박사

아연 전해제련공정의 전력 절감을 위한 복합 산화물(MMO, Mixed Metal Oxide)전극 적용 특성 연구 = Application Characteristics of Mixed Metal Oxide Electrode for Power Reduction in Zinc Electrowinning Process

박미정 2020년
논문상세정보
' 아연 전해제련공정의 전력 절감을 위한 복합 산화물(MMO, Mixed Metal Oxide)전극 적용 특성 연구 = Application Characteristics of Mixed Metal Oxide Electrode for Power Reduction in Zinc Electrowinning Process' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • catalyst
  • efficiency
  • electrolytic smelting
  • energy reduction
  • greenhouse gas reduction
  • intermediatelayer
  • mixed metal oxide (MMO) electrode
  • pre-treatment
  • voltage
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
765 0

0.0%

' 아연 전해제련공정의 전력 절감을 위한 복합 산화물(MMO, Mixed Metal Oxide)전극 적용 특성 연구 = Application Characteristics of Mixed Metal Oxide Electrode for Power Reduction in Zinc Electrowinning Process' 의 참고문헌

  • 환원조건이 전해도금 아연의 표면 형상에 미치는 영향
    김홍익 부산대학원 재료공학과 공학석사논문 [2015]
  • 한국지질자원 연구원
    제련의 개요 [2009]
  • 한국과학기술원
    Development of Energy Saving Process in Zinc Electrowinning [1988]
  • 한국과학기술원
    Development of Energy Saving Process in Zinc Electrowinning [1986]
  • 통계청
    1996년기준 광공업 통계조사용 산업 및 품목분류표(광업 및 제조업부문) [1997]
  • 전해 채취용 양극 및 그것을 이용한 전해 채취법, Kor
    Patent 10-1577664 [2015]
  • 전해 채취용 양극 및 그것을 이용한 전해 채취법
    Patent 10-1577664 [2015]
  • 전기응집과 전기분해를 이용한 불소가 함유된 질소 함유 병합 처리방법 Kor
    Patent 10-1339303 [2013]
  • 전극에 전기 촉매 표면을 형성하기 위한 방법 및 전극, Kor
    Patent 10-2008-0058414 [2008]
  • 아연 전해제련을 위한 수소 발생 억제 첨가제, Kor
    Patent 10-0599993 [2006]
  • 습식제련 리포트
    Happy Campus [2016]
  • 산업자원부
    기후변화협약에 따른 에너지 절약형 청정생산 산업 구조전환을 위한 연구기획 [1998]
  • 강미아, 한치복, 불용성 전극의 전처리 방법 이 전극의 수명에 미치는 영향
    박미정 이택순 Journal of Korean Society Environmental Enginering, 38(6), 291-298 [2016]
  • 강미아, 불용성 전극의 염소계 산화제 생성 특성
    박미정 이택순 Journal of Korean Society of Water Sciences Technology, 25(6), 27-34 [2017]
  • 「2000년을 향한 산업기술개발수요 비철 금속 분야」
    산업기술정책연구소 [1996]
  • The effect of fluoride ions on the corrosion of steel materials in H2SO4 and CH3COOH solutions
    36 ( 8 ) , 1411–1424 [1994]
  • The Effects of Interlayer on the DLC Coating
    10 ( 2 ) , 65-70 [2011]
  • Temperature Effect on the Ionic Equilibria of Sulfuric Acid Leaching Solutions of Zinc Calcine
    K. J. Lee M. S. Lee 대한금속재료학회지, 41(4), 267-272 [2003]
  • Sn-modified Platinized Ti전극 제조를 위한Ti의 백금도금특성 Journal of Korean Institute of Chemical Engineers
    김광욱 김성민 이일희 45(2), 124-132 [2007]
  • On the effects of antimony and glue on zinc electrocrystallization behaviour
    6 , 1-7 [1976]
  • Experimental determination of the factors affecting zinc elec trow inning e fficiency , Jou rn al o f A p plied Electrochemistry
    18 ( 1 ) , 120-127 ( [1988]
  • Effects of deposition conditions on the morphology of zinc deposits from alkaline zincate solutions
    153 ( 5 ) , 357-C364 [2006]
  • Effect of chromate ion on zinc electrowinning from acid sulphate electrolyte
    24 , 1044-1051 [1994]
  • Effect of Mn2+ ions on the electrodeposition of zinc fromacidic sulphate solutions
    99 , 249-254 ( [2009]
  • D2EHPA에 의한 코발트(Ⅱ), 니켈(Ⅱ), 아연(Ⅱ)의 용 매추출에 대한 열역학적 연구
    이만승 고려대학원 공학박사논문 [1992]
  • A mathematical model of a zinc electrowinning cell
    Metallurgy , 2 , 51-62 [1987]
  • A comparative study on IrO2-Ta2O5 coated titanium electrodes prepared with different methods
    54 , 1820-1825 [2009]
  • A Study on New Electrochemical Reactions and Potential-pH Diagram for Zinc-Water Solutions 대한금속재료학회지
    42(7), 616-619 [2004]
  • A Study on Accelerated Life Test of Insoluble Electrode
    260 [2013]
  • 3성분 혼합 Ru-Sn-Ti/Ti산 화물전극 활성 및 전극 수명 특성(Ⅱ), Korean Chemical Engineering Research, 39(2), 138-143 (2001). (53) 김광욱, 이일희, 김정식, 신기하, 정봉익, 김광호, 이리듐 산화물 전극의 유기물 성능분해 개선
    김광욱 김광호 김정식 신기하 이일희 Korean Chemical Engineering Research 40(2), 146-151 [2002]
  • (8) M. Duca, E. Guerrini, A. Colombo, S. Trasatti, Activation of nickel for hydrogen evolution by spontaneous deposition of iridium. Electrocatalysis, 4 (4), 338–345 (2013).
  • (76) M. Masatsugu, Anodes for electrolyticwinning of zinc and cobalt andmethod for electrolytic winning, Patent EP2287364 (2011).
  • (75) R. Jaimes, M. Miranda-Hernández, L. Lartundo-Rojas, I. González, Characterization of anodic deposits formed on Pb– Ag electrodes during electrolysis in mimic zinc electrowinning solutions with different concentrations of Mn(II), Hydrometallurgy, 156, 53–62 (2015).
  • (74) L. Murean, G. Maurin, L. Oniciu, Delia Gaga, Influence of metallic impurities on zinc electrowinning from sulphate electrolyte, Hydrometallurgy, 43, 345-354 (1996).
  • (72) G. W. Barton, A. C. Scott, A validated mathematical model for a zinc electrowinning cell, Journal of Applied Electrochemistry, 22, 104-115 (1992).
  • (71) T. T. Chen, J. E. Dutrizac, Characterization of the manganese oxide scales formed on a grooved cast Pb–Ag anode from a zinc electrowinning operation, TMS Annual Meeting, 1, 159–166 (2011).
  • (7) J. Aromaa, J. M. Evans, Electrowinning of metals, Journal of Electrochemistry. 5, 159–265 (2007).
  • (69) S. Vasudevan, Anodes for Electrochemical Processes(part 1) , Research Journal of Chemical Sciences, 3(5), 1-2 (2013).
  • (68) Closed data, Anode for Highly Concentrated Hypochlorite Evolution (2012).
  • (66) D. Majuste, E. L. C. Martins, A. D. Souza, M. J. Nicol, V. S. T. Ciminelli, Role of organic reagents and impurity in zinc electrowinning, Hydrometallurgy, 152, 190-198 (2015).
  • (65) S. Trasatti, Electrode of Conductive Metallic Oxides, Part A, Elsevier Sci. Pub. Co., Amsterdam (1980).
  • (64) S. Lin, and others, Effects of surface roughness of substrate on properties of Ti/TiN/Zr/ZrN multilayer coatings, Transactions of Nonferrous Metals Society of China, (25), 451-456 (2015).
  • (63 ) P erm elec Elec trode L td, M anu fac tu ring P rocess o f E lec trodes fo r Elec trolysis, US P a ten t, US 2 009 024 641 0A 1 (20 09 ).
    1 ( 20 09 ) .
  • (62) R. Polini, Chemically vapour deposited diamond coatings on cemented tungsten carbides : Substrate Pretreaments, adhesion and cutting performance, Thin Solid Films, 515, 4-13 (2006).
  • (60) J. Matejicek, and others, The influence of interface characteristics on the adhesion/cohesion of plasma sprayed tungsten coating, Journal of Coatings, (3), 108-125 (2013).
  • (6) T. F. Parada, E. Asselin, JOM, Reducing power consumption in zinc electrowinning Metals & Materials Society, 61(10), 54– 58 (2009).
  • (59) M. Ohring, The Materials Science of Thin Films, Academic Press INC, Boston, USA, 439-450 (1991).
  • (57) R. Jaimes, M. Miranda-Hernández, L. Lartundo-Rojas, I. González, Role of organic reagents and impurity in zinc electrowinning, Hydrometallurgy 156, 53-62 (2015).
  • (56) G. W. Barton, A. C. Scott, A validated mathematical model for a zinc electrowinning cell” Journal of Applied Electrochemistry, 22, 104-115 (1992).
  • (51) D. Santos, A. Lopes, M. J. Pacheco, A. Gomes, and L. Cirıaco, The Oxygen Evolution Reaction at Sn-Sb Oxide Anodes: Influence of the Oxide Preparation Mode, Journal of The Electrochemical Society, 161 (9) 564-572 (2014).
  • (50) M. Aleksandar, T. Pal, V. Marco, K. lazar, Influence of substrate roughness on adhesion of TiN coatings(Ⅰ), Joournal of the Brazilian Society of Mechanical Sciences and Engineering (2013).
  • (49) P. Shrivastava, M. S. Moats, Ruthenium Palladium OxideCoated Titanium Anodes for Low-Current-Density Oxygen Evolution, Journal of Electrochem Soc, 155(7) (2008).
  • (48) S. Vasudevan, Anodes for Electrochemical Processes(part 1), Journal of Chemical Sciences, 3(5), 1-2 (2013)
  • (44) K. Kim, and others, Fabrication and Material Properties of Ru-Sn-Ti Ternary Mixed Oxide/Ti Electrode(Ⅰ), Journal of Korean Institute of Chemical Engineers, 38, 774-782 (2000).
  • (42) X. Wu, Z. Liu, X. Liu, The effects of additives on the electrowinning of zinc from sulphate solutions with high fluoride concentration, Hydrometallurgy, 141, 31-35 (2014).
  • (40) C. Cachet, R. Wiart, I. Ivanov, Y. Stefanov, S. Rashkov, Mechanism of the reverse dissolution of zinc in the presence of nickel - Part II: Influence of triethylbenzylammonium chloride. Journal of Applied Electrochemistry 24, 713-718 (1994).
  • (39) C. Cachet, R. Wiart, Zinc deposition and passivated hydrogen evolution in highly acidic sulphate electrolytes: depassivation by nickel impurities, Journal Applied Electrochemistry, 20, 1009-1014 (1990).
  • (37) Y. Stefanov, I. Ivanov, The influence of nickel ions and triethylbenzylammonium chloride on the electrowinning of zinc from sulphate electrolytes containing manganese ions, Hydrometallurgy, 64, 193–203 (2002).
  • (36) I. Ivanov, Y. Stefanov, Electroextraction of zinc from sulphate electrolytes containing antimony and hydroxyethylatedbutine-2-diol-1,4: Part 3. The influence of manganese ions and a divided cell, Hydrometallury, 64, 181–186 (2002).
  • (33) D. Majuste, E. L. C. Martins, A. D. Souza, M. J. Nicol, V. S. T. Ciminelli, Role of organic reagents and impurity in zinc electrowinning, Journal of Hydrometallurgy, 190-198 (2015).
  • (32) T. Loucka, The reasons for the loss of activity of titanium-ruthenium dioxide anode in sulfuric acid media, Jounal of Applied Electrochemistry, 11, 143 (1981).
  • (31) J. F. Mc Aleer, L. M. Peter, Instability of Anodic Oxide Films on Titaniumm, Jounal of Electrochemical society, (129), 1252 (1982).
  • (29) C. Rerolle. R. Wiart, Kinetics of oxygen evolution on Pb and Pb–Ag anodes during zinc electrowinning, Jounal of Electrochemical society, 41, 1063–1069 (1996).
  • (28) N. B. Devi, K. C. Nathsarma, V. Chakravortty, Extraction and separation of Mn(II) and Zn(II) from sulphate solutions by sodium salt of Cyanex, Hydrometallurgy, 272, 45, 169-179 (1997).
  • (27) A. A. Baba, F. A. Adekola, Beneficiation of a Nigerian sphalerite mineral: Solvent extraction of zinc by Cyanex®72 in hydrochloric acid, Hydrometallurgy, 109, 187-193 (2011).
  • (24) Http://www.chip1st.com
  • (14) Ame Research (2019)
  • (13) J. Zhua, Y. Wua, J. Zuob, D. F. Khanc, C. Jiangb, Effect of iridium(IV) ions on the electrowinning of zinc from acidic electrolytes, Journal of Hydrometallurgy, 248-252 (2017).
  • (12) S. Schmachtel, S. E. Pust, M. Toiminen, G. Wittstock, K. Kontturi, O. Forsen, M. H. Barkers, Local process investigations on composite electrodes: on the way to understanding design criteria for spray coated anodes in zinc electrowinning. Lead and Zinc. The Southern African Institute of Mining and Metallurgy, 99-120 (2008).
  • (11) T. C. Wen, C. C. Hu, Hydrogen and oxygen evolutions on Ru-Ir binary oxides, Jounal of Electrochemical society, 139(8), 2158-2163 (1992).
  • (10) S. Trasatti, Electrode of Conductive Metallic Oxides, Part A, Elsevier Sci. Pub. Co., Amsterdam (1980).