박사

Walking strategy on uneven terrain for position-controlled humanoid robot with flexible joint

김민곤 2020년
논문상세정보
' Walking strategy on uneven terrain for position-controlled humanoid robot with flexible joint' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 기술과 연합작용
  • Compliant Control
  • Flexible Joint
  • Humanoid Robot
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
159 0

0.0%

' Walking strategy on uneven terrain for position-controlled humanoid robot with flexible joint' 의 참고문헌

  • [30] S. Kim, M. Kim, J. Lee, S. Hwang, J. Chae, B. Park, H. Cho, J. Sim, J. Jung, H. Lee, S. Shin, et al., “Team snu’s control strategies for enhancing a robot’s capability: Lessons from the 2015 darpa robotics challenge finals,” Journal of Field Robotics, vol. 34, no. 2, pp. 359–380, 2017.
  • [29] “Dynamixel pro,” http://www.robotis.us/dynamixelpro/.
  • [28] S. Kim, M. Kim, J. Lee, S. Hwang, J. Chae, B. Park, H. Cho, J. Sim, J. Jung, H. Lee, et al., “Approach of team snu to the darpa robotics challenge finals,” in Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th International Conference on. IEEE, 2015, pp. 777–784.
  • [26] K. Zhou and J. C. Doyle, Essentials of robust control. Prentice hall Upper Saddle River, NJ, 1998, vol. 104.
  • Zero-moment point—thirty five years of its ´ life
    vol . 1 , no . 01 , pp . 157–173 [2004]
  • Walking control of the humanoid platform khr-1 based on torque feedback control
    vol . 1 .pp . 623–628 . [2004]
  • Vibration suppression based on input shaping for biped walking ,
    pp . 236–241 . [2016]
  • Vertical vibration suppression for a position controlled biped robot
    pp . 1637–1642 . [2013]
  • Three-dimensional bipedal walk¨ ing control using divergent component of motion
    pp . 2600–2607 . [2013]
  • The ‘ extrapolated center of mass ’ concept suggests a simple control of balance in walking
    vol . 27 , no . 1 , pp . 112–125 [2008]
  • The experimental humanoid robot h7 : a research platform for autonomous behaviour
    vol . 365 , no . 1850 , pp . 79–107 [2006]
  • The darpa robotics challenge finals : Results and perspectives
    vol . 34 , no . 2 , pp . 229–240 [2017]
  • The 3d linear inverted pendulum mode : A simple modeling for a biped walking pattern generation
    vol . 1 .pp . 239–246 . [2001]
  • Team ihmc ’ s lessons learned from the darpa robotics challenge trials
    vol . 32 , no . 2 , pp . 192–208 [2015]
  • State feedback damping control for a multi dof ¨ variable stiffness robot arm
    pp . 5561–5567 [2011]
  • Reactive bipedal walking method for torqueControlled robot
    pp . 395–402 .
  • Push recovery by stepping for humanoid robots with forceControlled joints
    pp . 52–59 . [2010]
  • Position-based impedanceControl of a biped humanoid robot
    vol . 18 , no . 4 , pp . 415–435 [2004]
  • Planning walking patterns for a biped robot
    vol . 17 , no . 3 , pp . 280–289 [2001]
  • Pd control with on-line gravity compensation for robots with elastic joints : Theory and experiments
    vol . 41 , no . 10 , pp . 1809–1819 [2005]
  • Online trajectory generation for omnidirectional biped walking
    pp . 1597–1603 .
  • On the passivity-based impedance control of flexible joint robots
    vol . 24 , no . 2 , pp . 416–429 [2008]
  • Learning cpg-based biped locomotion with a policy gradient method : Application to a humanoid robot
    vol . 27 , no . 2 , pp . 213–228 [2008]
  • Improvement of humanoid walking control by compensating actuator elasticity ,
    pp . 29–34 . [2016]
  • Humanoid 3d gait generation based on inverted pendulum model
    pp . 339–344 . [2007]
  • High frequency walking pattern generation based on preview control of zmp
    pp . 2667–2672 .
  • Generation of dynamic humanoid behaviors through task-space control with conic optimization
    pp . 3103–3109 . [2013]
  • General zmp preview control for bipedal walking
    pp . 2682–2687 . [2007]
  • Full-body compliant human–humanoid interaction : balancing in the presence of unknown external forces ,
    vol . 23 , no . 5 , pp . 884–898 [2007]
  • Frequent walking pattern generation that uses estimated actual posture for robust walking control
    pp . 535–541 .
  • Force sensorless impedance control by disturbance observer
    pp . 352–357 . [1993]
  • Experimental evaluation of vision-based zmp detection for biped walking robot
    pp . 1–6 . [2013]
  • Effect of elasticity of shafts , bearings , casing and couplings on the critical rotational speeds of a gearbox
    [2007]
  • Disturbance observer based path tracking control of robot manipulator considering torque saturation ,
    vol . 11 , no . 3 , pp . 325–343 [2001]
  • Disturbance observer based linear feedback controller for compliant motion of humanoid robot
    pp . 403–410 .
  • Control tutorials for matlab R and simulink R
    [1999]
  • Contact consistent control framework for humanoid robots
    pp . 1963–1969 .
  • Command shaping techniques for vibration control of a flexible robot manipulator
    vol . 14 , no . 1 , pp . 69–90 [2004]
  • Capture point : A step toward humanoid push recovery
    pp . 200–207 . [2006]
  • Bipedal ¨ walking control based on capture point dynamics
    pp . 4420–4427 . [2011]
  • Bipedal robot walking control on inclined planes by fuzzy reference trajectory modification
    vol . 16 , no . 11 , pp . 1959–1976 [2012]
  • Biped walking stabilization based on linear inverted pendulum tracking
    pp . 4489–4496 . [2010]
  • Biped walking stabilization based on foot placement control using capture point feedback
    pp . 5263–5269 . [2017]
  • Biped walking pattern generation by using preview control of zero-moment point
    vol . 3 , [2003]
  • Balance and impedance control for biped humanoid robot locomotion
    pp . 494–499 [2001]
  • An approach of motion compensation for biped walking robots with structural deformation ,in Advanced Motion Control
    pp . 278–283 . [2008]
  • Actuator control for the nasa-jsc valkyrie humanoid robot : A decoupled dynamics approach for torque control of series elastic robots
    vol . 32 , no . 3 , pp . 378–396 [2015]
  • A solution to the accuracy/robustness dilemma in impedance control
    vol . 14 , no . 3 , pp . 282–294 [2009]
  • A simple pd controller for robots with elastic joints
    vol . 36 , no . 10 , pp . 1208–1213 [1991]
  • A robust closed-loop gait for the stan- ¨ dard platform league humanoid
    pp . 30–37 [2009]
  • A nonlinear disturbance observer for robotic manipulators
    vol . 47 , no . 4 , pp . 932–938 [2000]
  • A biped pattern generation allowing immediate modification of foot placement in real-time
    pp . 581–586 . [2006]