운동강도에 따른 장내 마이크로바이옴 변화 연구

윤소미 2020년
논문상세정보
' 운동강도에 따른 장내 마이크로바이옴 변화 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 운동경기와 실외경기와 경기
  • 만성질환
  • 장내미생물
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
318 0

0.0%

' 운동강도에 따른 장내 마이크로바이옴 변화 연구' 의 참고문헌

  • 국가통계포털 암 발생 및 사망현황 [2019]
  • 한국어판 단문형 국제신체활동설문(IPAQ) 의 신뢰도와 타당도
    강재헌 김병성 양윤준 오지연 가정의학회지, 28, 532-541 [2007]
  • 장내미생물과 운동: 문헌고찰
    윤소미 이대택 한국웰니스학회지, 14(4), 351-360 [2019]
  • 장내 미생물에 대한 이해와 기능성 장질환에서 프로바이오틱스의 유용성
    류재현 The Ewha Medical Journal, 40(1), 22-28 [2017]
  • 장내 마이크로바이옴과 차세대 프로바이오틱스 연구현황
    최학종 식품과학 과 산업, 52(3), 261-271 [2019]
  • 인체 마이크로바이옴 연구개발 동향
    곽민정 김지현 KHIDI 전문가 리포 트, 1-19 [2017]
  • 유산소 운동이 장내미생물 비율 및 선천면역 구성 인자에 미치는 영향
    신정엽 전용균 하창호 한국체육과학회지, 24(4), 1267-1277 [2015]
  • 운동시간대별 유산소 운동에 따른 중년여성의 면역인자 발 현의 차이
    신정엽 최재일 한국웰니스학회지, 14(2), 479-487 [2019]
  • 운동 환경이 선수의 장내 미생물군집에 미치는 영향. 미간행 석사 학위논문
    손승연 경희대학교 체육대학원 [2019]
  • 예방접종의 실제
    이환종 대한소아과학회, 39(1), 19-35 [1996]
  • 비만인의 유산소운동 중재에 따른 장내미생물 비율, BDNF 및 섭식조절인자 변화에 대한 연구
    신정엽 최재일 한국체육과학회지, 27(5), 1139-1148 [2018]
  • 노화에 따른 감소된 면역기능에 운동이 긍정적인 영향을 미 치는가?
    김기진 안나영 운동학학술지, 11(2), 45-54 [2009]
  • What is a health benefit ? An evaluation of EFSA opinions on health benefits with reference to probiotics
    4 ( 3 ) , 223-230 [2013]
  • Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum
    72 ( 2 ) , 572-576 . [2008]
  • Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice
    118 ( 1985 ) , 1059–1066 . [2015]
  • US National Institutes of Health. (2015). Belladonna. MedlinePlus, 23 Varala, O. (2011). The gut as a regulator of early inflammation in type 1 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 18(4), 241–247.
  • Tongue microbiota and oral health status in community-dwelling elderly adults
    3 ( 4 ) , e00332-18 [2018]
  • Through ageing , and beyond : gut microbiota and inflammatory status in seniors and centenarians
    5 ( 5 ) , e10667 [2010]
  • The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus
    14 ( 2 ) , 112–120 [2012]
  • The synthesis and functional evaluation of a mitochondria-targeted hydrogen sulfide donor
    10-oxo-10- [2014]
  • The roles of prolactin , growth hormone , insulin-like growth factor-I , and thyroid hormones in lymphocyte development and function : insights from genetic models of hormone and hormone receptor deficiency
    21 ( 3 ) , 292 –312 [2000]
  • The role of the gut microbiota in nutrition and health
    9 ( 10 ) , 577–589 [2012]
  • The functional gastrointestinal disorders and the Rome III process
    130 , 1377-1390 [2006]
  • The effects of exercise upon symptoms and quality of life in patients diagnosed with irritable bowel syndrome : a randomised
    Medicine , 29 ( 9 ) ,
  • The effect of a 12-week combinational exercise program on CD4 count and mental health among HIV infected women : A randomized control trial
    16 ( 1 ) , 21–25 . [2018]
  • The dynamics of the human infant gut microbiome in development and in progression towards Type 1 diabetes
    17 ( 2 ) , 260-273 [2015]
  • The combination of sport and sport-specific diet is associated with characteristics of gut microbiota : an observational study
    16 ( 1 ) , 21 [2019]
  • The aetiology of bacterial vaginosis
    110 ( 5 ) , 1105-1128 [2011]
  • Symptomatic atherosclerosis is associated with an altered gut metagenome .
    [2012]
  • Structure , function and diversity of the healthy human microbiome
    486 ( 7402 ) , 207-214 [2012]
  • Stress and exercise : getting the balance right for aging immunity
    35 ( 1 ) , 35-39 . [2007]
  • Sleep and immune function
    P hysiology , 463 ( 1 ) , 121–137 [2012]
  • Six-Week Endurance Exercise Alters Gut Metagenome That Is not Reflected in Systemic Metabolism in Over-weight Women
    9 , 2323 [2018]
  • Role of the normal gut microbiota
    21 ( 29 ) , 8787-8803 [2015]
  • Role of the intestinal microbiome in health and disease : fromCorrelation toCausation
    70 ( 1 ) , S45–S56 [2012]
  • Richness of human gut microbiomeCorrelates with metabolic markers
    500 ( 7464 ) , 541–546 [2013]
  • Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age
    128 ( 3 ) ,646-652 [2011]
  • Psychophysical bases of perceived exertion .
    14 , 377–381 . [1982]
  • Physical activity measurement-a primer for health promotion
    13 ( 2 ) , 92-103 [2006]
  • Physical activity improves symptoms in irritable bowel syndrome : a randomizedControlled trial
    106 ( 5 ) , 915-922 [2011]
  • Obesity alter gut micobial ecology
    102 ( 31 ) , 11070-11075 [2005]
  • Molecular assessment of differences in the duodenal microbiome in subjects with irritable bowel syndrome
    50 ( 9 ) , 1076-1087 . [2015]
  • Microbial ecology : human gut microbes associated with obesity
    444 ( 7122 ) , 1022-1023 [2006]
  • Microbial degradation of complex carbohydrates in the gut
    3 ( 4 ) , 289-306 . [2012]
  • Microbial Degradation Products Influence Colon Cancer Risk : the Butyrate Controversy
    134 ( 2 ) , 479-482 . [2004]
  • Metagenomics of the Human Intestinal Tract
    [2012]
  • Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism
    25 ( 7 ) , 1104-1109 . [2019]
  • Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in Type 2 diabetes mellitus
    46 ( 8 ) , 1071–1081 [2003]
  • Long-term effects of aerobic plus resistance training on the metabolic syndrome and adiponectinemia in obese adolescents
    13 ( 5 ) , 343-350 [2011]
  • Irritable bowel syndrome , gut microbiota and probiotics
    17 ( 30 ) , 252-266 . [2011]
  • Intestinal microbiota in health and disease : role of bifidobacteria in gut homeostasis
    20 ( 41 ) , 15163-15176 [2014]
  • Immune Disorders
    https : //www.msdmanuals.com/ [2019]
  • Human gut microbiome and risk for colorectal cancer
    108 ( 24 ) , 1907-1911 [2013]
  • Host-bacterial mutualism in the human intestine
    [2005]
  • Factors affecting the composition of the gut microbiota , and its modulation
    7 , e7502 [2019]
  • Exercise and the regulation of immune functions
    135 , 355-380 . [2015]
  • Exercise and associated dietary extremes impact on gut microbial diversity
    63 ( 12 ) , 1913-1920 [2014]
  • Exercise alters gut microbiota composition and function in lean and obese humans
    50 ( 4 ) , 747–757 [2018]
  • Exercise , nutrition and gut microbiota : Possible links and consequences
    3 ( 4 ) , 1-8 [2017]
  • Evans, C. C., LePard, K. J., Kwak, J. W., Stancukas, M. C., Laskowski, S., Dougherty, J., et al. (2014). Exercise Prevents Weight Gain and Alters the Gut Microbiota in a Mouse Model of VIEGh Fat Diet-Induced Obesity. PLoS One, 9(3), e92193.
  • Effects of exercise on breast cancer patients and survivors : a systematic review and meta-analysis .
    175 ( 1 ) , 34-41 . [2006]
  • Effects of VIEGh‐intensity resistance training in patients with rheumatoid arthritis : A randomized controlled trial
    61 ( 12 ) , 1726-1734 . [2009]
  • Effects of 12 months of exercise training on salivarysecretory IgA levels in elderly subjects .
    37 ( 1 ) , 76-79 . [2003]
  • Effect of probiotic administration on the intestinal microbiota , current knowledge and potential applications
    20 ( 44 ) , 16518-16528 [2014]
  • Diversity of the human intestinal microbial flora
    [2005]
  • Development and validation of the Korean Rome III questionnaire for diagnosis of functional gastrointestinal disorders
    19 ( 4 ) , 509-515 [2013]
  • Comparison of the effects of a supervised exercise program and usual care in patients with colorectal cancer undergoing chemotherapy
    37 ( 2 ) , e21-e29 . [2014]
  • Colonic butyrate-producing communities in humans : an overview using omics data
    2 ( 6 ) , e00130-17 . [2017]
  • Cognitive-behaviour therapy as a treatment for irritable bowel syndrome : a pilot study
    34 ( 2 ) , 300-309 [2000]
  • Clostridia from the Gut Microbiome are Associated with Brain Functional Connectivity and Evoked Symptoms in IBS
    152 ( 5 ) , S40 [2017]
  • Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions
    4 ( 1 ) , 42 [2016]
  • Campbell Biology: Concepts & Connections. (9th ed). 생명과학: 개념과 현상의 이해 제 9판. 김명원 외 번역. ㈜ 라이프사이언스, 서울특별시
  • Butyrate improves insulin sensitivityand increases energy expenditure in mice
    58 ( 7 ) , 1509-1517 . [2009]
  • Butyrate and other short-chain fatty acids as modulators of immunity : what relevance for health ?
    13 ( 6 ) , 715-721 [2010]
  • Biodiversity and Functional Genomics in the Human Microbiome
    29 ( 1 ) . 51-58 [2013]
  • Bilophila wadsworthia : a Unique Gram-negative Anaerobic Rod
    3 ( 2-3 ) , 83-86 . [1997]
  • Bilophila wadsworthia , gen. nov. and sp . nov. , a unique gram-negative anaerobic rod recovered from appendicitis specimens and human faeces
    135 ( 12 ) , 3405-3411 . [1989]
  • Bacterial evolution
    51 ( 2 ) , 221-271 . [1987]
  • Associations between cardiorespiratory fitness and C-reactive protein in men .
    22 ( 11 ) , 1869-1876 . [2002]
  • An evidence-based systematic review of belladonna by the natural standard research collaboration
    4 ( 4 ) , 61–90 . [2004]
  • Aerobic exercise training with brisk walking increases intestinal bacteroides in healthy elderly women
    11 ( 4 ) , pii : E868 . [2019]
  • ACSM ’ s guidelines for exercise testing and prescription 10th .
    [2018]
  • A review of 10 years of human microbiome research activities at the US National Institutes of Health
    7 ( 1 ) , 31 [2019]
  • A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes
    139 ( 6 ) , 1844-1854 [2010]
  • A metagenome-wide association study of gut microbiota in type 2 diabetes
    490 ( 7418 ) , 55-60 [2012]
  • 16주간의 운동프로그램이 치매노인의 건강관련체력 및 동맥경직도에 미치는 영향
    이소은 이재문 이재영 한국체육과학회지, 21(1), 825-836 [2012]
  • , et al . Ingestion of Lactobacillus strain regulates emotional behavior andCentral GABA receptor
    Sciences of the United States of
  • (4-(3-thioxo-3H-1,2-dithiol-5-yl)phenoxy)decyl)triphenylphosphonium bromide (AP39). Medicinal Chemistry Communication, 5(5), 728-735.