Beam Training and Tracking Techniques for Millimeter-Wave Cellular Communications

논문상세정보
' Beam Training and Tracking Techniques for Millimeter-Wave Cellular Communications' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • beam forming
  • beam prediction
  • cell selection
  • doppler
  • high-velocity user
  • millimeter-wave
  • ofdm
  • preamble
  • random-access
  • 고속 유저
  • 도플러
  • 랜덤 액세스
  • 밀리미터파
  • 빔 예측
  • 빔포밍
  • 셀선택
  • 프리앰블
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
401 0

0.0%

' Beam Training and Tracking Techniques for Millimeter-Wave Cellular Communications' 의 참고문헌

  • ¡°The requirements ,Challenges , and technologies for 5G of terrestrial mobile telecommunication
    vol . 52 , no . 5 , pp . 36 ? 43
  • ¡°Technical specification group radio access network ; Study on indoor positioning enhancements for UTRA and LTE ,
    [2015]
  • ¡°Synchronization method for long-term evolution-based machine-typeCommunication in low-powerCellular Internet of Things , ¡± Int . J. Distrib
    vol . 12 , no . 8 , p. 155014771666277 , [2016]
  • ¡°Synchronization andCell-search technique using preamble for OFDMCellular systems ,
    vol . 56 , no . 6 , pp . 3469 ? 3485 [2007]
  • ¡°Survey of wireless indoor positioning techniques and systems
    vol . 37 , no . 6 , pp . 1067 ? 1080 [2007]
  • ¡°State of the art in 60-GHz integratedCircuits and systems for wirelessCommunications
    vol . 99 , no . 8 , pp . 1390 ? 1436 [2011]
  • ¡°Spatially sparse precoding in millimeter wave MIMO systems
    vol . 13 , no . 3 , pp . 1499 ? 1513 [2014]
  • ¡°Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit
    vol . 58 , no . 2 , pp . 1094 ? 1121 , [2012]
  • ¡°Sink node placement strategies based onCat swarm optimization algorithm
    vol . 1 , no . 2 , pp . 52 ? 60 [2016]
  • ¡°Sequence designs for interference mitigation in multi-cell networks ,
    vol . 13 , no . 1 , pp . 394 ? 406 , [2014]
  • ¡°Seamless wirelessConnectivity for multimedia services in high speed trains , ¡± IEEE J. Sel . AreasCommun.
    vol . 30 , no . 4 , pp . 729 ? 739
  • ¡°Research on task allocation of geographic location related mobile sensing system , ¡± J. Inf . Hiding Multimed
    vol . 8 , no . 1 , pp . 19 ? 30 [2017]
  • ¡°Random-access technique for self-organization of 5G millimeter-waveCellularCommunications
    vol . 2016 , pp . 1 ? 11 , [2016]
  • ¡°Random access preamble for high doppler in millimeter-waveCellular systems
    pp . 1 ? 5 . [2019]
  • ¡°Random access preamble design for high-velocity user in millimeter-waveCellular networks
    vol . 6 , pp . 66047 ? 66054 [2018]
  • ¡°Random access for millimeter-waveCellular systems with directional beams , ¡± in 2017 InternationalConference on Information andCommunication TechnologyConvergence ( ICTC
    pp . 527 ? 529 [2017]
  • ¡°RadioCapacity estimation for millimeter wave 5GCellular networks using narrow beamwidth antennas at the base stations
    vol . 2015 , pp . 1 ? 6 [2015]
  • ¡°Proposal on millimeter-waveChannel modeling for 5GCellular system ,
    vol . 10 , no . 3 , pp . 454 ? 469 [2016]
  • ¡°Position location of mobile terminal in wireless MIMOCommunication systems
    vol . 9 , no . 3 , pp . 254 ? 264 [2007]
  • ¡°Modeling and analyzing millimeter waveCellular systems
    pp . 1 ? 1 [2016]
  • ¡°Mm-wave MIMOChannel modeling and user localization using sparse beamspace signatures ,
    pp . 130 ? 134 [2014]
  • ¡°Millimeter-wave beam training acceleration through low-complexity hybrid transceivers
    vol . 16 , no . 6 , pp . 3646 ? 3660 [2017]
  • ¡°Massive MIMOChannel-aware decision fusion
    vol . 63 , no . 3 , pp . 604 ? 619 [2015]
  • ¡°Massive MIMO for decentralized estimation of aCorrelated source
    vol . 64 , no . 10 , pp . 2499 ? 2512
  • ¡°Low-complexityCell search with fast PSS identification in LTE ,
    vol . 61 , no . 4 , pp . 1719 ? 1729
  • ¡°Low-complexityCell search algorithm for interleavedConcatenation ML-sequences in 3GPP-LTE systems ,
    vol . 1 , no . 4 , pp . 280 ? 283 [2012]
  • ¡°Location-fair beamforming for high speed railwayCommunication systems
    vol . 6 , pp . 28632 ? 28642 [2018]
  • ¡°Location-AwareCommunications for 5G Networks : How location informationCan improve scalability , latency , and robustness of 5G , ¡± IEEE Signal Process
    vol . 31 , no . 6 , pp . 102 ? 112 [2014]
  • ¡°Load-stress test of massive handovers for LTE two-hop architecture in high-speed trains ,
    vol . 55 , no . 3 , pp . 170 ? 177 [2017]
  • ¡°Latency ofCellular-based V2X : Perspectives on TTI-proportional latency and TTI-independent latency
    vol . 5 , pp . 15800 ? 15809 [2017]
  • ¡°Large-scale deployment of residential smallCells
    vol . 101 , no . 11 , pp . 2367 ? 2380 [2013]
  • ¡°High-Efficiency Device Positioning and Location-AwareCommunications in Dense 5G Networks
    vol . 55 , no . 8 , pp . 188 ? 195 , [2017]
  • ¡°Frequency Offset Effects on RACH Preamble Detectors ,
    [2006]
  • ¡°Evolution of the air interface ofCellularCommunications systems toward 4G realization
    vol . 8 , no . 1 , pp . 2 ? 23 [2006]
  • ¡°Efficient beamforming training for 60-GHz millimeter-waveCommunications : A novel numerical optimization framework
    vol . 63 , no . 2 , pp . 703 ? 717 , [2014]
  • ¡°Doppler-tolerant sequence design for positioning high-speed vehicles in millimeter-waveCellular systems
  • ¡°Doppler resilient GolayComplementary waveforms
    vol . 54 , no . 9 , pp . 4254 ? 4266 [2008]
  • ¡°Directivity-beamwidth tradeoff of massive MIMO uplink beamforming for high speed trainCommunication
    vol . 5 , pp . 5936 ? 5946 [2017]
  • ¡°Directional random access technique for millimeter-waveCellular systems with multiple antenna arrays , ¡± J. Nanoelectron
    vol . 12 , no . 9 , pp . 1018 ? 1027 [2017]
  • ¡°Direction of departure ( DOD ) and direction of arrival ( DOA ) estimation in MIMO radar with reduced-dimension MUSIC
    vol . 14 , no . 12 , pp . 1161 ? 1163 [2010]
  • ¡°Design and analysis of initial access in millimeter waveCellular networks
    vol . 16 , no . 10 , pp . 6409 ? 6425 [2017]
  • ¡°Compressive estimation of doubly selectiveChannels in multicarrier systems : Leakage effects and sparsity-enhancing processing ,
    vol . 4 , no . 2 , pp . 255 ? 271 [2010]
  • ¡°Channel estimation and hybrid precoding for millimeter waveCellular systems ,
    vol . 8 , no . 5 , pp . 831 ? 846 [2014]
  • ¡°Cell selection technique for millimeter-waveCellular systems withCell and beam synchronization signals
    pp . 1 ? 5 . [2018]
  • ¡°Cell selection technique for millimeter-waveCellular systems with hybrid beamforming
    vol . 17 , no . 6 , p. 1461 [2017]
  • ¡°Cell selection technique for 5G millimeter-wave , ¡± in 2017 InternationalConference on Information andCommunication TechnologyConvergence ( ICTC )
    pp . 734 ? 736 [2017]
  • ¡°Carrier Frequency Offset Mitigation in AsynchronousCooperative OFDM Transmissions ,
    vol . 56 , no . 2 , pp . 675 ? 685 [2008]
  • ¡°Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urbanCellularCommunications
    vol . 61 , no . 4 , pp . 1850 ? 1859 [2013]
  • ¡°Beamforming and positioning-assisted handover scheme for long-term evolution system in high-speed railway
    vol . 6 , no . 15 , pp . 2335 ? 2340 [2012]
  • ¡°BeamCodebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems ,
    vol . 27 , no . 8 , pp . 1390 ? 1399 [2009]
  • ¡°An overview of signal processing techniques for millimeter wave MIMO systems
    vol . 10 , no . 3 , pp . 436 ? 453 [2016]
  • ¡°An ESPRIT-based approach for 2-D localization of incoherently distributed sources in massive MIMO systems
    vol . 8 , no . 5 , pp . 996 ? 1011 [2014]
  • ¡°A survey of millimeter waveCommunications ( mmWave ) for 5G : Opportunities andChallenges , ¡± Wirel
    vol . 21 , no . 8 , pp . 2657 ? 2676 [2015]
  • ¡°A preamble sequence design techniqe for efficient beam ID detection in millimeter-waveCellular systems
    vol . 65 , no . 12 , pp . 10106 ? 10111 [2016]
  • ¡°A practical SDMA protocol for 60 GHz millimeter waveCommunications ,
    [2008]
  • ¡°A method of PRACH detection threshold setting in LTE TDD femtocell system ,
    pp . 408 ? 413 [2012]
  • ¡°5G mmwave positioning for vehicular networks ,
    vol . 24 , no . 6 , pp . 80 ? 86 [2017]
  • ¡°3rd Generation Partnership Project ; Technical Specification Group Radio Access Network ; 3DChannel model for LTE
    [2013]
  • ¡°3DChannel model extensions andCharacteristics study for future wireless systems , ¡± in 2013 IEEE 24th Annual International Symposium on Personal , Indoor , and Mobile RadioCommunications ( PIMRC )
    pp . 41 ? 46 [2013]
  • ¡°3-D indoor positioning for millimeter-wave massive MIMO systems
    vol . 66 , no . 6 , pp . 2472 ? 2486 [2018]
  • [9] T. E. Bogale and L. B. Le, ¡°Massive MIMO and mmWave for 5G wireless HetNet: Potential benefits and challenges,¡± IEEE Veh. Technol. Mag., vol. 11, no. 1, pp. 64?75, Mar. 2016.
  • [99] D. A. Shnidman, ¡°The calculation of the probability of detection and the generalized Marcum Q-function,¡± IEEE Trans. Inf. Theory, vol. 35, no. 2, pp. 389?400, Mar. 1989.
  • [98] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed. Amsterdam, The Netherlands: Elsevier, 2007.
  • [96] 3GPP TS 38.211, 5G; NR; PhysicalChannels and modulation. 2018.
    [2018]
  • [95] Samsung, ¡°Using Restricted Preamble Set for RACH in High Mobility Environments, R1-073112,¡± 2007.
  • [94] Nokia, ¡°Restricted Sets of RACH Preamble Signature for Environments With High Doppler Frequency Shifts, R1-070377,¡± 2007.
  • [92] D. Micheli et al., ¡°Over-the-air tests of high-speed moving LTE users in a reverberation chamber,¡± IEEE Trans. Veh. Technol., vol. 67, no. 5, pp. 4340?4349, May 2018.
  • [85] 3GPP TS 38.213, 5G; NR; Physical layer procedures forControl. 2018.
    [2018]
  • [83] M. R. Akdeniz et al., ¡°Millimeter wave channel modeling and cellular capacity evaluation,¡± IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1164?1179, Jun. 2014.
  • [81] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, ¡°Capacity limits of MIMO channels,¡± IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 684?702, Jun. 2003.
  • [7] R. N. Mitra and D. P. Agrawal, ¡°5G mobile technology: A survey,¡± ICT Express, vol. 1, no. 3, pp. 132?137, Dec. 2015.
  • [77] H. J. Zepernick and A. Finger, Pseudo Random Signal Processing: Theory and Practice. Chichester, UK: Wiley, 2005.
  • [75] C. Balanis, Antenna Theory. Hoboken, NJ, USA: Wiley, 1997.
  • [73] P. Schniter and A. Sayeed, ¡°Channel estimation and precoder design for millimeter-wave communications: The sparse way,¡± in 2014 48th Asilomar Conference on Signals, Systems and Computers, 2014, pp. 273?277.
  • [66] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, ¡°Energy and spectral efficiency of very large multiuser MIMO systems,¡± IEEE Trans. Commun., vol. 61, no. 4, pp. 1436?1449, Apr. 2013.
  • [65] O. Altrad and S. Muhaidat, ¡°A new mathematical analysis of the probability of detection in cognitive radio over fading channels,¡± EURASIP J. Wirel. Commun. Netw., vol. 2013, no. 1, pp. 1?11, Dec. 2013.
  • [60] 3GPP 36.211, ¡°LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation.¡±
  • [58] E. Dahlman, S. Parkvall, and J. Skold, 4G LTE/LTE-Advanced for Mobile Broadband. Oxford, UK: Elsevier, 2011.
  • [4] Qualcomm, ¡°Making 5G NR a reality,¡± 2016.
  • [37] M. E. Eltayeb, A. Alkhateeb, R. W. Heath, and T. Y. Al-Naffouri, ¡°Opportunistic beam training with hybrid analog/digital codebooks for mmWave systems,¡± in 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2015, pp. 315?319.
  • [35] J. Kim and A. F. Molisch, ¡°Fast millimeter-wave beam training with receive beamforming,¡± J. Commun. Networks, vol. 16, no. 5, pp. 512?522, 2014.
  • [30] IEEE, IEEE Standard Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications; IEEE Std 802.11ad-2012 (Amendment to IEEE Std 802.11-2007). New York, USA, 2012.
  • [29] IEEE, IEEE Standard Part 15.3: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs) Amendment 2: Millimeter-wave-based Alternative Physical ayer Extension. New York, USA, 2009.
  • [28] X. Zhang, A. F. Molisch, and S.-Y. Kung, ¡°Variable-phase-shift-based RF-basebandCodesign for MIMO antenna selection,¡± IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4091?4103, Nov. 2005.
    vol . 53 , no . 11 , pp . 4091 ? 4103 [2005]
  • [24] T. E. Bogale and L. B. Le, ¡°Beamforming for multiuser massive MIMO systems: Digital versus hybrid analog-digital,¡± in 2014 IEEE Global Communications Conference, 2014, pp. 4066?4071.
  • [21] A. Abbaspour-Tamijani and K. Sarabandi, ¡°An affordable millimeter-wave beam-steerable antenna using interleaved planar subarrays,¡± IEEE Trans. Antennas Propag., vol. 51, no. 9, pp. 2193?2202, Sep. 2003.
  • [19] IEEE 802.11ad Standard Draft D0.1. 2012.
  • [18] S. Rangan, T. S. Rappaport, and E. Erkip, ¡°Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges,¡± Proc. IEEE, vol. 102, no. 3, pp. 366?385, Mar. 2014.
  • [12] T. S. Rappaport et al., ¡°Millimeter wave mobile communications for 5G cellular: It will work!,¡± IEEE Access, vol. 1, pp. 335?349, 2013.
  • [124] F. Reif, Fundamentals of Statistical and Thermal Physics. USA: Waveland Press, 2009.
  • [123] F. B. Mismar, B. L. Evans, and A. Alkhateeb, ¡°Deep reinforcement learning for 5G networks: Joint beamforming, power control, and interference coordination,¡± IEEE Trans. Commun., vol. 68, no. 3, pp. 1581?1592, Mar. 2020.
  • [121] C. Duofang, C. Baixiao, and Q. Guodong, ¡°Angle estimation using ESPRIT in MIMO radar,¡± Electron. Lett., vol. 44, no. 12, p. 770, 2008.
  • [118] F. F. Kretschmer and B. L. Lewis, ¡°Doppler properties of polyphase coded pulse compression waveforms,¡± IEEE Trans. Aerosp. Electron. Syst., vol. AES-19, no. 4, pp. 521?531, Jul. 1983.
  • [117] B. R. Mahafza, Radar Systems Analysis and Design Using MATLAB, 3rd ed. FL, USA: CRC Press, 2013.
  • [111] A. Guerra, F. Guidi, and D. Dardari, ¡°Position and orientation error bound for wideband massive antenna arrays,¡± in 2015 IEEE International Conference on Communication Workshop (ICCW), 2015, pp. 853?858.
  • [10] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, ¡°Massive MIMO for next generation wireless systems,¡± IEEE Commun. Mag., vol. 52, no. 2, pp. 186?195, Feb. 2014.
  • [109] N. Garcia, H. Wymeersch, E. G. Larsson, A. M. Haimovich, and M. Coulon, ¡°Direct localization for massive MIMO,¡± IEEE Trans. Signal Process., vol. 65, no. 10, pp. 2475?2487, May 2017.
  • [107] M. Vari and D. Cassioli, ¡°mmWaves RSSI indoor network localization,¡± in 2014 IEEE International Conference on Communications Workshops (ICC), 2014, pp. 127?132.
  • [106] P. Sanchis, J. M. Martinez, J. Herrera, V. Polo, J. L. Corral, and J. Marti, ¡°A novel simultaneous tracking and direction of arrival estimation algorithm for beam-switched base station antennas in millimeter-wave wireless broadband access networks,¡± in IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), vol. 1, pp. 594?597.
  • [105] I. T. RP-170427, ¡°Study on LTE vehicular positioning technologies,¡± 2017.
  • [103] 3GPP TS 36.305, ¡°LTE; Evolved universal terrestrial radio access network (E-UTRAN); Stage 2 functional specification of user equipment (UE) positioning in E-UTRAN,¡± 2016.
  • [100] F. C. C. T. FCC-15-9, ¡°Fourth report and order on wireless E911 location accuracy requirements,¡± Washington, DC, USA, 2015.
  • T. L. Marzetta , and P. Popovski , ¡°Five disruptive technology directions for 5G ,
    vol . 52 , no . 2 , pp . 74 ? 80 [2014]
  • SpatialChannel model for Multiple Input Multiple Output ( MIMO ) simulations , ¡± Valbonne
    [2012]
  • SpatialChannel model for Multiple Input Multiple Output ( MIMO ) simulations
    [2012]
  • Random access in millimeter-wave beamformingCellular networks : issues and approaches .
    vol . 53 , no . 1 , pp . 180 ? 185 [2015]
  • Probability distributions involving Gaussian random variables
    [2006]
  • PhysicalChannels and modulation ( 3GPP TS 38.211 version 1.1.1 Release 15 )
    [2017]
  • Physical Layer ; Physical Layer Procedures ( Release 1 )
    [2016]
  • Next generation 5g wireless networks : A comprehensive survey
    vol . 18 , no . 3 , pp . 1617 ? 1655 [2016]
  • Millimeter-wave beamforming as an enabling technology for 5G cellular communications : Theoretical feasibility and prototype results
    vol . 52 , no . 2 , pp . 106 ? 113 [2014]
  • Millimeter wave beamforming for wireless backhaul and access in small cell networks
    vol . 61 , no . 10 , pp . 4391 ? 4403 , [2013]
  • MIMO-OFDM Wireless Communications with MATLAB
    [2011]
  • Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G .
    vol . 53 , no . 1 , pp . 186 ? 194 [2015]
  • LTE for 4G Mobile Broadband : Air Interface Technologies and Performance
    [2009]
  • LTE - The UMTS Long Term Evolution : From Theory to Practice , 2nd ed
    [2011]
  • KT 5th Generation Radio Access ; Physical Layer ; Physical Channels and Modulation ( Release 1 )
    [2016]
  • Generalized orthogonal matching pursuit
    vol . 60 , no . 12 , pp . 6202 ? 6216 [2012]
  • Gauss and Jacobi Sum
    [1998]
  • Fundamentals of Radar Signal Processing , 2nd ed
    [2015]
  • Compressed Channel Sensing : A New Approach to Estimating Sparse Multipath Channels
    vol . 98 , no . 6 , pp . 1058 ? 1076 [2010]
  • An introduction to millimeter-wave mobile broadband systems
    vol . 49 , no . 6 , pp . 101 ? 107 [2011]
  • A. M. Niknejad , and R. W. Brodersen . Design considerations for 60 GHz CMOS radios
    vol . 42 , no . 12 , pp . 132 ? 140 [2004]
  • 60 GHz technology for Gbps WLAN and WPAN : From theory to practice
    [2011]