박사

A Study on Adsorption of M cat/0/ano(Cu, Rh,Pt) and CO2 by Using Computational Chemistry = 계산화학을 이용한 M cat/0/ano(Cu, Rh,Pt)와 CO2의 흡착성에 관한 연구

하광아 2020년
논문상세정보
' A Study on Adsorption of M cat/0/ano(Cu, Rh,Pt) and CO2 by Using Computational Chemistry = 계산화학을 이용한 M cat/0/ano(Cu, Rh,Pt)와 CO2의 흡착성에 관한 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • ccs
  • co2 capture
  • dft
  • transition metal
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
211 0

0.0%

' A Study on Adsorption of M cat/0/ano(Cu, Rh,Pt) and CO2 by Using Computational Chemistry = 계산화학을 이용한 M cat/0/ano(Cu, Rh,Pt)와 CO2의 흡착성에 관한 연구' 의 참고문헌

  • 화력발전실무Ⅰ
    157 [2004]
  • 전력분야 연소 후 습식 CO2 포집기술 및 동향
    이인영 NEWS & I NFORMATION FOR CHEMICAL ENGINEERS, , Vol. 32, No. 1 [2014]
  • 이산화탄소의 포집⋅저장(CCS) 기술에 의한 온실가스 감축, KISTI MARKETREPORT, , 1(2), 16-19 . [17] Roger. S.; Eric. M
    김경호 Environmental Science &Technology, 201 2, 46 (17), 9768-9776 [2011]
  • 계산화학 개론: 도서출판 북스힐: 서울 강북구
    백경구 ; 35 4 [2018]
  • “녹색기후기술 백서. -기후변화에 대처하는 대한민국 미래 녹색 기후기술 50”
    미래창조과학부/녹색기술센터/한국과학기술연 구원, 2017 [2017]
  • refo rming of methane over PtCatalysts studied by DFT and kine tic modeling
    Volume 376 , pp 79-90 . [2016]
  • [98] Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. N akatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Br others, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Nor mand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyeng ar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. C ammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Moroku ma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannen berg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wal lingford CT, 2009.
  • [95] Liedl, K. R. Dangers of counterpoise corrected hypersurface s. Advantages of basis set superposition improvement. J. Ch em. Phys. 1998, 108, 3199.
  • [90] Levy, M,; John, P. P. Phys. Rev. A. 2010, 32(1985).
    32 [2010]
  • [88] Thomas, H. D. "Gaussian basis sets for use in correlated mo lecular calculations. I. The atoms boron through neon and hy drogen". J. Chem. Phys. 1989, 90, 1007. doi:10.1063/1.45615 3.
  • [86] John.Clark. Slater, Phys. Rev. 1930, 36, 57.
    36 , 57 . [1930]
  • [84] Christopher, J. C. Essentials of computational chemistry (the ories and models); 2nd ed; John Wiley & Sons Ltd : The A trium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, 2004; p111
  • [83]Cramer,C. J. and Smith, B. A. J. Phys.Chem. 1996, 100, 9 664.
    100 , 9 664 . [1996]
  • [7] Heung-kyeong, P. Korea’s International Cooperation on Climat e Change under the Paris Agreement. Sejong University, 201 9.
  • [77] Johnson, E. R.; Becke, A. D. J.Chem. Phys. 2005, 123, 024 101.
    123 , 024 101 . [2005]
  • [73] March, N. Electron density theory of atoms and molecules. J. Phys. Chem. 1982, 86 (12), 2262-2267.
  • [72] Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136 (3B), B864-B871.
    136 ( 3B ) , B864-B871 . [1964]
  • [65] Zerner, M. C. Theor. Chem. Acc. 2000, 103, 217.
  • [64] Slater, J.C. Phys. Rev. 1930, 35, 210.
    35 , 210 [1930]
  • [63] Roothaan, C. C. J. Rev. Mod. Phys. 1951, 23, 61-69
  • [62] Sol, W. The Foundations of Quantum Theory: Academic Pre ss, Inc: Orlando, Florida. 1973; p45
  • [61] STU, B. 2013 Nobel Prize InChemistry.Chem. Eng. News, 2013, 91 (41), p 5. DOI: 10.1021/cen-09141-notw1
    91 ( 41 ) , p 5 . DOI : 10.1021/cen-09141-notw1 [2013]
  • [5] https://lab-aids.com/global-warming-interactive-temperature -co2
  • [58] Schrödinger, E. Phys. Rev. 1926, 28, 1049.
  • [56] https://www.nextbigfuture.com/2018/06/calgary-companycan-capture-co2-at-a-cost-of-94-per-ton.html
  • [56] DNV, "Illustrative model of a risk based land use planning system around petroleum storage sites: Buncefield Major Incident Investigation Board", Rev 0, June 2008.
  • [55] Wang, S. G.; Liao, X-Y.;Cao, D-B.; et al. J. Phys.Chem.C 2007, 111, 16934-16940
    111 , 16934-16940 [2007]
  • [50] Yifei, L.; Florian, G.; Insoo, R.; Madelyn, R. B.; Canan, S.; I saias, B. A.; Daniela, Z.; George, W. H. Manos, M.; James, A. D. Synthesis Gas Conversion over Rh-Based Catalysts P romoted by Fe and Mn. ACS Catal. 2017, 7(7), pp 4550.
  • [48] Heather, L. A.; Ian, H. Activated Dissociation of CO2 on Rh (111) and CO Oxidation Dynamics. J. Phys. Chem. C. 2007, 111 (35), pp 13137–13148.
  • [2] The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2017, WMO GREENHOUSE GA S BULLETIN, 2018, No. 14, 22.
  • [28] “CO2 Utilization Options Task Force Phase 1 Report", Carbo n sequestration leadership forum technical report, 2012.
  • [1] Wigley, T. M. L. The pre-industrial carbon dioxide level, J. Climatic Change. 1983, 5: 315.
  • [15] Global CCS Institute, Accelerating the Uptake of CCS: Indus trial Use of Captured Carbon Dioxide. 2011.
  • [12] OECD/IEA, “Energy Technology Perspectives 2017”, 2017.
    [2017]
  • [11] US NOAA ESRL DATA, taken from Hawaii Ocean Time-ser ies data series data(cited from Dore et al.). 2009.
  • [10] Jung-Suk, L.; Kyu-Tae, L.; Chan-Kook K.; Gun-Ho, P.; Jo ng-Hyeon, L.; Young-Gyu, P.; Seong-Gil, G. Influence of t he Increase of Dissloved CO2 Concentration on the Marine O rganisms and Ecosystems; J. Korean Soc. Mar. Environ. Ene rgy. 2006, Vol. 9, NO. 4, p 243.
  • Z. Interactive effects of seawater acidifi cation and elevated temperature on biomineralization and ami no acid metabolism in the mussel Mytilus edulis
    218 , p 3623 . [2015]
  • V. H. A Century of Chemical Dynamics Traced throug h the Nobel Prizes . 1998 : Walter Kohn and John Pople
    79 ( 11 ) , p 1297 . [2002]
  • The CO2 economy : Review of CO2 capture and reuse technologies
    Volume 132 , [2018]
  • T. H. A Road Map for the Calculation of Molecular Binding Energies
    104 , 9062 . [2000]
  • T. F. Trends in the Catal ytic Activity of Hydrogen Evolution during CO2 Electro redu ction on Transition Metals
    8 , 3035−304 0 . [2018]
  • Self-Consistent Molecula r-Orbital Methods . IX . An Extended Gaussian-Type Basis for Mol ecular-Orbital Studies of Organic Molecules
    197 1 , 54 ( 2 724 .
  • SelectingCO2 Sources forCO2 Utilization by Environmental Merit-OrderCurves
    50 , 10 93−1101 . [2016]
  • S.Current status ofCCU technology development . KEPCO Journal on electric power and energy
    201 6 , p517
  • S.C. Adsorption site preference ofCO2 on the Pt ( 1 0 0 ) surfaCe by ab initioCalculations
    Volume 7 2 , Issue 1 , [2011]
  • S. Utilization ofCarbon Dioxide a s an Industrial Resource
    Vol . 19 , No . 4 . [2016]
  • Reduction ofCarbon dioxide emissions by mineralCarbonation
    350 [2010]
  • R. ‘ What Do the Kohn-Sham Orbitals and Eigenvalues Mean ?
    1 21 , 3414 . [1999]
  • R. Theoretical Study of the Interaction of the Ti Atom withCO2 :Cleavage of theC-O Bond
    101 , 4465−4471 . [1997]
  • Periodic Trends in 3d Metal Mediated CO2 Activation ; Department of Chemistry and Center for Advanced Scientific Computing and Modeling ( C ASCaM ) , University of North Texas , 1155 Union Circle , # 305 070 , Denton , Texas 76203-5017
    Chapter 5 , pp 67 . [2013]
  • P.Continuous and Simultaneous CO2 Absorption , Calcium Extraction , and Production of Calcium Carbonate Usi ng Ammonium Nitrate
    55 ( 45 ) , pp 11795–11800 . [2016]
  • P. R. Basis-set convergence of the energy in molecular Har tree–Fock calculations
    111 , 9157 . [1999]
  • P. Non-empirical molecular orbital calc ulations on the protonation of carbon monoxide
    3 , 140 . [1969]
  • O. R. L M. ; M ethanol from CO2 by Organo-Cocatalysis : CO2 Capture and H ydrogenation in One Process Step
    20 14 , 48 ( 24 ) , pp 14799–14804
  • M. C. A Chemist ’ s Guide to Density Functional Theory ; 2nd Edn
    pp14 [2001]
  • L. J. Self-Consistent Equations Including Exchange and Correlation Effects
    140 , A113 3 [1965]
  • L. A Study on the International Normative Nat ure of Framework Conventions and Their Domestic Impleme ntation in the States-Parties
    [2019]
  • KISTI Market Report, 이산화탄소의 포집 저장 활용 기술, 201 2. Vol
    2 Issue 12, p3
  • K. W. CO2 Reduction on T ransition Metal ( Fe , Co , Ni , and Cu ) Surfaces : In Compariso n with Homogeneous Catalysis .
    116 ( 9 ) , pp 5681–5688 DOI : 10.1021/jp210480c [2012]
  • K. Rationale for mixing exact exchange with density functional approximations
    105 ( 22 ) , 9982-9985 [1996]
  • Jae-Sik, K,; Dae-In, Ch. CCUS(CO2 포집, 저장 및 전환) 기술 개발과 정책방향
    기계저널. Vol. 56, No. 10 [2016]
  • J. M. Basis set superp osition error-counterpoise corrected potential energy surfac es
    Vol . 110 , No . 24 , 22 [1999]
  • J. K. Activity Descriptors for CO2 E lectroreduction to Methane on Transition-Metal Catalysts
    3 , 251−258 . [2012]
  • J. Density Functional Methods in Physics
    pp141 [1985]
  • Introduction of computational Chemistry : 2nd Ed
    p201 [2009]
  • I.Surface Activity of E arly Transition-Metal Oxycarbides : CO2 Adsorption Case Stu dy
    123 , 6 , 3664-3671 . [2019]
  • H. Reaction of CO2 with Atomic Transition Metal M+/0/− Ions : A Theoretical Study
    122 , 5848−5860 [2018]
  • H. J. P hys
    109 , 18956 . [2005]
  • H. CuO Surfaces and CO2 Activati on : A Dispersion -Corrected DFT+U Study .
    122 , 5848−5860 . [2018]
  • G. T. Perspective : K ohn-Sham density functional theory descending a staircase J.
    145 , 130901 . [2016]
  • G. Steps Control the Dissociation of CO2 on Cu ( 100 )
    140 ( 40 ) , pp 12974–12979 . DOI : 10.10 21/jacs.8b07906 [2018]
  • G. Economic and TimeSensitive Issues Surrounding CCS : A Policy Analysis
    49 ( 15 ) , pp 8959–8968 . [2015]
  • F. Introduction to computational chemistry ; 2nd ed
    p133 [2007]
  • F. E. Recycling CO2 Computati onal Considerations of the Activation of CO2 with Homogeneou s Transition Metal Catalysts
    4 , 1703 −1712 . [2012]
  • F. Basis Set Selection for Molecula r Calculations
    86 , 661-696 . [1988]
  • F. Accuracy of the Boys and Bernardi function counterpoise method
    19 , 553 [1970]
  • Effect Assessment Derivation of Ecological Effect Guideline on CO2-Included Acdification for Marine Or ganisms .
    Vol . 1 7 , No . 2 , p 153 . [2014]
  • E. G. ComputationalChemistry Introduction to the T heory and Applications of Molecular and Quantum Mechanic s.
    pp.393 [2003]
  • Density Functional Theory of Atoms a nd Molecules
    [1989]
  • D. K. Gas-phase reactions of carb on dioxide with atomic transition-metal and main-group cat ions : Roomtemperature kinetics and periodicities in reactivit y. J.
    110 , 1232−1241 . [2006]
  • D. G. ‘ Application of a Univers al Solvation Model to Nucleic Acid Bases . Comparison of Se miempirical Molecular Orbital Theory , Ab Initio , Hartree–Foc k Theory , and Density Functional Theory ’
    1 999 , 78 , 147
  • D. B. DFT treatment of strong correlation in 3d transition-metal diatomics
    146 , 211105 . [2017]
  • Chemical Appl ications of Density-functional Theory
    Volume 629 . [1996]
  • Carbon dioxide reforming of methane in the presence of nickel and platinum catalysts supported on ZrO2 .
    Volume 81 , Pages 285-290 . [1994]
  • Carbon Sequestration Thr ough Enhanced Oil Recovery
    [2008]
  • Carbon Dioxide as an Alternative C1 Synthetic Uni t : Activation by Transition-Metal Complexes
    27 , 661−678 [1988]
  • CO2 capture and storage : A way forward for sustainable environment
    Volume 226 ,
  • B. M. Chemistry in the News : 1998 Nobel Prizes in Chemistry and Medicine
    76 ( 1 ) , p 12 . [1999]
  • Aza-Bergman , and Protonated AzaBergman Cyclizations and Intermediate 2,5-Arynes : Chemist ry and Challenges to Computation ’
    120 , 6261 [1998]
  • Air as the renewable carbon source of the futur e ; an overview of CO2 capture from atmosphere
    5.647916667 [2012]
  • A. G. DFT study of the reactions of Mo and Mo+ with CO2 in gas phase
    123 , 299−309 . [2011]
  • A. D. A new mixing of Hartree–Fock and local densityfunctional theories
    98 ( 2 ) , 1372-1377 . [1993]
  • A. Consis tent structures and interactions by density functional theory with small atomic orbital basis sets
    1 43 , 054107 . [2015]
  • A Study on Optimum operation of Mechanical V apor Recompression for Improving the Energy Consumption Rate of CO2 Capture Facility. , Yonsee
    Jae-Sik, K. U(학위논문) [2017]
  • ; Dong Yun, S.; Jeong An, K.; Yeon-Jeong, S. 구리합금촉매를 활용한 이산화탄소 환원반응의 양자화학적 해 석. 충북대학교. 한국전기화학회 년도 추계총회 및 학술발 표회. [52] Jina, C.; Tae Sun, C.; BeomSik, K. Recent Development of Carbon Dioxide Conversion Technology
    Dong-Hee, L. CLEAN TECHNOLO GY. Vol. 18, No. 3, September 2012. pp. 229~249 [2018]
  • , R. M. Infrared Spectroscopy of Gas-Phas e M+ (CO2 ) n ( MCo , Rh , Ir ) Ion–Molecule
    , 121 ( 1 ) , pp 133–140