박사

라이다 시스템을 위한 CMOS 저전력 원거리 3D 시간-디지털 변환기 설계 = A Design of CMOS Low-Power Long-Range 3D Time-to-Digital Converter for LiDAR Systems

장영민 2020년
논문상세정보
' 라이다 시스템을 위한 CMOS 저전력 원거리 3D 시간-디지털 변환기 설계 = A Design of CMOS Low-Power Long-Range 3D Time-to-Digital Converter for LiDAR Systems' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • LiDAR
  • Resettable T-latch
  • cmos
  • tdc
  • vernier
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
404 0

0.0%

' 라이다 시스템을 위한 CMOS 저전력 원거리 3D 시간-디지털 변환기 설계 = A Design of CMOS Low-Power Long-Range 3D Time-to-Digital Converter for LiDAR Systems' 의 참고문헌

  • [4] R. D. Richmond and S. C. Cain, “Direct-Detection LADAR Systems. Bellingham,” WA, USA: SPIE, 2010, vol. TT85, SPIE Tutorial Text.
  • [3] JOHN MARKOFF, “GoogleCars Drive Themselves, in Traffic,” The New York Times, https://www.nytimes.com/2010/10/10/science/10google.html?_r=3&hp, Oct. 2010.
  • [25] M. Z. Straayer and M. H. Perrott, “A Multi-Path Gated Ring Oscillator TDC With First-Order Noise Shaping,” IEEE J. of Solid-State Circuits, vol. 44, no. 4, pp. 1089–1098, Apr. 2009.
  • Twodimensions Vernier time-to-digital converter
    vol . 45 , no . 8 , pp . 1504–1512 , [2010]
  • Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles
    [2018]
  • TOF Lidar Development in Autonomous Vehicle
    pp . 185–190 [2018]
  • Synchronization in a Multilevel CMOS Time-to-Digital Converter
    vol . 56 , no . 8 , pp . 1622-1634 , [2009]
  • Sensor Fusion : AComparison of SensingCapabilities of Human Drivers and Highly Automated Vehicles
  • Recent Development in Optoelectronic Devices
    pp . 81–96
  • Radiation Assessment of a 15.6 ps 71 Single-Shot Time-to-DigitalConverter in Terms of TID
    8 ( 5 )
  • PotentialChallenges and Opportunities of Automated ,Connected , Electric and Shared Vehicles
  • Multi-channel Transimpedance Amplifier Arrays in Short-Range LADAR Systems for Unmanned Vehicles
    Vol . SD-50 , No . 12 , pp . 40-48 , [2013]
  • Lidar : Range-Resolved Optical Remote Sensing of the Atmosphere
    [2005]
  • Integrated Receiver Including Both Receiver Channel and TDC for a Pulsed Time-of-Flight Laser Rangefinder With cm-Level Accuracy ,
    vol . 44 , no . 5 , pp . 1486-1497 [2009]
  • High Sensitivity and Wide Dynamic Range Analog Front-End Circuits for Pulsed TOF 4-D Imaging LADAR Receiver
    vol . 18 , no . 8 , pp . 3114–3124 [2018]
  • Design of Integrated Circuits for Optical Communications
    [2012]
  • Autonomous Inspection using an Underwater 3D LiDAR
    pp . 1-8 , [2013]
  • An Integrated Laser Radar Receiver Channel Utilizing a Time-Domain Walk Error Compensation Scheme
    vol . 60 , no . 1 , pp . 146–157 , [2011]
  • A Wide Dynamic Range CMOS Laser Radar Receiver With a Time-Domain Walk Error Compensation Scheme
    vol . 64 , no . 3 , pp . 550–561 [2017]
  • A Systematic Review of Perception System and Simulators for Autonomous Vehicles Research
    19 ( 3 ) , [2019]
  • A High-Sensitivity and Low-Walk Error LADAR Receiver for Military Application
    vol . 61 , no . 10 , pp . 3007-3015 , [2014]
  • A High-Resolution CMOS Timeto-Digital Converter Utilizing a Vernier Delay Line
    vol . 35 , no . 2 , pp . 1626–1635 [2000]
  • A CMOS Time-to-Digital Converter With Better Than 10 ps Single-Shot Precision
    vol . 41 , no . 6 , pp . 1286–1296 , [2006]
  • A CMOS Imager for Time-of-Flight and Photon Counting Based on Single Photon Avalanche Diodes and In-Pixel Time-to-Digital Converters
    vol . 17 , no . 4 , pp . 353–371 , [2014]
  • A 12-Bit Vernier Ring Time-to-Digital Converter in 0.13 m CMOS Technology
    vol . 45 , no . 4 , pp . 830–842 [2010]
  • A 1.8Gb/s/ch 10mW/ch -23dB crosstalk eight-channel transimpedance amplifier array for LADAR systems
    pp . 115–118 , [2013]
  • 1.8 V , 10Gb/s Fully Integrated CMOS Optical Receiver Analog Front-End
    vol . 40 , no . 6 , pp.1388–1396 [2005]
  • 1.3 V 20 ps Time-to-Digital Converter for Frequency Synthesis in 90-nm CMOS
    vol . 53 , no . 3 , pp . 220–224 , [2006]
  • 1.25ps Resolution Coarse–Fine Time-toDigital Converter in 90 nm CMOS that Amplifies a Time Residue ,
    vol . 43 , no . 4 , pp . 769–777 [2008]