(A) novel BIRA approach using localized fault map with fault classification

조기원 2020년
논문상세정보
' (A) novel BIRA approach using localized fault map with fault classification' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Built-in redundancy analysis (BIRA)
  • content addressable memory (CAM)
  • hardware overhead
  • redundancy analysis (RA)
  • repair rate
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
17 0

0.0%

' (A) novel BIRA approach using localized fault map with fault classification' 의 참고문헌

  • ¡°Test and repair of large embedded DRAMs
    2pp . 173-181 . [2001]
  • ¡°Reducing test time and area overhead of an embedded memory array built-in repair analyzer with optimal repair rate ,
    pp . 33 ? 38 . [2010]
  • ¡°ReBISR : A reconfigurable built-in self-repair scheme for random access memories in SOCs
    vol . 18 , no . 6 , pp . 921 ? 932 [2010]
  • ¡°New approaches for the repairs of memories with redundancy by row/column deletion for yield enhancement ,
    vol . 9 , no . 3 , pp . 323-328 , [1990]
  • ¡°Memory built-in self-repair using redundant words ,
    pp . 995 ? 1001 . [2001]
  • ¡°Low power SRAM design using hierarchical divided bit-line approach
    [1998]
  • ¡°HighlyConfigurable programmable built-in self test architecture for high-speed memories
    pp . 21-26 . [2005]
  • ¡°Hardware-efficient built-in redundancy analysis for memory with various spares ,
    vol . 25 , no . 3 , pp . 844-856 , [2017]
  • ¡°Exploration methodology for 3D memory redundancy architectures under redundancyConstraints
    pp . 1-6 . [2013]
  • ¡°Embedded memory interface logic and interconnect testing
    vol . 23 , no . 9 , pp.1946-1950 ,
  • ¡°Efficient spare allocation for reconfigurable arrays
    vol . 4 , no . 1 , pp . 24-31 , [1987]
  • ¡°Efficient built-in redundancy analysis for embedded memories with 2-D redundancy ,
    vol . 14 , no . 1 , pp . 34-42 , [2006]
  • ¡°EOF : efficient built-in redundancy analysis methodology with optimal repair rate ,
    vol . 29 , no . 7 , pp . 1130-1135 [2010]
  • ¡°Dynamic built-in redundancy analysis for memory repair ,
    vol . 27 , no . 10 , pp.2365-2374 , [2019]
  • ¡°Defect analysis system speeds test and repair of redundancy memories
    vol . 57 , no . 1 , pp . 175-179 , [1984]
  • ¡°Cost-efficient built-in redundancy analysis with optimal repair rate for RAMs ,
    vol . 31 , no . 6 , pp . 930 ? 940 [2012]
  • ¡°Cost-driven optimization ofCoverage ofCombined built-in self-test/automated test equipment testing ,
    vol . 56 , no . 3 , pp . 1094-1100 , [2007]
  • ¡°Built-in self-test for GHz embedded SRAMs using flexible pattern generator and new repair algorithm ,
    pp . 301 ? 310 . [1999]
  • ¡°Built-in self-repair for multiple RAMs with different redundancies in a SOC
    vo . 24 , no . 8 , pp.26-29 , [2011]
  • ¡°Built-in redundancy analysis for memory yield improvement ,
    vol . 52 , no . 4 , pp . 386-399 , [2003]
  • ¡°BIRA with optimal repair rate using fault-free memory region for area reduction ,
    vol . 64 , no . 12 , pp.3160-3171 , [2017]
  • ¡°At-speed built-in self-repair analyzer for embedded word-oriented memories
    pp . 895 ? 900 . [2004]
  • ¡°An integrated built-in test and repair approach for memories with 2-D redundancy
    pp . 91-96 .
  • ¡°An efficient algorithms for spare allocation problems ,
    vol . 55 , no . 2 , pp . 369-378 , [2006]
  • ¡°An advanced BIRA using parallel sub-analyzers for embedded memories
    pp . 249-252 . [2009]
  • ¡°An advanced BIRA for memories with an optimal repair rate and fast analysis speed using a branch analyzer ,
    vol . 29 , no . 12 , pp . 2014-2026 , [2010]
  • ¡°An Efficient BIRA UtilizingCharacteristics of Spare Pivot Faults
    vol . 38 , no . 3 , pp . 551-561 , [2019]
  • ¡°A survey of repair analysis algorithms for memories
    vol . 49 , no . 3 , pp . 1-41 , [2016]
  • ¡°A memory built-in self-repair scheme based onConfigurable spares ,
    vol . 30 , no . 6 , pp . 919-929 , [2011]
  • ¡°A fast built-in redundancy analysis for memories with optimal repair rate using a line-based search tree ,
    vol . 17 , no . 12 , pp . 1665-1678 , [2009]
  • ¡°A divided word-line structure in the static RAM and its application to a 64K fullCOMS RAM
    vol . 18 , no . 5 , pp.479-485 , [1983]
  • ¡°A built-in self-repair scheme for multiport RAMs ,
    pp . 355 ? 360
  • ¡°A built-in self-repair design for RAMs with 2-D redundancy ,
    vol . 13 , no . 6 , pp . 742-745 , [2005]
  • ¡°A built-in self-repair analyzer (CRESTA ) for embedded DRAMs
    pp . 567-574 . [2000]
  • ¡°A Low-Cost Built-In Redundancy-Analysis Scheme for Word-Oriented RAMs With 2-D Redundancy ,
    vol . 19 , no . 11 , pp .
  • ¡°A BIRA for memories with an optimal repair rate using spare memories for area reduction ,
    vol . 22 , no . 11 , pp . 2336-2349 , [2014]
  • [6] J. R. Day, ¡°A fault-driven comprehensive redundancy algorithm,¡± IEEE Design & Test, vol. 2, no. 3, pp. 35-44, Jun. 1985.
  • [47] C. H. Stapper, ¡°On a composite model to the IC yield problem,¡± IEEE Journal of Solid-State Circuits, vol. 10, no. 6, pp. 537?539, Dec. 1975.
  • [46] C.-L. Wey and F. Lombardi, ¡°On the repair of redundant RAM¡¯s,¡± IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 6, no. 2, pp. 222-231, Mar. 1987.
  • [45] K. Pagiamtzis and A. Sheikholeslami, ¡°Content-addressable memory (CAM) circuits and architecture: A tutorial and survey,¡± IEEE Journal of Solid-State Circuits, vol. 41, no. 3, pp. 712-727, Mar. 2006.
  • [42] S. Boutobza, M. Nicolaidis, K.L. Lamara, and A.Costa, ¡°Programmable memory BIST,¡± in Proceedings of International TestConference, Nov. 2005, pp. 10-1164.
    pp . 10-1164 . [2005]
  • [39] R. McConnell and R. Rajsuman, ¡°Test and repair of large embedded DRAMs. I,¡± in Proceeding of IEEE International Test Conference, Nov. 2001, pp.163-172.
  • [2] Y. Zorian, and S. Shoukourian, ¡°Embedded-memory test and repair: infrastructure IP for SoC yield,¡± IEEE Design and Test of Computers, vol. 20, no. 3, pp.58-66, May 2003.
  • [21] P. Habiby and R. Niarakiasli, ¡°An improved BIRA for memories with optimal repair rate using a flipping analyzer,¡± in Proceedings of IEEE Iranian Conference on Electrical Engineering, May 2012, pp. 188-193.
  • [1] ITRS. (2011). Edition Reports. [Online]. Available: http://www.itrs2.net.
  • [17] D. M. Blough, ¡°Performance evaluation of a reconfiguration algorithm for memory arrays containing clustered faults,¡± IEEE Transactions on Reliability, vol. 45, no. 6, pp. 274-284. Jun. 1996.
  • [16] R. L. Hadas and C. L. Liu, ¡°Fast search algorithms for reconfiguration problems,¡± in Proceedings of IEEE International Workshop on Defect and Fault Tolerance on VLSI Systems, 1991, pp. 260-273.