박사

Bacillus sp. KDO-34와 신규 Bacillus weihenstephanesis KDO-33 유래 두 박테리오신의 식품 병원균에 대한 항균활성과 특성 비교 = Comparative Study on Antibacterial Activity against Food-borne Pathogenic Bacteria and Characteristics of Two Bacteriocins from Bacillus sp. KDO-34 and Novel Bacillus weihenstephanesis KDO-33

이지영 2020년
' Bacillus sp. KDO-34와 신규 Bacillus weihenstephanesis KDO-33 유래 두 박테리오신의 식품 병원균에 대한 항균활성과 특성 비교 = Comparative Study on Antibacterial Activity against Food-borne Pathogenic Bacteria and Characteristics of Two Bacteriocins from Bacillus sp. KDO-34 and Novel Bacillus weihenstephanesis KDO-33' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 16s rrna gene
  • N-terminal sequencing
  • anti-bacterial activity
  • apoptosis
  • bacillus
  • bacteriocin
  • food preservation
  • maldi tof/tof
  • physicochemical properties
  • purification
  • tricine sds-page
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,062 0

0.0%

' Bacillus sp. KDO-34와 신규 Bacillus weihenstephanesis KDO-33 유래 두 박테리오신의 식품 병원균에 대한 항균활성과 특성 비교 = Comparative Study on Antibacterial Activity against Food-borne Pathogenic Bacteria and Characteristics of Two Bacteriocins from Bacillus sp. KDO-34 and Novel Bacillus weihenstephanesis KDO-33' 의 참고문헌

  • 식품유래 병원성세균의 생장을 저해하는 Bacillus amyloliquefaciens YW2에 의해 생산되는 박테리오신
    이송민 창원대학교 보건의과학과 [2017]
  • 김치에서 분리한 Lactococcus sp
    이헌주 H-559가 생산하는 bacteriocin의 정제 및 특성 [1999]
  • partical purification and charaterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain ,
    28 , 363-367 ( [1999]
  • a new bacteriocin from Lactococcus lactis subsp . cremoris : isolation and characterization of the protein and its gene
    173 , 3879-3887 ( [1991]
  • W. N. Konings and A. J. Driessen , Mechanistic properties of the two-component bacteriocin lactococcin G
    180 , 96–99 ( [1998]
  • V. G. H. Eijsink and J. Nissen-Meyer , Antagonistic activity of Lactobacillus plantarum C11 : two new two-peptide bacteriocins , plantaricins EF and JK , and the induction factor plantaricin A
    64 , 2269-2272 ( [1998]
  • Use of the cell wall precursor lipid Ⅱ by a pore formation peptide antibiotic
    286 , 2361-2364 ( [1999]
  • Tricine-sodium dodecyl polyacrylamide gel electrophoresis for the separation of proterins in the range from 1 to 100 kDa , Anol
    166 , 368-379 [1987]
  • Thuricin 7 : A novel bacteriocin produced by Bacillus thuringiensis BMG 1.7 , a new strain isolated form soil
    32 , 243-247 ( [2001]
  • The epidemiology of human listeriosis
    9 , 1236-1243 [2007]
  • The effect of nisin concentration and nutrient depletion on nisin production of Lactococcus lactis
    50 , 429-433 ( [1997]
  • The apoptotic impact of nisin as a potent bacteriocin on the colon cancer cells
    111 , 193-197 [2017]
  • Structure and mode-of-action of the two-peptide ( class-Ⅱb ) bacteriocins
    2 , 52-60 ( [2010]
  • Structure analysis of the two-peptide bacteriocin lactococcin G by introducing D-amino acid residues
    156 , 1883-1889 [2010]
  • Structural similarities of the staphylococcin-like peptide Pep-5 to the peptide antibiotic nisin
    27 , 836-840 ( [1985]
  • SomeChemical and physical properties of nisin , a small-proteinantibiotic produced by Lactococcus lactis
    56 ( 8 ) , 2551-2558 ( [1990]
  • Sequence analysis of lantibiotics :Chemical derivatization procedures allow a fast access toComplete Edman degradation
    223 , 185-190 ( [1994]
  • R. P. Bacterial lantibiotics : strategies to improve therapeutic potential ,
    6 , 61–75 [2005]
  • Purification andCharacterization ofColicin V from EscherichiaColiCulture supernatants
    33 , 6911-6917 ( [1994]
  • Purification andCharacterization of bacteriocin produced by oral produced by oral Lactobacillus paracasei SD1
    27 , 17-21 ( [2014]
  • Purification andCharacterization of a bacteriocin produced by Lactococcus lactis subsp . lactis H-559 isolated from Kimchi
    88 ( 2 ) , 153-159 ( [1999]
  • Purification andCharacterisation of plantaricin ZJ008 , a novel bacteriocin against Staphylococcus spp . from Lactobacillus plantarum ZJ008
    165 , 216-223 [2014]
  • Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC1.0 ,
    295 , 5-12 . ( [1992]
  • Purification and amino acid sequence of a bacteriocin produced by pediococcus acidilactici ,
    138 , 1985-1900 ( [1992]
  • Production and partialCharacterization of bacteriocin-like pepitdes by Bacillus licheniformis ZJU12
    161 , 321-326 ( [2006]
  • Pore-formation in bacterial membranes byCationic lantibioticsNisin and novel lantibiotics
    347–358 [1991]
  • Pediococcus acidilactici PO2 bacteriocin production in whey permeate and inhibition of Listeria monocytogenes foods
    58 ( 2 ) , 430 . ( [1993]
  • Partial purification of bacteriocin produced by Enterococcus faecium MJ-14 isolated from Meju ,
    20 ( 4 ) , 211-216 ( [2005]
  • Partial characterization of polyfermenticin SCD , a newly identied bacteriocin of Bacillus polyfermenticus ,
    32 , 146-151 ( [2001]
  • P. Zuber and J. C. Voderas , Structure of subtilosin A , an antimicrobial peptide from Bacillus subtilis with unusual posttranslational modifications linking cysteine sulfurs to alpha-carbons of phenylalanine and threonine
    125 , 4725-4767 ( [2003]
  • Oumer , S. Garde , P. Gaya , M. Medina and M.
    lactic starter cultures with
  • Optimizing bioconversion of deproteinated cheese whey to mycelia of Ganoderma lucidum
    38 , 1685-1693 ( [2003]
  • Optimal conditions and effects of prebiotics for growth and antimicrobial substances production of Lactobacillus brevis BK11
    51 ( 3 ) , 288-299 [2015]
  • Nisin and its uses as a food preservative
    43 ( 3 ) , 73-76 [1990]
  • Nes , K. H. Sletten and P. J. Warner , Purification and partial amino acid sequence of plantaricin S , a bacteriocin produced by Lactobacillus plantrum LPCO10 , the activity of which depends on the complementary action of
    Microbiol. , 61 ,
  • Mode of action of acidocin D20079 , a bacteriocin produced by the potential probiotic strain , Lactobacillus acidophilus DSM 20079
    34 , 373–379 [2007]
  • Membranes of class IIa bacteriocin-resistant Listeria monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols
    68 , 5223–5230 ( [2002]
  • M. Kond and T. Matsyda , Growth of nisin-producing lactococci in cooked rice supplemented with soybean extract and its application to inhibition of Bacillus subtilis in rice miso
    65 , 330-338 [2001]
  • M. Hammelmann and K. D. Entian , Regulation of nisin biosynthesis and immunity in Lactocuccus lactis 6F3
    60 , 814-825 ( [1994]
  • M. Garriga and I. F. Nes Biochemical and genetic characterization of enterocin A from Enterococcus facicum , a new antilisterial bacteriocin in the pediocin family of bacteriocins
    62 , 1676-1682 ( [1996]
  • Lantibiotics as surface active agents for biomedical applications
    22 , 259-265 [2001]
  • L. L and B. O. Nabil , Bacteriocin-based strategies for food biopreservation
    120 , 51-70 ( [2007]
  • K. Sonomoto and A. Ishizaki , Class Ⅱa bacteriocins : biosynthesis , structure and activity , FEMS Microbial . Rev.63 . I. F Nes and H. Holo , class Ⅱ antimicrobial peptides from lactic acid bacteriocin
    24 , 85-106 (Biopolymers , 55 , 50-61 ( [2000]
  • K. Sonomoto and A. Ishizaki , Class IIa bacteriocins : biosynthesis , structure and activity
    24 , 85–106 ( [2000]
  • J. R. Tagg and B. Ray . Bacteriocin of gram-positive bacteria
    59 , 171-200 [1995]
  • J. Noort and P. Pouwels , Genetic anylysis of acidocin B , a novel bacteriocin produced by Lactobacillus acidophilus
    141 , 1629-1635 [1995]
  • J. Boik and J. E. Hoyt , A comparative survey of leguminous plants as sources of the isoglavones , genisteir and daidzein : implications for human nutrition and health
    3 , 7-12 ( [1997]
  • Isolation and partical characterization of a bacteriocin produced by Pediococcus pentosaceus K23-2 isolated from Kimchi ,
    105 ( 2 ) , 331-339 ( [2008]
  • Inhibition of Listeria monocytogenes by bacteriocin ( s ) from lactis acid Bacteria isolated from Kimchi
    38 ( 4 ) , 302-307 [1995]
  • Influence of growth conduction on the production of a bacteriocin , pediocin AcH by Pediococcus acidilactici H
    57 , 1265-1267 ( [1991]
  • Identification and characterization of lactocyclicin Q , a novel cyclic bacteriocin produced by Lactococcus sp . strain QU 1
    75 ( 6 ) , 1552-1558 ( [2009]
  • HPLC purification and re-evaluation of chemical identigy of two circular bacteriocins , gassercin A and reutericin 6
    50 , 406-411 ( [2010]
  • Genomic Analysis of Bacillus licheniformis CBA7126 Isolated from a Human Fecal Sample
    13 ( 8 ) , 724 [2017]
  • Genetics of bacteriocin produced by lactic acid bacteria
    12 , 39–86 ( [1993]
  • G. Bierbaum and H. G. Sahl , Role of lipid-bound peptidoglycan precusors in the formation of pores by nisin , epidermin and other lantibiotics
    30 , 317-327 ( [1998]
  • Fungicin M4 : a narrow spectrum peptide antibiotic from Bacillus licheniformis M-4
    77 , 49- 53 [1994]
  • E. Mokutor and H. G. Sahl , Mode of action of the lantibiotic mersacidin : inhibition of peptidoglycan biosynthesis via a novel mechanism
    39 , 714-719 [1995]
  • Diversity and applications of Bacillus bacteriocins
    35 , 201-232 [2011]
  • Detection of the bacteriocin from lactic acid involved in Kimchi fermentation
    22 , 700-706 [1994]
  • D. E. Lopatin and M. S Lantz , The spectrum of antimicrobial activity of the bacteriocin subtilosin A
    59 , 297–300 ( [2007]
  • Current researches on bacteriocins in Korean traditional fermented foods
    53 , 553-560 ( [2001]
  • Characterization of bacteriocin lacticin YH-produced by Lactococcus lactis subsp . lactis YH-10 isolated from Kimchi
    14 ( 4 ) , 683-688 ( [2004]
  • Characterization of Amylolysin , a Novel lantibiotic from Bacillus amyloliquefaciens GA1
    8 ( 12 ) : e83037 ( [2013]
  • Characterization and application of an anti-Listeria bacteriocin produced by Pediococcus pentosaceus 05-10 isolated from Sichuan Pickle , a traditionally fermented vegetable product from China
    20 , 1030-1035 ( [2009]
  • Characterization and Production of Antibiotic by Bacillus subtilis 028-1 , a Chungkook-jang fermenting Strain ,
    45 ( 2 ) , 185-192 ( [2009]
  • C. Kaletta and K. D. Entian , Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system
    59 ( 1 ) , 296-303 ( [1993]
  • Bacteriocins : Developing innate immunity for food
    3 ( 10 ) , 777-788 [2005]
  • Bacteriocins - a viable alternative to antibiotics ?
    11 ( 2 ) , 95-105 ( [2013]
  • B. J. Hayerna , R. E. Jeeninga , J. Kok and G. Venema , Organization and nucleotide sequences of two lactococcal bateriocin operons
    57 , 492- 498 ( [1991]
  • Applications of the bacteriocin , nisin
    [1996]
  • Antimicrobial effects of a bacteriocin mixture from lactic acid bacteria against food borne pathogens
    22 ( 2 ) , 164-171 [2002]
  • A. Walker , L. C. M. Zoetmulder and Vandenbergh . Cloning , expression , and nucletide sequence of genes involved in production of pediocin PA-1 , a bacteriocin from
    . Mirobiol. , 58
  • A. P. deRuiz Holgado and F. Sesma , Purification and N-terminal amino acid sequence of Entrocin CRI 35 , a Pediocin-like bacteriocin produced by Entrococcus faecium CRL 35
    22 , 417-419 ( [1996]
  • A. Aroutcheva and M. L. Chikindas , Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens
    104 ( 4 ) , 1067-74 ( [2008]
  • 9. P. M. Muriana and T. R Klaenhammer, Conjugal transfer of plasmid-encoded determinants for bacteriocin production and immunity in Lactobacillus acidophilus 11088, Appl. Environ. Mirobiol., 53, 553-560 (1987).
  • 79. R. Bauer, M. L. Chikandas and L. M. T. Dicks, Purification, partial amino acid sequence and mode of action of pediocin PD-1, a bacteriocin produced by pediococcus damnsus NCFB 1832, J. Food Microbiol., 101, 17-27 (2005). 80. H. Schagger, Tricine-SDS-PAGE, Nat. Protoc., 1, 16-22 (2006). 81. S. J. Oh, S. H. Kim, Y. Ko, J. H. Sim, K. S. Kim, S. H. Lee, S. S Park and Y. J. Kim, Effect of bacterioicn produced by Lactococcus sp. HY 449 on skin-inglammatory bacteria, Food, Chem, Toxicol., 44, 552-559 (2006).
  • 61. B. Antonsson and J. C. Martinou. The Bcl-2 protein family, Exp. Cell Res., 256, 50-57 (2000).
  • 6. A. Hrust, Nisin, Adv. Appl. Microbiol., 27, 85-123 (1981).
  • 56. C. Dunne, L. Murphy, S. Flynn, L. O'Mahony, S. O'Halloran, M. Feeney, D. Morrissey, G. Thornton, G. Fitzgerald, C. Daly, B. Kiely, E. M. Quigley, G. C. O'Sullivan, F. Shanahan, and J. K. Collins. Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials, Ant. v. Leeuwenh., 76, 279-292, (1999).
  • 52. A. Felske and A. D. L. Akkermans, Spatial homogeneity of abundant bacterial 16S rRNA molecules in grassland soils, Microb. Ecol. 36(1), 31-36 (1998).
  • 5. J. R. Tagg, A. S. Adnan and L. W. Wanna-Marker, Bacteriocin of Gram positive bacteria, Bacteriology Review., 40, 722-756 (1976).
  • 47. R. N. H. Konings and C. W. Hilbers. Lantibiotics: a unique group of antibiotic peptides, Ant. v. Leeuwenh., 69, 87–202 (1996).
  • 46. I. F. Nes, D. B. Diep, L. S. Havarstein, M. B. Brurberg, V. Eijsink and H. Holo, Biosynthesis of bacteriocins in lactic acid bacteria. Ant. v. Leeuwenh., 70, 113-28 (1996).
  • 45. H. Holo, Biosynthesis of bacteriocins in lactic acid bacteria, Ant. v. Leeuwenh., 70, 113-28 (1996).
  • 4. M. S. Kalra and A. T. Dufoni. Effect of different inorganic and organic salts on nisin production in a broth culture, Ind. J. Dairy Sci., 27, 109-122 (1974).
  • 38. T. J. Montville and M. E. C. Bruno, Evidence that dissipation of proton motive force is a common mechanism of action of for bacteriocins and other antimicrobial proteins, Int. J. Food Microbiol., 24, 53–74 (1994).
  • 30. S. F. Barefoot. and C. G. Nettles, Antibiosis revisited: bacteriocins produced by dairy starter cultures, J. Dairy Sci., 76, 2366-2379 (1993).
  • 3. R. S. Dahiya and M. L. Speck, Hydrogen peroxide formation by lactobacilli and its effect on Staphylococcus aureus, J. Dairy Sci., 51, 1568-1572 (1968).
  • 29. J. N. Hansen, Antibiotics synthesized by post translational modification, Annu. Rev. Microbiol., 47, 535-564 (1993).
  • 27 . R. Yang , M. C. Johnson and B. Ray .Environ . Microbiol. , 58 , 3355- 3359 ( 1992 ) . 28 . F. SchveD, A. Lalazar , Y. Henis , B. J. Juven , Purification , partial characterization
    a bacteriocin produced by
  • 21. C. B. Lewus, S. Sun and T. J. Montville, Production of an amylase-sensitive bacteriocin by an atypical Leuconostoc paramesenteroides, Appl. Environ. Microbiol., 58, 143-149 (1992)
  • 20. A. Mayr Harting, A. J. Hedges and R. C. W. Berkeley, Methods for studying bacteriocins, Methods Microbiol., 7, 315-422 (1992).
  • 2. E. Skytta and T. Mattila-Sandholm. A quantiative method for assessing bacteriocins and other food antimicrobials by automated turbidometry, J. Microbiol. Methods., 14, 77-88 (1991)
  • 16S/23S rRNA Sequencingin nucleic acid techniques in bacterial systematics , Edited by E. Stackebrandt & M. Goodfellow
    16 , 115–175 [1991]
  • 11. U. Schilliger and F. K. Lucker, An timicrobial activity of Lactobacillus sake isolated from meat, Appl. Environ. Microbiol., 55, 1901-1906 (1989).
  • 10. H. Holo and I. F. Nes, High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine inosmotically stabilized media, Appl. Environ. Microbiol., 55, 3119-3123 (1989).
  • 1. Y. H. Loo, P. S. Skell and H. H. Thornberry. Assay of streptomycin by the paper-disc method, Bacteriol., 50(6), 701 (1945).