  • (2) Kim, G.-Y.; Roh, K.; Han, J.-I., The Use of Bicarbonate for Microalgae Cultivation and Its Carbon Footprint Analysis. Green Chem. 2019, 21, 5053-5062.
  • (2) Foley, P. M.; Beach, E. S.; Zimmerman, J. B., Algae as a Source of Renewable Chemicals: Opportunities and Challenges. Green Chem. 2011, 13, 1399-1405.
  • (19) Luo, J., et al., Aggregation-Induced Emission of 1-Methyl- 1,2,3,4,5-Pentaphenylsilole. Chem. Comm. 2001, 1740-1.
  • (19) Li, Y., et al., Tight Intermolecular Packing through Supramolecular Interactions in Crystals of Cyano Substituted Oligo(Para-Phenylene Vinylene): A Key Factor for Aggregation-Induced Emission. Chem. Commun. 2007, 231-3.
  • (18) Zhou, H.; Huang, W.; Ding, L.; Cai, S.; Li, X.; Li, B.; Su, J., New Cyano-Substituted Organic Dyes Containing Different Electrophilic Groups: Aggregation-Induced Emission and Large Two- Photon Absorption Cross Section. Tetrahedron 2014, 70, 7050-7056.
  • (18) Khoobkar, Z.; Delavari Amrei, H., Effect of Fluorescent Dye Positioning and Concentration on the Growth Parameters and Lipid Content of Chlorella Sp. In a Flat Panel Photobioreactor. Biotechnol. Lett. 2020.
  • (18) Guo, E. Q.; Ren, P. H.; Zhang, Y. L.; Zhang, H. C.; Yang, W. J. Diphenylamine End-Capped 1,4-Diketo-3,6-Diphenylpyrrolo[3,4- C]Pyrrole (Dpp) Derivatives with Large Two-Photon Absorption Cross- Sections and Strong Two-Photon Excitation Red Fluorescence. Chem. Commun. 2009, 5859-5861.
  • (18) Grzybowski, M.; Gryko, D. T., Diketopyrrolopyrroles: Synthesis, Reactivity, and Optical Properties. Adv. Opt. Mater. 2015, 3, 280-320.
  • (17) Zhang, X. F. The Effect of Phenyl Substitution on the Fluorescence Characteristics of Fluorescein Derivatives Via Intramolecular Photoinduced Electron Transfer. Photochem. Photobiol. Sci. 2010, 9, 1261-1268.
  • (17) Shen, X. Y.; Wang, Y. J.; Zhang, H.; Qin, A.; Sun, J. Z.; Tang, B. Z., Conjugates of Tetraphenylethene and Diketopyrrolopyrrole: Tuning the Emission Properties with Phenyl Bridges. Chem. Commun. 2014, 50, 8747-50.
  • (17) Davis, N. J. L. K.; MacQueen, R. W.; Jones, S. T. E.; Orofino- Pena, C.; Cortizo-Lacalle, D.; Taylor, R. G. D.; Credgington, D.; Skabara, P. J.; Greenham, N. C., Star-Shaped Fluorene?Bodipy Oligomers: Versatile Donor?Acceptor Systems for Luminescent Solar Concentrators. J. Mater. Chem. C 2017, 5, 1952-1962.
  • (16) Guo, E. Q.; Ren, P. H.; Zhang, Y. L.; Zhang, H. C.; Yang, W. J., Diphenylamine End-Capped 1,4-Diketo-3,6-Diphenylpyrrolo[3,4- C]Pyrrole (Dpp) Derivatives with Large Two-Photon Absorption Cross Sections and Strong Two-Photon Excitation Red Fluorescence. Chem. Commun. 2009, 5859-61.
  • (16) Escudero, D. Revising Intramolecular Photoinduced Electron Transfer (Pet) from First-Principles. Acc. Chem. Res. 2016, 49, 1816- 1824.
  • (15) Xia, Q.; Batentschuk, M.; Osvet, A.; Richter, P.; Hader, D. P.; Schneider, J.; Brabec, C. J.; Wondraczek, L.; Winnacker, A., Enhanced Photosynthetic Activity in Spinacia Oleracea by Spectral Modification with a Photoluminescent Light Converting Material. Opt. Express 2013, 21 Suppl 6, A909-16.
  • (15) Wang, B.; He, N.; Li, B.; Jiang, S.; Qu, Y.; Qu, S.; Hua, J., Aggregation-Induced Emission and Large Two-Photon Absorption Cross-Sections of Diketopyrrolopyrrole (Dpp) Derivatives. Aust. J. Chem. 2012, 65.
  • (15) Janiak, C., A Critical Account on バ?バ Stacking in Metal Complexes with Aromatic Nitrogen-Containing Ligands J. Chem. Soc., Dalton Trans. 2000, 21, 3885-3896.
  • (15) Hartnett, P. E.; Margulies, E. A.; Mauck, C. M.; Miller, S. A.; Wu, Y.; Wu, Y. L.; Marks, T. J.; Wasielewski, M. R. Effects of Crystal Morphology on Singlet Exciton Fission in Diketopyrrolopyrrole Thin Films. J. Phys. Chem. B 2016, 120, 1357-1366.
  • (14) Seo, Y. H.; Lee, Y.; Jeon, D. Y.; Han, J. I., Enhancing the Light Utilization Efficiency of Microalgae Using Organic Dyes. Bioresour. Technol. 2015, 181, 355-9.
  • (14) Grzybowski, M.; Gryko, D. T. Diketopyrrolopyrroles: Synthesis, Reactivity, and Optical Properties. Adv. Opt. Mater. 2015, 3, 280-320.
  • (14) Dubois, A.; Canva, M.; Brun, A.; Chaput, F. d. r.; Boilot, J.-P., Photostability of Dye Molecules Trapped in Solid Matrices. Appl. Opt. 1996, 35, 3193-3199.
  • (14) An, B. K.; Kwon, S. K.; Jung, S. D.; Park, S. Y., Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles. J. Am. Chem. Soc. 2002, 124, 14410-5.
  • (13) Xue, R.; Fu, L.; Dong, S.; Yang, H.; Zhou, D., Promoting Chlorella Photosynthesis and Bioresource Production Using Directionally Prepared Carbon Dots with Tunable Emission. J. Colloid Interface Sci. 2020, 569, 195-203.
  • (13) Tang, B. Z.; Zhan, X.; Yu, G.; Sze Lee, P. P.; Liu, Y.; Zhu, D., Efficient Blue Emission from Siloles. J. Mater. Chem. 2001, 11, 2974- 2978.
  • (13) Ooms, M. D.; Dinh, C. T.; Sargent, E. H.; Sinton, D., Photon Management for Augmented Photosynthesis. Nat. Commun. 2016, 7, 12699.
  • (13) Jang, H.; Namgoong, J. W.; Sung, M.-G.; Chang, Y.; Kim, J. P., Synthesis and Characterization of Fluorescent Dyes and Their Applications for the Enhancement of Growth Rate of Chlorella Vulgaris. Dyes Pigm. 2018, 158, 142-150.
  • (12) Sung, M. G.; Han, J. I.; Lee, B.; Chang, Y. K., Wavelength Shift Strategy to Enhance Lipid Productivity of Nannochloropsis Gaditana. Biotechnol. Biofuels 2018, 11, 70.
  • (12) Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.; Salbeck, J., Spiro Compounds for Organic Optoelectronics. Chem. Soc. Rev. 2007, 107.
  • (12) Ooms, M. D.; Dinh, C. T.; Sargent, E. H.; Sinton, D., Photon Management for Augmented Photosynthesis. Nat. Commun. 2016, 7, 12699.
  • (12) Ghosh, I.; Mukhopadhyay, A.; Koner, A. L.; Samanta, S.; Nau, W. M.; Moorthy, J. N. Excited-State Properties of Fluorenones: Influence of Substituents, Solvent and Macrocyclic Encapsulation. Phys. Chem. Chem. Phys. 2014, 16, 16436-16445.
  • (12) Burak, H.; Dunbar, A.; Gilmour, D. J., Enhancement of Dunaliella Salina Growth by Using Wavelength Shifting Dyes. J. Appl. Phycol. 2019, 31, 2791-2796.
  • (11) Xue, R.; Fu, L.; Dong, S.; Yang, H.; Zhou, D., Promoting Chlorella Photosynthesis and Bioresource Production Using Directionally Prepared Carbon Dots with Tunable Emission. J. Colloid Interface Sci. 2020, 569, 195-203.
  • (11) Sung, M. G.; Han, J. I.; Lee, B.; Chang, Y. K., Wavelength Shift Strategy to Enhance Lipid Productivity of Nannochloropsis Gaditana. Biotechnol. Biofuels 2018, 11, 70.
  • (11) Schulze, P. S.; Barreira, L. A.; Pereira, H. G.; Perales, J. A.; Varela, J. C., Light Emitting Diodes (Leds) Applied to Microalgal Production. Trends Biotechnol. 2014, 32, 422-30.
  • (11) Pu, K.-Y.; Liu, B., Conjugated Polyelectrolytes as Light-up Macromolecular Probes for Heparin Sensing. Adv. Funct. Mater. 2009, 19, 277-284.
  • (11) Kim, J. Y.; Hwang, T. G.; Kim, S. H.; Namgoong, J. W.; Kim, J. E.; Sakong, C.; Choi, J.; Lee, W.; Kim, J. P. Synthesis of High-Soluble and Non-Fluorescent Perylene Derivatives and Their Effect on the Contrast Ratio of Lcd Color Filters. Dyes Pigment 2017, 136, 836-845.
  • (10) Yu, Y.; Wang, Y.; Liu, W.; Jia, X.; Ma, L.; Ren, L.; Xue, M.; Liu, X. Exploration of Highly Efficient Light Conversion Agents for Agricultural Film Based on the Bay-Substituted Perylene Diimides Derivatives. Dyes Pigment 2018, 159, 483-490.
  • (10) Wu, J.; Sun, S.; Feng, X.; Shi, J.; Hu, X. Y.; Wang, L., Controllable Aggregation-Induced Emission Based on a Tetraphenylethylene-Functionalized Pillar[5]Arene Via Host-Guest Recognition. Chem. Commun. 2014, 50, 9122-5.
  • (10) Severes, A.; Hegde, S.; D'Souza, L.; Hegde, S., Use of Light Emitting Diodes (Leds) for Enhanced Lipid Production in Micro-Algae Based Biofuels. J. Photochem. Photobiol. 2017, 170, 235-240.
  • (10) Seo, Y. H.; Lee, Y.; Jeon, D. Y.; Han, J. I., Enhancing the Light Utilization Efficiency of Microalgae Using Organic Dyes. Bioresour. Technol. 2015, 181, 355-9.
  • (1) Zhang, Q.; Kuwabara, H.; Potscavage, W. J., Jr.; Huang, S.; Hatae, Y.; Shibata, T.; Adachi, C. Anthraquinone-Based Intramolecular Charge-Transfer Compounds: Computational Molecular Design, Thermally Activated Delayed Fluorescence, and Highly Efficient Red Electroluminescence. J. Am. Chem. Soc. 2014, 136, 18070-18081.
  • (1) Numata, M.; Yasuda, T.; Adachi, C., High Efficiency Pure Blue Thermally Activated Delayed Fluorescence Molecules Having 10h- Phenoxaborin and Acridan Units. Chem. Commun. 2015, 51, 9443-6.
  • (1) Kim, G.-Y.; Roh, K.; Han, J.-I., The Use of Bicarbonate for Microalgae Cultivation and Its Carbon Footprint Analysis. Green Chem. 2019, 21, 5053-5062.
  • (1) Kariuki, D. Barriers to Renewable Energy Technologies Development. https://www.energytoday.net/economics-policy/barriersrenewable- energy-technologies-development/ (accessed 2020-05-11).
  • (1) Foley, P. M.; Beach, E. S.; Zimmerman, J. B., Algae as a Source of Renewable Chemicals: Opportunities and Challenges. Green Chem. 2011, 13, 1399-1405.