Investigation of Di- and Tri-cationic Ionic Liquids Based Catalysts Towards the Fixation of Carbon Dioxide = 이산화탄소 전환용 이중- 및 삼중-양이온 이온성 액체 기반 촉매 연구

논문상세정보
' Investigation of Di- and Tri-cationic Ionic Liquids Based Catalysts Towards the Fixation of Carbon Dioxide = 이산화탄소 전환용 이중- 및 삼중-양이온 이온성 액체 기반 촉매 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Dehydrating agents
  • Carbon dioxide
  • Dimethyl carbonate
  • Ionic liquids
  • Metal oxide nanofiber
  • Methanol
  • Propylene carbonate
  • Propylene oxide
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
220 0

0.0%

' Investigation of Di- and Tri-cationic Ionic Liquids Based Catalysts Towards the Fixation of Carbon Dioxide = 이산화탄소 전환용 이중- 및 삼중-양이온 이온성 액체 기반 촉매 연구' 의 참고문헌

  • mechanisms and industrial processes for the dimethylcarbonate synthesis
    317 (1-18 . https : //doi.org/10.1016/j.molcata.2009.10.027 . '' [2010]
  • ``ZnCl2/phosphonium halide : an efficient Lewis acid/baseCatalyst for the synthesis ofCyclicCarbonate
    256 ( [2006]
  • ``TheCooperation of porphyrin-based porous polymer and thermal-responsive ionic liquid for efficientCO2Cycloaddition reaction
    20 ( [2018]
  • ``The effect of anion fluorination in ionic liquids-physical properties of a range of bis ( methanesulfonyl ) amide salts
    27 ( [2003]
  • ``Sustainable synthesis andCharacterization of a bisphenol a-free polycarbonate from a six-membered dicyclicCarbonate
    9 ( [2018]
  • ``Protic pyrazolium ionic liquids : an efficientCatalyst forConversion ofCO2 in the absence of metal and solvent
    6 ( [2018]
  • ``NiO/CeO2-ZnO nano-catalysts for direct synthesis of dimethylCarbonate from methanol andCarbon dioxide ,
    14 ( [2014]
  • ``MorphologyControl ofCeria nanocrystals forCatalyticConversion ofCO2 with methanol
    5 ( [2013]
  • ``Efficient synthesis of dimethylCarbonate from methanol , propylene oxide andCO2Catalyzed by recyclable inorganic base/phosphonium halide-functionalized polyethylene glycol ,
    9 ( [2007]
  • ``Direct synthesis of dimethylCarbonate from methanol andCarbon dioxide overCeO2 ( X ) -ZnO ( 1-X ) nano-catalysts , J. Nanosci . Nanotechnol
    13 ( [2013]
  • ``Design of ZIF-8/ionCopolymer hierarchically porous material :Coordination effect on the adsorption and diffusion forCarbon dioxide ,
    261 ( [2018]
  • [9] M. Aresta, E. Quaranta, Mechanistic studies on the role of carbon dioxide in the synthesis of methylcarbamates from amines and dimethylcarbonate in the presence of CO2, Tetrahedron, 47 (1991) 9489-9502. https://doi.org/10.1016/S0040-4020(01)80894-2.
  • [97] X. Yang, S. Kattel, S.D. Senanayake, J.A. Boscoboinik, X. Nie, J. Graciani, J.A. Rodriguez, P. Liu, D.J. Stacchiola, J.G. Chen, Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeOx/TiO2 interface, J. Am. Chem. Soc. 137 (2015) 10104-10107. https://doi.org/10.1021/jacs.5b06150.
  • [96] A.B. Paninho, A.L.R. Ventura, L.C. Branco, A.J.L. Pombeiro, M.F.C.G. da Silva, M.N. da Ponte, K.T. Mahmudov, A.V.M. Nunes, CO2 + ionic liquid biphasic system for reaction/product separation in the synthesis of cyclic carbonates, J. Supercrit. Fluids, 132 (2018) 71-75. https://doi.org/10.1016/j.supflu.2017.07.039.
  • [93] N.L. Panwar, S.C. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection a review, Renew. Sustain. Energy Rev. 15 (2011) 1513-1524. https://doi.org/10.1016/j.rser.2010.11.037.
  • [92] M. Honda, M. Tamura, Y. Nakagawa, K. Tomishige, Catalytic CO2 conversion to organic carbonates with alcohols in combination with dehydration system, Catal. Sci. Technol. 4 (2014) 2830-2845. https://doi.org/10.1039/c4cy00557k.
  • [91] S.Y. Zhao, S.P. Wang, Y.J. Zhao, X. Bin Ma, An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over well-shaped CeO2, Chinese Chem. Lett. 28 (2017) 65-69. https://doi.org/10.1016/j.cclet.2016.06.003.
  • [8] D. Delledonne, F. Rivetti, U. Romano, Developments in the production and application of dimethylcarbonate, Appl. Catal. A Gen. 221 (2001) 241-251. https://doi.org/10.1016/S0926-860X(01)00796-7.
  • [89] M. Honda, M. Tamura, Y. Nakagawa, S. Sonehara, K. Suzuki, K.I. Fujimoto, K. Tomishige, Ceria-catalyzed conversion of carbon dioxide into dimethyl carbonate with 2-cyanopyridine, ChemSusChem, 6 (2013) 1341-1344. https://doi.org/10.1002/cssc.201300229.
  • [85] M. Honda, S. Kuno, N. Begum, K.I. Fujimoto, K. Suzuki, Y. Nakagawa, K. Tomishige, Catalytic synthesis of dialkyl carbonate from low pressure CO2 and alcohols combined with acetonitrile hydration catalyzed by CeO2, Appl. Catal. A Gen. 384 (2010) 165-170. https://doi.org/10.1016/j.apcata.2010.06.033.
  • [84] K. Tomishige, K. Kunimori, Catalytic and direct synthesis of dimethyl carbonate starting from carbon dioxide using CeO2-ZrO2 solid solution heterogeneous catalyst: effect of H2O removal from the reaction system, Appl. Catal. A Gen. 237 (2002) 103-109. https://doi.org/10.1016/S0926-860X(02)00322-8.
  • [80] A.H. Tamboli, A.A. Chaugule, H. Kim, Chitosan grafted polymer matrix/ZnCl2/1,8-diazabicycloundec-7-ene catalytic system for efficient catalytic fixation of CO2 into valuable fuel additives, Fuel, 184 (2016) 233-241. https://doi.org/10.1016/j.fuel.2016.07.029.
  • [7] Y. Ono, Dimethyl carbonate for environmentally benign reactions, Catal. Today, 35 (1997) 15-25. https://doi.org/10.1016/S0920-5861(96)00130-7.
  • [78] R. Luo, X. Zhou, Y. Fang, H. Ji, Metal-and solvent-free synthesis of cyclic carbonates from epoxides and CO2 in the presence of graphite oxide and ionic liquid under mild conditions a kinetic study, Carbon N. Y. 82 (2015) 1-11. https://doi.org/10.1016/j.carbon.2014.10.004.
  • [71] Y. Zhang, S. Yin, S. Luo, C.T. Au, Cycloaddition of CO2 to epoxides catalyzed by carboxyl-functionalized imidazolium-based ionic liquid grafted onto cross-linked polymer, Ind. Eng. Chem. Res. 51 (2012) 3951-3957. https://doi.org/10.1021/ie203001u.
  • [70] A.A. Pawar, H. Kim, Reaction parameters dependence of the CO2/epoxide coupling reaction catalyzed by tunable ionic liquids, optimization of comonomer-alternating enhancement pathway, J. CO2 Util. 33 (2019) 500-512. https://doi.org/10.1016/j.jcou.2019.07.030.
  • [6] R. Jasinski, Bibliography on the uses of propylene carbonate in high energy, density batteries, J. Electroanal. Chem. 15 (1967) 89-91. https://doi.org/10.1016/0022-0728(67)85012-5.
  • [69] J.P. Hallett, T. Welton, Room-temperature ionic liquids: solvents for synthesis and catalysis. 2, Chem. Rev. 111 (2011) 3508-3576. https://doi.org/10.1021/cr1003248.
  • [64] J. Sun, B. Lu, X. Wang, X. Li, J. Zhao, Q. Cai, A functionalized basic ionic liquid for synthesis of dimethyl carbonate from methanol and CO2, Fuel Process. Technol. 115 (2013) 233-237. https://doi.org/10.1016/j.fuproc.2013.06.009.
  • [5] P. Tundo, M. Selva, The chemistry of dimethyl carbonate, Acc. Chem. Res. 35 (2002) 706-716. https://doi.org/10.1021/ar010076f.
  • [56] M. Zhang, M. Xiao, S. Wang, D. Han, Y. Lu, Y. Meng, Cerium oxide-based catalysts made by template-precipitation for the dimethyl carbonate synthesis from carbon dioxide and methanol, J. Clean. Prod. 103 (2015) 847-853. https://doi.org/10.1016/j.jclepro.2014.09.024.
  • [55] P. Kumar, P. With, V.C. Srivastava, R. Glaser, I.M. Mishra, Conversion of carbon dioxide along with methanol to dimethyl carbonate over ceria catalyst, J. Environ. Chem. Eng. 3 (2015) 2943-2947. https://doi.org/10.1016/j.jece.2015.10.016.
  • [54] A. Bansode, A. Urakawa, Continuous DMC synthesis from CO2 and methanol over a CeO2 catalyst in a fixed bed reactor in the presence of a dehydrating agent, ACS Catal. 4 (2014) 3877-3880. https://doi.org/10.1021/cs501221q.
  • [4] C.K. Westbrook, W.J. Pitz, H.J. Curran, Chemical kinetic modeling study of the effects of oxygenated hydrocarbons on soot emissions from diesel engines, J. Phys. Chem. A. 110 (2006) 6912-6922. https://doi.org/10.1021/jp056362g.
  • [44] K. Almusaiteer, Synthesis of dimethyl carbonate (DMC) from methanol and CO2 over Rh-supported catalysts, Catal. Commun. 10 (2009) 1127-1131. https://doi.org/10.1016/j.catcom.2009.01.012.
  • [3] M. Aresta, A. Dibenedetto, Carbon dioxide as building block for the synthesis of organic carbonates, J. Mol. Catal. A Chem. 182-183 (2002) 399-409. https://doi.org/10.1016/s1381-1169(01)00514-3.
  • [37] S.Y. Zhao, S.P. Wang, Y.J. Zhao, X. Bin Ma, An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over well-shaped CeO2, Chinese Chem. Lett. 28 (2017) 65-69. https://doi.org/10.1016/j.cclet.2016.06.003.
  • [36] K. Tomishige, Y. Furusawa, Y. Ikeda, M. Asadullah, K. Fujimoto, CeO2-ZrO2 solid solution catalyst for selective synthesis of dimethyl carbonate from methanol and carbon dioxide, Catal. Letters, 76 (2001) 71-74. https://doi.org/10.1023/A:1016711722721.
  • [35] K. Tomishige, Y. Ikeda, T. Sakaihori, K. Fujimoto, Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide, J. Catal. 192 (2000) 355-362. https://doi.org/10.1006/jcat.2000.2854.
  • [34] K. Tomishige, T. Sakaihori, Y. Ikeda, K. Fujimoto, A novel method of direct synthesis of dimethyl carbonate from methanol and carbon dioxide catalyzed by zirconia, Catal. Letters, 58 (1999) 225-229. https://doi.org/10.1023/A:1019098405444.
  • [30] G. Laurenczy, M. Picquet, L. Plasseraud, Di-n-butyltin (IV)-catalyzed dimethyl carbonate synthesis from carbon dioxide and methanol: an in situ high pressure 119Sn {1H} NMR spectroscopic study, J. Organomet. Chem. 696 (2011) 1904-1909. https://doi.org/10.1016/j.jorganchem.2011.02.010.
  • [2] M.Z. Jacobson, Review of solutions to global warming, air pollution, and energy security, Energy Environ. Sci. 2 (2009) 148-173. https://doi.org/10.1039/b809990c.
  • [285] V. Stetsovych, F. Pagliuca, F. Dvorak, T. Duchon, M. Vorokhta, M. Aulicka, J. Lachnitt, S. Schernich, I. Matolinova, K. Veltruska, T. Skala, D. Mazur, J. Myslivecek, J. Libuda, V. Matolin, Epitaxial cubic Ce2O3 films via Ce-CeO2 interfacial reaction, J. Phys. Chem. Lett. 4 (2013) 866-871. https://doi.org/10.1021/jz400187j.
  • [284] T. Staudt, Y. Lykhach, N. Tsud, T. Skala, K.C. Prince, V. Matolin, J. Libuda, Ceria reoxidation by CO2 a model study, J. Catal. 275 (2010) 181-185. https://doi.org/10.1016/j.jcat.2010.07.032.
  • [283] S. Gritschneder, M. Reichling, Structural elements of CeO2 (111) surfaces, Nanotechnology, 18 (2007) 1-7. https://doi.org/10.1088/0957-4484/18/4/044024.
  • [282] F. Stehmann, E. Wiegmann, S. Scholl, Decomposition of dimethyl carbonate caused by adsorption onto activated carbon, Adsorption, 23 (2017) 341-348. https://doi.org/10.1007/s10450-016-9858-x.
  • [277] C. Li, Y. Sakata, T. Arai, K. Domen, K.I. Maruya, T. Onishi, Carbon monoxide and carbon dioxide adsorption on cerium oxide studied by fourier-transform infrared spectroscopy. part 1-formation of carbonate species on dehydroxylated CeO2, at room temperature, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 85 (1989) 929-943. https://doi.org/10.1039/F19898500929.
  • [276] C. Binet, M. Daturi, J.C. Lavalley, IR study of polycrystalline ceria properties in oxidised and reduced states, Catal. Today, 50 (1999) 207-225. https://doi.org/10.1016/S0920-5861(98)00504-5.
  • [273] T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and catalytic applications of CeO2-based materials, Chem. Rev. 116 (2016) 5987-6041. https://doi.org/10.1021/acs.chemrev.5b00603.
  • [272] J. Al-Darwish, M. Senter, S. Lawson, F. Rezaei, A.A. Rownaghi, Ceria nanostructured catalysts for conversion of methanol and carbon dioxide to dimethyl carbonate, Catal. Today, (2019) 0-1. https://doi.org/10.1016/j.cattod.2019.06.013.
  • [269] N.M. Simon, M. Zanatta, J. Neumann, A.L. Girard, G. Marin, H. Stassen, J. Dupont, Cation-anion-CO2 interactions in imidazolium-based ionic liquid sorbents, ChemPhysChem, 19 (2018) 2879-2884. https://doi.org/10.1002/cphc.201800751.
  • [268] J. Sun, Y. Wang, J. Li, G. Xiao, L. Zhang, H. Li, Y. Cheng, C. Sun, Z. Cheng, Z. Dong, L. Chen, H2 production from stable ethanol steam reforming over catalyst of NiO based on flowerlike CeO2 microspheres, Int. J. Hydrogen Energy, 35 (2010) 3087-3091. https://doi.org/10.1016/j.ijhydene.2009.07.020.
  • [267] M. Zanatta, N.M. Simon, F.P. dos Santos, M.C. Corvo, E.J. Cabrita, J. Dupont, Correspondence on ¡°preorganization and cooperation for highly efficient and reversible capture of low-concentration CO2 by ionic liquids,¡± Angew. Chemie - Int. Ed. 58 (2019) 382-385. https://doi.org/10.1002/anie.201712252.
  • [266] J. Stubenrauch, J.M. Vohs, Interaction of CO with Rh supported on stoichiometric and reduced CeO2 (111) and CeO2 (100) surfaces, J. Catal. 159 (1996) 50-57. https://doi.org/10.1006/jcat.1996.0063.
  • [261] D. Li, Y. Xia, Electrospinning of nanofibers: reinventing the wheel?, Adv. Mater. 16 (2004) 1151-1170. https://doi.org/10.1002/adma.200400719.
  • [260] Colfen, Precipitation of carbonates, Curr. Opin. Colloid Interface Sci. 8 (2003) 145-155. https://doi.org/10.1016/S1359-0294.
  • [259] O. V. Ovchar, O.I. V¡¯yunov, D.A. Durilin, Y.D. Stupin, A.G. Belous, Synthesis and microwave dielectric properties of MgO-TiO2-SiO2 ceramics, Inorg. Mater. 40 (2004) 1116-1121. https://doi.org/10.1023/B:INMA.0000046480.92052.aa.
  • [256] N. Paunovic, Z. Dohcevic-Mitrovic, R. Scurtu, S. Askrabic, M. Prekajski, B. Matovic, Z. V. Popovic, Suppression of inherent ferromagnetism in Pr-doped CeO2 nanocrystals, Nanoscale, 4 (2012) 5469-5476. https://doi.org/10.1039/c2nr30799e.
  • [254] T.H. Etsell, S.N. Flengas, The electrical properties of solid oxide electrolytes, Chem. Rev. 70 (1970) 339-376. https://doi.org/10.1021/cr60265a003.
  • [253] P. Furler, J. Scheffe, M. Gorbar, L. Moes, U. Vogt, A. Steinfeld, Solar thermochemical CO2 splitting utilizing a reticulated porous ceria redox system, Energy and Fuels, 26 (2012) 7051-7059. https://doi.org/10.1021/ef3013757.
  • [252] J.R. Scheffe, M. Welte, A. Steinfeld, Thermal reduction of ceria within an aerosol reactor for H2O and CO2 splitting, Ind. Eng. Chem. Res. 53 (2014) 2175-2182. https://doi.org/10.1021/ie402620k.
  • [251] P. Furler, J.R. Scheffe, A. Steinfeld, Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reactions in a high-temperature solar reactor, Energy Environ. Sci. 5 (2012) 6098-6103. https://doi.org/10.1039/c1ee02620h.
  • [24] J. Kizlink, I. Pastucha, Preparation of dimethyl carbonate from methanol and carbon dioxide in the presence of Sn (IV) and Ti (IV) alkoxide and metal acetates, collect. czechoslov. Chem. Commun. 60, (1995) 687-692. http://dx.doi.org/10.1135/cccc19950687.
  • [243] C.K. Kim, T. Kim, I.Y. Choi, M. Soh, D. Kim, Y.J. Kim, H. Jang, H.S. Yang, J.Y. Kim, H.K. Park, S.P. Park, S. Park, T. Yu, B.W. Yoon, S.H. Lee, T. Hyeon, Ceria nanoparticles that can protect against ischemic stroke, Angew. Chemie - Int. Ed. 51 (2012) 11039-11043. https://doi.org/10.1002/anie.201203780.
  • [240] M. Boaro, M. Vicario, C. De Leitenburg, G. Dolcetti, A. Trovarelli, The use of temperature-programmed and dynamic/transient methods in catalysis: characterization of ceria-based, model three-way catalysts, Catal. Today, 77 (2003) 407-417. https://doi.org/10.1016/S0920-5861(02)00383-8.
  • [23] J. Kizlink, I. Pastucha, Preparation of dimethyl carbonate from methanol and carbon dioxide in the presence of organotin compounds, collect. czechoslov. Chem. Commun. 59 (1994) 2116-2118. https://doi.org/10.1135/cccc19942116.
  • [237] J.W. Hightower, Catalysts for automobile emission control, Stud. Surf. Sci. Catal. 1 (1976) 615-636. https://doi.org/10.1016/S0167-2991(08)63984-1.
  • [236] E.C. Su, C.N. Montreuil, W.G. Rothschild, Oxygen storage capacity of monolith three-way catalysts, Appl. Catal. 17 (1985) 75-86. https://doi.org/10.1016/S0166-9834(00)82704-9.
  • [235] X. Wang, R.J. Gorte, Steam reforming of n-butane on Pd/ceria, Catal. Letters, 73 (2001) 15-19. https://doi.org/10.1023/A:1009070118377.
  • [234] R. Craciun, B. Shereck, R.J. Gorte, Kinetic studies of methane steam reforming on ceria-supported Pd, Catal. Letters, 51 (1998) 149-153. https://doi.org/10.1023/A:1019022009310.
  • [233] H.G. Stiegler, A structure for access control lists, Softw. Pract. Exp. 9 (1979) 813-819. https://doi.org/10.1002/spe.4380091003.
  • [232] F.H. Stott, G.C. Wood, The annealing and re-oxidation of oxidized Cu-Ni alloys, Corros. Sci. 19 (1979) 961-982. https://doi.org/10.1016/S0010-938X(79)80087-6.
  • [231] H.C. Yao, Y.F.Y. Yao, Ceria in automotive exhaust catalysts I oxygen storage, J. Catal. 86 (1984) 254-265. https://doi.org/10.1016/0021-9517(84)90371-3.
  • [227] S.-Y. Zhang, Q. Zhuang, M. Zhang, H. Wang, Z. Gao, J.-K. Sun, J. Yuan, Poly (ionic liquid) composites., Chem. Soc. Rev. (2020) 1726-1755. https://doi.org/10.1039/c8cs00938d.
  • [226] T. Kitao, Y. Zhang, S. Kitagawa, B. Wang, T. Uemura, Hybridization of MOFs and polymers, Chem. Soc. Rev. 46 (2017) 3108-3133. https://doi.org/10.1039/c7cs00041c.
  • [222] A. Liu, M. Gao, X. Ren, F. Meng, Y. Yang, L. Gao, Q. Yang, T. Ma, Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts, J. Mater. Chem. A, 8 (2020) 3541-3562. https://doi.org/10.1039/c9ta11966c.
  • [220] M.O. Ganiu, A.H. Cleveland, J.L. Paul, R. Kartika, Triphosgene and DMAP as mild reagents for chemoselective dehydration of tertiary alcohols, Org. Lett. 21 (2019) 5611-5615. https://doi.org/10.1021/acs.orglett.9b01959.
  • [219] J. Sun, B. Lu, X. Wang, X. Li, J. Zhao, Q. Cai, A functionalized basic ionic liquid for synthesis of dimethyl carbonate from methanol and CO2, Fuel Process. Technol. 115 (2013) 233-237. https://doi.org/10.1016/j.fuproc.2013.06.009.
  • [215] A.H. Tamboli, A.A. Chaugule, H. Kim, Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol, Chem. Eng. J. 323 (2017) 530-544. https://doi.org/10.1016/j.cej.2017.04.112.
  • [214] N. V. Plechkova, K.R. Seddon, Applications of ionic liquids in the chemical industry, Chem. Soc. Rev. 37 (2008) 123-150. https://doi.org/10.1039/b006677j.
  • [212] K.J. Baranyai, G.B. Deacon, D.R. MacFarlane, J.M. Pringle, J.L. Scott, Thermal degradation of ionic liquids at elevated temperatures, Aust. J. Chem. 57 (2004) 145-147. https://doi.org/10.1071/CH03221.
  • [208] R.L. Paddock, S.T. Nguyen, Chiral (salen) Co iii catalyst for the synthesis of cyclic carbonates electronic supplementary information (ESI) available: general experimental procedures and analytical data for new compounds. See http://www.rsc.org/suppdata/cc/b4/b401543f/, Chem. Commun. 1 (2004) 1622. https://doi.org/10.1039/b401543f.
  • [207] H. Jing, S.K. Edulji, J.M. Gibbs, C.L. Stern, H. Zhou, S.B.T. Nguyen, (Salen) tin complexes: syntheses, characterization, crystal structures, and catalytic activity in the formation of propylene carbonate from CO2 and propylene oxide, Inorg. Chem. 43 (2004) 4315-4327. https://doi.org/10.1021/ic034855z.
  • [201] A.H. Jadhav, K. Lee, S. Koo, J.G. Seo, Esterification of carboxylic acids with alkyl halides using imidazolium based dicationic ionic liquids containing bis-trifluoromethane sulfonimide anions at room temperature, RSC Adv. 5 (2015) 26197-26208. https://doi.org/10.1039/c5ra00802f.
  • [200] K. V. Wagh, B.M. Bhanage, Synthesis of 2-phenylnaphthalenes from styrene oxides using a recyclable Br©ªnsted acidic [HNMP]+HSO4- ionic liquid, Green Chem. 17 (2015) 4446-4451. https://doi.org/10.1039/c5gc01170a.
  • [199] M. North, R. Pasquale, Mechanism of cyclic carbonate synthesis from epoxides and CO2, Angew. Chemie, 121 (2009) 2990-2992. https://doi.org/10.1002/ange.200805451.
  • [198] M. North, R. Pasquale, C. Young, Synthesis of cyclic carbonates from epoxides and CO2, Green Chem. 12 (2010) 1514-1539. https://doi.org/10.1039/c0gc00065e.
  • [196] A. Barbarini, R. Maggi, A. Mazzacani, G. Mori, G. Sartori, R. Sartorio, Cycloaddition of CO2 to epoxides over both homogeneous and silica-supported guanidine catalysts, Tetrahedron Lett. 44 (2003) 2931-2934. https://doi.org/10.1016/S0040-4039(03)00424-6.
  • [190] D.J. Darensbourg, C.C. Fang, J.L. Rodgers, Catalytic coupling of carbon dioxide and 2,3-epoxy-1,2,3,4-tetrahydronaphthalene in the presence of a (salen) Cr III Cl derivative, Organometallics, 23 (2004) 924-927. https://doi.org/10.1021/om034278m.
  • [188] M. Honda, M. Tamura, Y. Nakagawa, K. Tomishige, Catalytic CO2 conversion to organic carbonates with alcohols in combination with dehydration system, Catal. Sci. Technol. 4 (2014) 2830-2845. https://doi.org/10.1039/c4cy00557k.
  • [186] F. Shi, Y. Deng, T. SiMa, J. Peng, Y. Gu, B. Qiao, Alternatives to phosgene and carbon monoxide: synthesis of symmetric urea derivatives with carbon dioxide in ionic liquids, Angew. Chemie, 115 (2003) 3379-3382. https://doi.org/10.1002/ange.200351098.
  • [185] T. Sakakura, J.C. Choi, H. Yasuda, Transformation of carbon dioxide, Chem. Rev. 107 (2007) 2365-2387. https://doi.org/10.1021/cr068357u.
  • [181] P.P. Pescarmona, M. Taherimehr, Challenges in the catalytic synthesis of cyclic and polymeric carbonates from epoxides and CO2, Catal. Sci. Technol. 2 (2012) 2169-2187. https://doi.org/10.1039/c2cy20365k.
  • [180] D.J. Darensbourg, Making plastics from carbon dioxide: salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2, Chem. Rev. 107 (2007) 2388-2410. https://doi.org/10.1021/cr068363q.
  • [17] J.R. O¡¯Neil, R.N. Clayton, T.K. Mayeda, Oxygen isotope fractionation in divalent metal carbonates, J. Chem. Phys. 51 (1969) 5547-5558. https://doi.org/10.1063/1.1671982.
  • [179] H. Buttner, L. Longwitz, J. Steinbauer, C. Wulf, T. Werner, Recent developments in the synthesis of cyclic carbonates from epoxides and CO2, Top. Curr. Chem. 375 (2017). https://doi.org/10.1007/s41061-017-0136-5.
  • [178] J. Nowicki, M. Muszynski, J.P. Mikkola, Ionic liquids derived from organosuperbases: en route to superionic liquids, RSC Adv. 6 (2016) 9194-9208. https://doi.org/10.1039/c5ra23616a.
  • [177] K.T. Mahmudov, A. V. Gurbanov, F.I. Guseinov, M.F.C. Guedes da Silva, Noncovalent interactions in metalComplexCatalysis,Coord.Chem. Rev. 387 (2019) 32-46. https://doi.org/10.1016/j.ccr.2019.02.011.
    387 ( [2019]
  • [176] V.B. Saptal, B.M. Bhanage, Bifunctional ionic liquids for the multitask fixation of carbon dioxide into valuable chemicals, ChemCatChem, 8 (2016) 244-250. https://doi.org/10.1002/cctc.201501044.
  • [172] T. Wang, D. Zheng, Y. Ma, J. Guo, Z. He, B. Ma, L. Liu, T. Ren, L. Wang, J. Zhang, Benzyl substituted imidazolium ionic liquids as efficient solvent-free catalysts for the cycloaddition of CO2 with epoxides experimental and theoretic study, J. CO2 Util. 22 (2017) 44-52. https://doi.org/10.1016/j.jcou.2017.09.009.
  • [171] H. Chang, Q. Li, X. Cui, H. Wang, Z. Bu, C. Qiao, T. Lin, Conversion of carbon dioxide into cyclic carbonates using wool powder-KI as catalyst, J. CO2 Util. 24 (2018) 174-179. https://doi.org/10.1016/j.jcou.2017.12.017.
  • [169] C. Cadena, J.L. Anthony, J.K. Shah, T.I. Morrow, J.F. Brennecke, E.J. Maginn, Why is CO2 so soluble in imidazolium-based ionic liquids?, J. Am. Chem. Soc. 126 (2004) 5300-5308. https://doi.org/10.1021/ja039615x.
  • [168] H. Olivier-Bourbigou, L. Magna, Ionic liquids: perspectives for organic and catalytic reactions, J. Mol. Catal. A Chem. 182-183 (2002) 419-437. https://doi.org/10.1016/S1381-1169(01)00465-4.
  • [167] P. Olivier, Paul Olivier, Catalytic reactions in ionic liquid (2011) 2399-2407. https://doi.org/10.1039/b107270f.
  • [166] S. Yamini Sudha, A. Khanna, Evaluating the interactions of CO2-ionic liquid systems through molecular modeling, World Acad. Sci. Eng. Technol. 33 (2009) 539-542.
  • [164] S.G. Kazarian, B.J. Briscoe, T. Welton, Combining ionic liquids and supercritical fluids in situ ATR-IR study of CO2 dissolved in two ionic liquids at high pressures, Chem. Commun. (2000) 2047-2048. https://doi.org/10.1039/b005514j.
  • [159] M.J. Muldoon, S.N.V.K. Aki, J.L. Anderson, J.K. Dixon, J.F. Brennecke, ImprovingCarbon dioxide solubility in ionic liquids, J. Phys.Chem. B, 111 (2007) 9001-9009. https://doi.org/10.1021/jp071897q.
    111 ( [2007]
  • [156] Z. Zeng, B.S. Phillips, J.C. Xiao, J.M. Shreeve, Polyfluoroalkyl, polyethylene glycol, 1,4-bismethylenebenzene, or 1,4-bismethylene-2,3,5,6-tetrafluorobenzene bridged functionalized dicationic ionic liquids: synthesis and properties as high temperature lubricants, Chem. Mater. 20 (2008) 2719-2726. https://doi.org/10.1021/cm703693r.
  • [154] C. Maton, N. De Vos, C. V. Stevens, Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools, Chem. Soc. Rev. 42 (2013) 5963. https://doi.org/10.1039/c3cs60071h.
  • [153] N. Kimizuka, T. Nakashima, Spontaneous self-assembly of glycolipid bilayer membranes in sugar-philic ionic liquids and formation of ionogels, Langmuir, 17 (2001) 6759-6761. https://doi.org/10.1021/la015523e.
  • [151] M. Aresta, A. Dibenedetto, F. Nocito, C. Pastore, A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: the role of the catalyst, solvent and reaction conditions, Atmos. Environ. 41 (2007) 407-416. https://doi.org/10.1016/j.atmosenv.2006.07.033.
  • [149] J. Sun, J. Wang, W. Cheng, J. Zhang, X. Li, S. Zhang, Y. She, Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2, Green Chem. 14 (2012) 654-660. https://doi.org/10.1039/c2gc16335g.
  • [148] R.A. Watile, K.M. Deshmukh, K.P. Dhake, B.M. Bhanage, Efficient synthesis of cyclic carbonate from carbon dioxide using polymer anchored diol functionalized ionic liquids as a highly active heterogeneous catalyst, Catal. Sci. Technol. 2 (2012) 1051-1055. https://doi.org/10.1039/c2cy00458e.
  • [147] A.H. Tamboli, A.A. Chaugule, H. Kim, Highly selective and multifunctional chitosan/ionic liquids catalyst for conversion of CO2 and methanol to dimethyl carbonates at mild reaction conditions, Fuel, 166 (2016) 495-501. https://doi.org/10.1016/j.fuel.2015.11.023.
  • [142] E. Colacino, J. Martinez, F. Lamaty, L.S. Patrikeeva, L.L. Khemchyan, V.P. Ananikov, I.P. Beletskaya, PEG as an alternative reaction medium in metal-mediated transformations, Coord. Chem. Rev. 256 (2012) 2893-2920. https://doi.org/10.1016/j.ccr.2012.05.027.
  • [141] M. Vafaeezadeh, M.M. Hashemi, Polyethylene glycol (PEG) as a green solvent for carbon-carbon bond formation reactions, J. Mol. Liq. 207 (2015) 73-79. https://doi.org/10.1016/j.molliq.2015.03.003.
  • [140] S. Tang, G.A. Baker, H. Zhao, Ether-and alcohol-functionalized task-specific ionic liquids attractive properties and applications, Chem. Soc. Rev. 41 (2012) 4030-4066. https://doi.org/10.1039/c2cs15362a.
  • [139] M.M. Cecchini, C. Charnay, F. De Angelis, F. Lamaty, J. Martinez, E. Colacino, Poly (ethylene glycol)-based ionic liquids: properties and uses as alternative solvents in organic synthesis and catalysis, ChemSusChem, 7 (2014) 45-65. https://doi.org/10.1002/cssc.201300421.
  • [135] B.M. Godajdar, S. Mombeni, Polyethylene glycol functionalized magnetic dicationic ionic liquids as a novel catalyst and their application in ring opening of epoxides in water, J. Chinese Chem. Soc. 62 (2015) 404-411. https://doi.org/10.1002/jccs.201400383.
  • [133] J. Zhang, C. Jia, H. Dong, J. Wang, X. Zhang, S. Zhang, A novel dual amino-functionalized cation-tethered ionic liquid for CO2 capture, Ind. Eng. Chem. Res. 52 (2013) 5835-5841. https://doi.org/10.1021/ie4001629.
  • [130] L. Han, H.J. Choi, D.K. Kim, S.W. Park, B. Liu, D.W. Park, Porous polymer bead-supported ionic liquids for the synthesis of cyclic carbonate from CO2 and epoxide, J. Mol. Catal. A Chem. 338 (2011) 58-64. https://doi.org/10.1016/j.molcata.2011.02.001.
  • [129] M. Il Kim, D.K. Kim, K. Bineesh, D.W. Kim, M. Selvaraj, D.W. Park, Catalytic performance of montmorillonite clay ion-exchanged with ionic liquids in the cycloaddition of carbon dioxide to allyl glycidyl ether, Catal. Today, 200 (2013) 24-29. https://doi.org/10.1016/j.cattod.2012.04.049.
  • [128] Y.M. Shen, W.L. Duan, M. Shi, Chemical fixation of carbon dioxide co-catalyzed by a combination of schiff bases or phenols and organic bases, European J. Org. Chem. (2004) 3080-3089. https://doi.org/10.1002/ejoc.200400083.
  • [127] C. Maeda, T. Taniguchi, K. Ogawa, T. Ema, Bifunctional catalysts based on m-phenylene-bridged porphyrin dimer and trimer platforms: synthesis of cyclic carbonates from carbon dioxide and epoxides, Angew. Chemie - Int. Ed. 54 (2015) 134-138. https://doi.org/10.1002/anie.201409729.
  • [126] J.A. Castro-Osma, M. North, X. Wu, Development of a halide-free aluminium-based catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide, Chem. - A Eur. J. 20 (2014) 15005-15008. https://doi.org/10.1002/chem.201404117.
  • [125] P. Anastas, N. Eghbali, Green chemistry principles and practice, Chem. Soc. Rev. 39 (2010) 301-312. https://doi.org/10.1039/b918763b.
  • [124] M. Poliakoff, W. Leitner, E.S. Streng, The twelve principles of CO2 chemistry, Faraday Discuss. 183 (2015) 9-17. https://doi.org/10.1039/c5fd90078f.
  • [122] J. Wu, J.A. Kozak, F. Simeon, T.A. Hatton, T.F. Jamison, Mechanism-guided design of flow systems for multicomponent reactions: Conversion of CO2 and olefins to cyclic carbonates, Chem. Sci. 5 (2014) 1227-1231. https://doi.org/10.1039/c3sc53422g.
  • [121] Y. Kayaki, M. Yamamoto, T. Ikariya, N-heterocyclic carbenes as efficient organocatalysts for CO2 fixation reactions, Angew. Chemie - Int. Ed. 48 (2009) 4194-4197. https://doi.org/10.1002/anie.200901399.
  • [120] J. Hu, J. Ma, Q. Zhu, Q. Qian, H. Han, Q. Mei, B. Han, Zinc (II)-catalyzed reactions of carbon dioxide and propargylic alcohols to carbonates at room temperature, Green Chem. 18 (2016) 382-385. https://doi.org/10.1039/c5gc01870f.
  • [114] B. Gabriele, R. Mancuso, G. Salerno, L. Veltri, M. Costa, A. Dibenedetto, A general and expedient synthesis of 5-and 6-membered cyclic carbonates by palladium-catalyzed oxidative carbonylation of 1,2-and 1,3-diols, ChemSusChem, 4 (2011) 1778-1786. https://doi.org/10.1002/cssc.201100250.
  • [113] F. Doro, P. Winnertz, W. Leitner, A. Prokofieva, T.E. Muller, Adapting a wacker-type catalyst system to the palladium-catalyzed oxidative carbonylation of aliphatic polyols, Green Chem. 13 (2011) 292-295. https://doi.org/10.1039/c0gc00817f.
  • [112] D.M. Pearson, N.R. Conley, R.M. Waymouth, Palladium-catalyzed carbonylation of diols to cyclic carbonates, Adv. Synth. Catal. 353 (2011) 3007-3013. https://doi.org/10.1002/adsc.201100240.
  • [110] M. Pena-Lopez, H. Neumann, M. Beller, Iron-catalyzed synthesis of five-membered cyclic carbonates from vicinal diols: urea as sustainable carbonylation agent, European J. Org. Chem. 2016 (2016) 3721-3727. https://doi.org/10.1002/ejoc.201600476.
  • [109] M. Selva, A. Caretto, M. Noe, A. Perosa, Carbonate phosphonium salts as catalysts for the transesterification of dialkyl carbonates with diols. the competition between cyclic carbonates and linear dicarbonate products, Org. Biomol. Chem. 12 (2014) 4143-4155. https://doi.org/10.1039/c4ob00655k.
  • [108] R.I. Khusnutdinov, N.A. Shchadneva, Y.Y. Mayakova, Reactions of diols with dimethyl carbonate in the presence of W(CO)6 and Co2(CO)8, Russ. J. Org. Chem. 50 (2014) 948-952. https://doi.org/10.1134/S1070428014070057.
  • [107] W.H. Carothers, F.J. Van Natta, Studies on polymerization and ring formation. III. glycol esters of carbonic acid, J. Am. Chem. Soc. 52 (1930) 314-326. https://doi.org/10.1021/ja01364a045.
  • [106] M.O. Sonnati, S. Amigoni, E.P. Taffin De Givenchy, T. Darmanin, O. Choulet, F. Guittard, Glycerol carbonate as a versatile building block for tomorrow synthesis, reactivity, properties and applications, Green Chem. 15 (2013) 283-306. https://doi.org/10.1039/c2gc36525a.
  • [105] C.M. Alder, J.D. Hayler, R.K. Henderson, A.M. Redman, L. Shukla, L.E. Shuster, H.F. Sneddon, Updating and further expanding GSK¡¯s solvent sustainability guide, Green Chem. 18 (2016) 3879-3890. https://doi.org/10.1039/c6gc00611f.
  • [103] A.A.G. Shaikh, S. Sivaram, Dialkyl and diaryl carbonates by carbonate interchange reaction with dimethyl carbonate, Ind. Eng. Chem. Res. 31 (1992) 1167-1170. https://doi.org/10.1021/ie00004a028.
  • [102] M. Philipp, R. Bhandary, F.J. Groche, M. Schonhoff, B. Rieger, Structure-property relationship and transport properties of structurally related silyl carbonate electrolytes, Electrochim. Acta, 173 (2015) 687-697. https://doi.org/10.1016/j.electacta.2015.05.108.
  • Water-the best solvent for DMAP-mediated dual cyclization towards metal-free first synthesis of fully substituted phthalimides
    18 ( [2016]
  • Vinyl-functionalized poly ( imidazolium ) s a curable polymer platform for cross-linked ionic liquid gel synthesis
    26 ( [2014]
  • Versatile boiler ash containing potassium silicate for the synthesis of organic carbonates ,
    6 ( [2016]
  • Understanding the synergy between MgO-CeO2 as an effective promoter and ionic liquids for high dimethyl carbonate production from CO2 and methanol
    395 ( 2020 ) 124970 . https : //doi.org/10.1016/j.cej.2020.124970 . ''
  • Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers
    6 ( [2006]
  • Tuning the basicity of ionic liquids for efficient synthesis of alkylidene carbonates from CO2 at atmospheric pressure
    52 ( [2016]
  • Towards biohydrogen separation using poly ( ionic liquid ) /ionic liquid composite membranes , Membranes ( Basel )
    8 ( [2018]
  • Towards a combined use of Mn ( salen ) and quaternary ammonium salts as catalysts for the direct conversion of styrene to styrene carbonate in the presence of dioxygen and carbon dioxide
    18 ( [2015]
  • Tin-or titanium-catalyzed dimethyl carbonate synthesis from carbon dioxide and methanol large promotion by a small amount of triflate salts
    9 ( [2008]
  • Thermochemical CO2 hydrogenation to single carbon products : scientific and technological challenges
    3 ( [2018]
  • Thermal decomposition of dimethoxymethane and dimethyl carbonate catalyzed by solid acids and bases ,
    434 ( [2005]
  • Thermal decomposition mechanisms of alkylimidazolium ionic liquids with cyano-functionalized anions
    118 ( [2014]
  • The synthesis of organic carbonates from carbon dioxide
    1312-1330 . https : //doi.org/10.1039/b819997c . '' [2009]
  • The synthesis of dimethyl carbonate by the oxicarbonylation of methanol over Cu supported on carbon norit
    145 ( [2015]
  • The role of distannoxanes in the synthesis of dimethyl carbonate from carbon dioxide
    93-99 . https : //doi.org/10.1016/S0926-860X ( 03 ) 00647-1 . '' [2003]
  • The effect of alkoxide ionic liquids on the synthesis of dimethyl carbonate from CO2 and methanol over ZrO2-MgO
    141 ( [2011]
  • The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts
    366 (2-12 . https : //doi.org/10.1016/j.apcata.2009.06.045 . '' [2009]
  • The decomposition of dimethyl carbonate over carbon supported Cu catalysts ,
    117 ( [2016]
  • Ternary polymer electrolytes with 1-methylimidazole based ionic liquids and aprotic solvents
    52 ( [2006]
  • Template-free synthesis and characterization of nickel oxide nanocrystal with high-energy facets in deep eutectic solvent ,
    16 ( [2016]
  • Synthesis of tetrabutylphosphonium carboxylate ionic liquids and its catalytic activities for the alcoholysis reaction of propylene oxide
    52 ( [2013]
  • Synthesis of styrene carbonate from styrene oxide and carbon dioxide in the presence of zinc bromide and ionic liquid under mild conditions
    6 ( [2004]
  • Synthesis of doped ceria with mesoporous flowerlike morphology and its catalytic performance for CO oxidation
    120 ( [2009]
  • Synthesis of dimethyl carbonate using CO2 and methanol : enhancing the conversion by controlling the phase behavior
    4 ( [2002]
  • Synthesis of dimethyl carbonate from methanol and carbon dioxide using potassium methoxide as catalyst under mild conditions
    103 ( [2005]
  • Synthesis of dimethyl carbonate from methanol and carbon dioxide circumventing thermodynamic limitations
    49 ( [2010]
  • Synthesis of dimethyl carbonate from methanol , carbon monoxide , and oxygen catalyzed by copper compounds
    19 ( [1980]
  • Synthesis of dimethyl carbonate from carbon dioxide over polymer-supported iodide catalysts
    307 ( [2000]
  • Synthesis of dimethyl carbonate from carbon dioxide catalyzed by titanium alkoxides with polyether-type ligands ,
    1 ( [2008]
  • Synthesis of dimethyl carbonate from carbon dioxide and methanol over CexZr1-xO2 and Br/Ce0.5Zr0.5O2
    50 ( [2011]
  • Synthesis of dimethyl carbonate from carbon dioxide and methanol in the presence of methyl iodide and base catalysts under mild conditions effect of reaction conditions and reaction mechanism
    3 ( [2001]
  • Synthesis of dimethyl carbonate from CO2 and methanol over CeO2 role of copper as dopant and the use of methyl trichloroacetate as dehydrating agent
    371 ( [2019]
  • Synthesis of dimethyl carbonate and glycols from carbon dioxide , epoxides , and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity
    219 ( [2001]
  • Synthesis of cyclic carbonates with carbon dioxide and cesium carbonate
    15 ( [2013]
  • Synthesis of cyclic carbonates from diols and CO2 catalyzed by carbenes
    52 ( [2016]
  • Synthesis of cyclic carbonate from vinyl cyclohexene oxide and CO2 using ionic liquids as catalysts
    131 ( [2008]
  • Synthesis of cyclic carbonate catalyzed by DBU derived basic ionic liquids293-298
    36 ( [2018]
  • Synthesis of a novel poly ( ethylene glycol ) grafted N , N-dimethylaminopyridine functionalized dicationic ionic liquid and its application in one-pot synthesis of 3,4-dihydropyrano chromene derivatives in water , J. Mol . Liq
    212 ( 2015 ) 418-422 . https : //doi.org/10.1016/j.molliq.2015.09.030 . ''
  • Synthesis of 2-oxazolidinones/2-imidazolidinones from CO2 , different epoxides and amino alcohols/alkylene diamines using Br-Ph3+P-PEG600P+Ph3Br-as homogenous recyclable catalyst
    289 ( [2008]
  • Synthesis and characterization of AlCl3 impregnated molybdenum oxide as heterogeneous nano-catalyst for the friedel-crafts acylation reaction in ambient condition
    15 ( [2015]
  • Synthesis , characterization and photoluminescence of CeO2 nanoparticles by a facile method at room temperature
    493 ( [2010]
  • Synthesis , characterization , and ecotoxicity of CeO2 nanoparticles with differing properties
    18 ( [2016]
  • Surface structure and reaction property of CuCl2-PdCl2 bimetallic catalyst in methanol oxycarbonylation a DFT approach
    292 ( 2014 ) 117-127 . https : //doi.org/10.1016/j.apsusc.2013.11.096 . ''
  • Studies on synthesis of dimethyl carbonate from methanol and carbon dioxide
    10 ( [2009]
  • Structural feature and catalytic performance of Cu-SiO2-TiO2 cogelled xerogel catalysts for oxidative carbonylation of methanol to dimethyl carbonate
    12 ( [2011]
  • Stem cell aligned growth induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine
    20 ( [2010]
  • SiO2/sulfonated poly ether ether ketone ( SPEEK )Composite nanofiber mat supported proton exchange membranes for fuelCells
    48 ( [2013]
  • SelectiveConversion ofCarbon dioxide to dimethylCarbonate by molecularCatalysis7095-7096
    63 ( [1998]
  • Selective and high yield synthesis of dimethylCarbonate directly fromCarbon dioxide and methanol
    4 ( [2002]
  • Role ofCeO2 in Ni/CeO2-Al2O3Catalysts forCarbon dioxide reforming of methane
    19 ( [1998]
  • Role of theCocatalyst in theCopolymerization ofCO2 andCyclohexene oxide utilizingChromium salenComplexes ,
    127 ( 2005 ) 14026-14038 . https : //doi.org/10.1021/ja053544f . ''
  • Reversible and robustCO2Capture by equimolar task-specific ionic liquid-superbase mixtures
    12 ( [2010]
  • Regioselective synthesis of 5-aryl-2-oxazolidinones fromCarbon dioxide and aziridines using BrPh3+PPEG 600P+Ph3Bras an efficient , homogenous recyclableCatalyst at ambientConditions
    52 ( [2011]
  • Reaction of dibutyltin oxide with methanol underCO2 pressure relevant toCatalytic dimethylCarbonate synthesis
    693 ( [2008]
  • Reaction of dialkyltin methoxide withCarbon dioxide relevant to the mechanisms ofCatalyticCarbonate synthesis
    121 ( [1999]
  • Protic ionic liquids a highly efficientCatalyst for synthesis ofCyclicCarbonate fromCarbon dioxide and epoxides , J.CO2 Util
    6 ( [2014]
  • Promotion of ionic liquid to dimethylCarbonate synthesis from methanol andCarbon dioxide
    22 ( [2010]
  • Preparation of novel magnetic dicationic ionic liquid polymeric phase transferCatalyst and their application in nucleophilic substitution reactions of benzyl halides in water
    202 ( [2015]
  • Post-combustionCO2Capture with aCommercial activatedCarbon :Comparison of different regeneration strategies
    163 ( [2010]
  • Polymer grafted with asymmetrical dication ionic liquid as efficient and reusableCatalysts for the synthesis ofCyclicCarbonates fromCO2 and expoxides
    233 ( [2014]
  • Polyethylene glycol enfolded KBr assisted baseCatalyzed synthesis of dimethylCarbonate from methanol andCarbon dioxide
    53 ( [2014]
  • Physical absorption ofCO2 in protic and aprotic ionic liquids : an interaction perspective
    119 ( [2015]
  • Phenol and organic bases co-catalyzed chemical fixation of carbon dioxide with terminal epoxides to form cyclic carbonates
    345 ( [2003]
  • Perfectly alternating copolymerization of CO2 and epichlorohydrin using cobalt ( III ) -based catalyst systems
    133 ( [2011]
  • Pelletization of catalysts supported on activated carbon . a case study : clean synthesis of dimethyl carbonate from methanol and CO2
    38-47 . https : //doi.org/10.17533/udea.redin.n78a05 . '' [2016]
  • Organotin compounds immobilized on mesoporous silicas as heterogeneous catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide ,
    372 ( [2010]
  • Organic carbonates as solvents in synthesis and catalysis ,
    110 ( [2010]
  • Optical and magnetic properties of Mg2+ doped CeO2 nanoparticles
    6 ( [2016]
  • One-pot synthesis of dimethyl carbonate from carbon dioxide , cyclohexene oxide , and methanol
    41 ( [2015]
  • One-pot synthesis of dimethyl carbonate catalyzed by BF4/CH3ONa
    27 ( [2006]
  • Novel Br©ªnsted acidic ionic liquids and their use as dual solvent-catalysts
    124 ( [2002]
  • Nanostructured metal oxide gas sensors prepared by electrospinning
    22 ( [2011]
  • Nanoceria-triggered synergetic drug release based on CeO2-capped mesoporous silica host-guest interactions and switchable enzymatic activity and cellular effects of CeO2
    2 ( [2013]
  • Morphological and catalytic stability of mesoporous peony-like ceria ,
    142 ( 2011 ) 202-207 . https : //doi.org/10.1016/j.micromeso.2010.11.037 . ''
  • Modeling of chemical equilibrium and gas phase behavior for the direct synthesis of dimethyl carbonate from CO2 and methanol
    51 ( [2012]
  • Metal-free synthesis of cyclic and acyclic carbonates from CO2 and alcohols
    1823-1826 . https : //doi.org/10.1002/ejoc.201400031 . '' [2014]
  • Mesoscale organization of nearly monodisperse flowerlike ceria microspheres
    110 ( [2006]
  • Mesoporous TiO2/SiO2 composite nanofibers with selective photocatalytic properties
    1 ( [2007]
  • Mechanistic aspects of the copolymerization of CO2 with epoxides using a thermally stable single-site cobalt ( III ) catalyst
    131 ( [2009]
  • Magnesia-ceria mixed oxide catalysts for the selective transesterification of glycerol to glycerol carbonate ,
    451 ( [2018]
  • Low pressure CO2 to dimethyl carbonate by the reaction with methanol promoted by acetonitrile hydration ,
    4596-4598 . https : //doi.org/10.1039/b909610h . '' [2009]
  • Lewis basic ionic liquids-catalyzed conversion of carbon dioxide to cyclic carbonates
    352 ( [2010]
  • Kinetics of dimethyl carbonate synthesis from methanol and carbon dioxide over ZrO2-MgO catalyst in the presence of butylene oxide as additive
  • Kinetic and mechanistic investigations of the direct synthesis of dimethyl carbonate from carbon dioxide over ceria nanorod catalysts
    340 ( [2016]
  • Iron-based heterogeneous catalysts for oxygen evolution reaction ; change in perspective from activity promoter to active catalyst
    395 ( [2018]
  • Ionic liquids-functionalized porphyrins as bifunctional catalysts for cycloaddition of carbon dioxide to epoxides , J. CO2 Util
    16 ( [2016]
  • Ionic liquid as an efficient promoting medium for synthesis of dimethyl carbonate by oxidative carbonylation of methanol
    334 (100-105 . https : //doi.org/10.1016/j.apcata.2007.09.040 . '' [2008]
  • Influence of acidic strength on the catalytic activity of Br©ªnsted acidic ionic liquids on synthesizing cyclic carbonate from carbon dioxide and epoxide285-290
    67 ( [2014]
  • Improving thermo-electrochemical cell performance by constructing Ag-MgO-CNTs nanocomposite electrodes
    5 ( [2015]
  • Improving the stability of CeO2 catalyst by rare earth metal promotion and molecular insights in the dimethyl carbonate synthesis from CO2 and methanol with 2-cyanopyridine
    8 ( [2018]
  • Improved synthesis of 1-hydroxy-2,2,5,5-tetramethyl-3-imidazoline 3-oxide ( HTIO )
    36 ( [2006]
  • Hydroxyl-functionalized ionic liquid promoted CO2 fixation according to electrostatic attraction and hydrogen bonding interaction
    53 ( [2014]
  • Hydroxyl-functionalized ionic liquid a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate
    49 ( [2008]
  • Highly efficient synthesis of dimethyl carbonate from methanol and carbon dioxide using IL/DBU/SmOCl as a novel ternary catalytic system
    75 ( [2016]
  • High-yield synthesis of dimethyl carbonate from the direct alcoholysis of urea in supercritical methanol
    236 ( [2014]
  • High-pressure phase behavior of the binary ionic liquid system 1-octyl-3-methylimidazolium tetrafluoroborate + carbon dioxide , J. Supercrit
    39 ( [2006]
  • Greener synthesis of dimethyl carbonate from carbon dioxide and methanol using a tunable ionic liquid catalyst
    17 ( [2020]
  • Green solvent ionic liquids : structural directing pioneers for microwave-assisted synthesis of controlled MgO nanostructures
    6 ( [2016]
  • Green carbon science : scientific basis for integrating carbon resource processing , utilization
    52 ( [2013]
  • Gas-phase synthesis of dimethyl carbonate from methanol and carbon dioxide over Co1.5PW12O40 keggin-type heteropolyanion ,
    11 ( [2010]
  • Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications ,
    8 ( [2008]
  • Functionalization of ZrO2 nanofibers with Pt nanostructures : the effect of surface roughness on nucleation mechanism and morphology control
    476 ( [2009]
  • Facile synthesis of ultra-small monodisperse ceria nanocrystals at room temperature and their catalytic activity under visible light
    20 ( [2010]
  • Facile synthesis of bicontinuous Ni3Fe alloy for efficient electrocatalytic oxygen evolution reaction
    726 ( [2017]
  • Facile synthesis of DBU-based ionic liquids cooperated with ZnI2 as catalysts for efficient cycloaddition of CO2 to epoxides under mild and solvent-free conditions
    450 (39-45 . https : //doi.org/10.1016/j.mcat.2018.02.018 . '' [2018]
  • Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries
    16 ( [2006]
  • Esterification ofCarboxylic acids with alkyl halides using imidazolium based dicationic ionic liquidsContaining bis-trifluoromethane sulfonimide anions at room temperature
    5 ( [2015]
  • Enantioselective small molecule synthesis by carbon dioxide fixation using a dual Br©ªnsted acid/base organocatalyst
    137 ( [2015]
  • Electrospun TiO2 electrodes for dye-sensitized solar cells
    15 ( [2004]
  • Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications
    19 ( [2007]
  • Electrochemical activation of carbon dioxide for synthesis of dimethyl carbonate in an ionic liquid
    54 ( [2009]
  • Efficient synthesis of dimethyl carbonate via transesterification of ethylene carbonate with methanol over binary zinc-yttrium oxides ,
    16 ( [2011]
  • Efficient fixation and conversion of CO2 into dimethyl carbonate catalyzed by an imidazolium containing tri-cationic ionic liquid/super base system
    6 ( [2016]
  • Efficient acid-base bifunctional catalysts for the fixation of CO2 with epoxides under metal-and solvent-free conditions
    4 ( [2011]
  • Efficient DMF-catalyzed coupling of epoxides with CO2 under solvent-free conditions to afford cyclic carbonates
    36 ( [2006]
  • Effect of hydrogen bond of hydroxyl-functionalized ammonium ionic liquids on cycloaddition of CO2
    56 ( [2015]
  • Effect of anion type of imidazolium based polymer supported ionic liquids on the solvent free synthesis of cycloaddition of CO2 into epoxide56-67
    265 ( [2016]
  • Effect of acid-base properties of H3PW12O40/CexTi1-xO2 catalysts on the direct synthesis of dimethyl carbonate from methanol and carbon dioxide a TPD study of H3PW12O40/CexTi1-xO2 catalysts
    269 ( [2007]
  • Economical synthesis of cyclic carbonates from carbon dioxide and halohydrins using K2CO3
    6 ( [2016]
  • Do ion tethered functional groups affect IL solvent properties ? The case of sulfoxides and sulfones
    6 ( [2006]
  • Direct synthesis of organic carbonates from the reaction of CO2 with methanol and ethanol over CeO2 catalysts ,
    115 ( [2006]
  • Direct synthesis of dimethyl carbonate with supercritical carbon dioxide characterization of a key organotin oxide intermediate
    115 ( [2006]
  • Direct synthesis of dimethyl carbonate on H3PO4 modified V2O5
    238 ( [2005]
  • Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over organotin-functionalized mesoporous benzene-silica ,
    84 ( [2012]
  • Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over Ga2O3/Ce0.6Zr0.4O2 catalysts : effect of acidity and basicity of the catalysts
    141 ( [2011]
  • Direct synthesis of dimethyl carbonate from methanol and carbon dioxide : a thermodynamic and experimental study , J. Supercrit
    117 ( [2016]
  • Direct synthesis of dimethyl carbonate from carbon dioxide and methanol catalyzed by base
    142 ( [1996]
  • Direct synthesis of dimethyl carbonate from CO2 and methanol over CeO2 catalysts of different morphologies
    128 ( [2016]
  • Direct synthesis of dimethyl carbonate from CO2 and methanol over CaO–CeO2 catalysts : The role of acid–base properties and surface oxygen vacancies ,
    https : //doi.org/10.1039/C7NJ02606D . '' [2017]
  • Direct synthesis of dimethyl carbonate from CO2 and methanol by supported bimetallic Cu–Ni/ZIF-8 MOF catalysts
    80 ( [2017]
  • Direct synthesis of dimethyl carbonate from CH3OH and CO2 by H3PW12O40/CexTi1-xO2 catalyst , React . Kinet
    89 ( [2006]
  • Direct synthesis of dimethyl carbonate ( DMC ) using Cu-Ni/VSO as catalyst
    249 ( [2006]
  • Direct cyclic carbonate synthesis from CO2 and diol over carboxylation/hydration cascade catalyst of CeO2 with 2-cyanopyridine
    4 ( [2014]
  • Dimethyl carbonate synthesis from carbon dioxide and methanol over CeO2 versus over ZrO2 comparison of mechanisms
    4 ( [2014]
  • Dimethyl carbonate synthesis catalyzed by DABCO-derived basic ionic liquids via transesterification of ethylene carbonate with methanol
    51 ( [2010]
  • Dialkylimidazolium chloroaluminate melts a new class of room temperature ionic liquids for electrochemistry , spectroscopy and synthesis
    21 , 3 , 1263-1264 . '' [1982]
  • Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe
    4 ( [2004]
  • Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2
    14 ( [2012]
  • /phosphine-catalyzed tandemCarboxylation/annulation of terminal alkynes under ambient pressure ofCO2 one-pot access to 3a-hydroxyisoxazolo isoindol-8 ( 3aH ) -ones
    17 ( [2015]
  • . Pombeiro , M. Nunes Da Ponte ,CyclicCarbonate synthesis fromCO2 and epoxides using zinc
    of arylhydrazones
  • 'Tuning the physicochemical properties of diverse phenolic ionic liquids for equimolar CO2 capture by the substituent on the anion
    18 ( [2012]