박사

Production of plant growable soil by acid washing and thermal treatment of dredged marine sediment impacted by petroleum and heavy metals

김기범 2020년
논문상세정보
' Production of plant growable soil by acid washing and thermal treatment of dredged marine sediment impacted by petroleum and heavy metals' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 토목 공학
  • dredged marine sediment
  • heavy metals
  • plant growable soil
  • salt
  • thermal treatment
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
605 0

0.0%

' Production of plant growable soil by acid washing and thermal treatment of dredged marine sediment impacted by petroleum and heavy metals' 의 참고문헌

  • The sorption of heavy metals on thermally treated sediments with high organic matter content
    160 , 123-128 [2014]
  • Redistribution of Pb , Zn andCu fractions in tailing soils treated with different extractants
    16 ( 3 ) , 312-318 . [2006]
  • R. S. Plant nutrient management in Hawaii 's soils : approaches for tropical and subtropical agriculture
    [2000]
  • Plant nutrient management in Hawaiian soils , approaches for tropical and subtropical agriculture
  • P. J. Pilot-Scale Pyrolytic Remediation of Crude-OilContaminated Soil in a Continuously-Fed Reactor : Treatment Intensity Trade-Offs
    53 ( 4 ) , 2045-2053 . [2019]
  • N. Remediation of cadmium contamination in paddy soils by washing with chemicals : selection of washing chemicals .
    144 ( 1 ) , 2- 10 . [2006]
  • Measurement of activated carbon and other black carbons in sediments
    75 ( 4 ) , 469-475 . [2009]
  • M. Sequential extraction procedure for the speciation of particulate trace metals .
    51 ( 7 ) , 844-851 . [1979]
  • M. Screening plant species for growth on weathered , petroleum hydrocarbon-contaminated sediments
    2 ( 4 ) , 297-317 . [2000]
  • Korean Standard Method for Soil analysis
    [2002]
  • K. S. Qualitative analysis of volatile organic compounds on biochar
    85 ( 5 ) , 869-882 . [2011]
  • K. Effects of five different salts on seed germination and seedling growth of Haloxylon ammodendron ( Chenopodiaceae )
    14 ( 4 ) , 345-353 . [2004]
  • Influence of thermal treatment on sequential extraction and leaching behaviour of trace metals in a contaminated sewage sludge .
    76 ( 3 ) , 259-264 . [2001]
  • G. K. The response of barley to salinity stress differs between hydroponic and soil systems
    37 ( 7 ) , 621-633 . [2010]
  • G. K. Additive effects of Na+ and Cl–ions on barley growth under salinity stress
    62 ( 6 ) , 2189-2203 . [2011]
  • G. Assessment of metal mobility in dredged harbour sediments from Barcelona ,
    321 ( 1-3 ) , 241-255 . [2004]
  • Effects of sodium , potassium and calcium on salt‐stressed barley . I . Growth analysis
    80 ( 1 ) , 83- 88 . [1990]
  • Effect of salt stress and manganese supply on growth of barley seedlings
    27 ( 8 ) , 1361-1379 . [2005]
  • E. Influx of Na+ , K+ , and Ca2+ into roots of salt-stressed cotton seedlings : effects of supplemental Ca2+
    83 ( 3 ) , 510-516 . [1987]
  • Comparison of three aqua regia digestion methods for twenty Florida soils
    65 ( 2 ) , 491-499 . [2001]
  • C. S. Chemical activation of high sulfur petroleum cokes by alkali metal compounds
    64 ( 1-3 ) , 141-153 . [2000]
  • C. Phosphorus fractionation in lake sediments–Lakes Volvi and Koronia , N. Greece
    46 ( 8 ) , 1147- 1155 . [2002]
  • Beneficial use of dredged material for habitat creation , enhancement , and restoration in New York–New Jersey Harbor
    73 ( 1 ) , 39-52 . [2004]
  • Agricultural salinity and drainage
    [1999]
  • , M. ; Shan , S. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived
    . Mater .
  • , A . Long-term irrigation with reclaimed wastewater : Implications on nutrient management , soilChemistry and olive ( Olea europaea
    . 2019 , 213
  • (9) Tavakkoli, E.; Rengasamy, P.; McDonald, G. K. High concentrations of Na+ and Cl–ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J. Exp. Bot. 2010, 61 (15), 4449-4459.
  • (9) Rengasamy, P., World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57 (5), 1017-1023.
  • (9) Ndiba, P.; Axe, L.; Boonfueng, T. Heavy metal immobilization through phosphate and thermal treatment of dredged sediments. Environ. Sci. Technol. 2008, 42 (3), 920-926.
  • (9) Ahmad, M.; Rajapaksha, A. U.; Lim, J. E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S. S.; Ok, Y. S. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. 2014, 99, 19-33.
  • (8) Huang, Y.-T.; Hseu, Z.-Y.; Hsi, H.-C. Influences of thermal decontamination on mercury removal, soil properties, and repartitioning of coexisting heavy metals. Chemosphere. 2011, 84 (9), 1244-1249.94
  • (8) Hanson, B.; Grattan, S. R.; Fulton, A. Agricultural salinity and drainage. University of California Irrigation Program, University of California, Davis: 1999.
  • (8) Coates, J. D.; Woodward, J.; Allen, J.; Philp, P.; Lovley, D. R. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-14 contaminated marine harbor sediments. Appl. Environ. Microbiol. 1997, 63 (9), 3589-3593.
  • (7) Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57 (5), 1017-1023.
  • (7) O'Brien, P. L.; DeSutter, T. M.; Casey, F. X.; Khan, E.; Wick, A. F. Thermal remediation alters soil properties–a review. J. Environ. Manage. 2018, 206, 826-835.
  • (7) Ndiba, P.; Axe, L.; Boonfueng, T. Heavy metal immobilization through phosphate and thermal treatment of dredged sediments. Environ. Sci. Technol. 2008, 42 (3), 920-926.
  • (7) Li, D.-C.; Xu, W.-F.; Mu, Y.; Yu, H.-Q.; Jiang, H.; Crittenden, J. C. Remediation of petroleum-contaminated soil and simultaneous recovery of oil by fast pyrolysis. Environ. Sci. Technol. 2018, 52 (9), 5330-5338.
  • (6) Song, W.; Vidonish, J. E.; Kamath, R.; Yu, P.; Chu, C.; Moorthy, B.; Gao, B.; Zygourakis, K.; Alvarez, P. J. Pilot-Scale Pyrolytic Remediation of Crude-Oil Contaminated Soil in a Continuously-Fed Reactor: Treatment Intensity Tradeoffs. Environ. Sci. Technol. 2019, 53 (4), 2045-2053.
  • (6) Lee, J. K.; Park, D.; Kim, B.-U.; Dong, J.-I.; Lee, S. Remediation of petroleumcontaminated soils by fluidized thermal desorption. Waste. Manage. 1998, 18 (6-8), 503-507.
  • (6) Kulikowska, D.; Gusiatin, Z. M.; Bułkowska, K.; Kierklo, K. Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil. Chemosphere. 2015, 136, 42-49.
  • (52) Ali, A.; Tucker, T.; Thompson, T.; Salim, M. Effects of salinity and mixed ammonium and nitrate nutrition on the growth and nitrogen utilization of barley. J. Agron. Crop Sci. 2001, 186 (4), 223-228.
  • (5) Zhao, C.; Dong, Y.; Feng, Y.; Li, Y.; Dong, Y. Thermal desorption for remediation of contaminated soil: A review. Chemosphere. 2019. 221, 841-855.
  • (5) Yang, J.-S.; Lee, J. Y.; Baek, K.; Kwon, T.-S.; Choi, J. Extraction behavior of As, Pb, and Zn from mine tailings with acid and base solutions J. Hazard. Mater. 2009, 171, (1-3), 443-451.
  • (5) O'Brien, P. L.; DeSutter, T. M.; Casey, F. X.; Khan, E.; Wick, A. F. Thermal remediation alters soil properties–a review. J. Environ. Manage. 2018, 206, 826-835.
  • (49) Grattan, S.; Grieve, C. Salinity–mineral nutrient relations in horticultural crops. Sci. Hortic. 1999, 78 (1-4), 127-157.
  • (45) Rengasamy, P. Soil processes affecting crop production in salt-affected soils. Funct. Plant Biol. 2010, 37 (7), 613-620.
  • (43) Daliakopoulos, I.; Tsanis, I.; Koutroulis, A.; Kourgialas, N.; Varouchakis, A.; Karatzas, G.; Ritsema, C. The threat of soil salinity: A European scale review. Sci. Total. Environ. 2016, 573, 727-739.
  • (41) Saunders, W.; Williams, E. Observations on the determination of total organic phosphorus in soils. J. Soil Sci. 1955, 6 (2), 254-267.
  • (40) Turner, B. L.; Cade-Menun, B. J.; Condron, L. M.; Newman, S. Extraction of soil organic phosphorus. Talanta. 2005, 66 (2), 294-306.
  • (4) Zhao, C.; Dong, Y.; Feng, Y.; Li, Y.; Dong, Y. Thermal desorption for remediation of contaminated soil: A review. Chemosphere. 2019.
  • (4) Singh, S. P.; Tack, F. M.; Verloo, M. G. Land disposal of heavy metal contaminated dredged sediments: a review of environmental aspects. Land Contamination & Reclamation 1998, 6, (3), 149-158.
  • (4) Sierra, M. J.; Millán, R.; López, F. A.; Alguacil, F. J.; Cañadas, I. Sustainable remediation of mercury contaminated soils by thermal desorption. Environ. Sci. Pollut. Res. 2016, 23 (5), 4898-4907.
  • (4) Dermont, G.; Bergeron, M.; Mercier, G.; Richer-Laflèche, M. Soil washing for metal removal: a review of physical/chemical technologies and field applications. J. Hazard. Mater. 2008, 152 (1), 1-31.
  • (39) Certini, G. Effects of fire on properties of forest soils: a review. Oecologia. 2005, 143 (1), 1-10.
  • (37) Schulten, H. R.; Leinweber, P. Thermal stability and composition of mineral‐ bound organic matter in density fractions of soil. Eur. J. Soil Sci. 1999, 50 (2), 237- 248.
  • (37) Ko, I.; Lee, C. H.; Lee, K. P.; Lee, S. W.; Kim, K. W. Remediation of soil contaminated with arsenic, zinc, and nickel by pilot‐scale soil washing. Environ. Prog. 2006, 25 (1), 39-48.
  • (36) González-Pérez, J. A.; González-Vila, F. J.; Almendros, G.; Knicker, H. The effect of fire on soil organic matter—a review. Environ. Int. 2004, 30 (6), 855-870.
  • (36) Calmano, W.; Hong, J.; Förstner, U. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci. Technol. 1993, 28 (8-9), 223-235.
  • (35) O'Brien, P. L.; DeSutter, T. M.; Casey, F. X.; Khan, E.; Wick, A. F. Thermal remediation alters soil properties–a review. J. Environ. Manage. 2018, 206, 826-835.
  • (34) Uchimiya, M.; Chang, S.; Klasson, K. T. Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J. Hazard. Mater. 2011, 190 (1- 3), 432-441.97
  • (34) Chen, B.; Shan, X.-q.; Shen, D.-q.; Mou, S.-f. Nature of the HCl-soluble sulfate in the sequential extraction for sulfur speciation in soils. Fresenius J Anal Chem. 1997, 357 (7), 941-945.54
  • (34) Certini, G. Effects of fire on properties of forest soils: a review. Oecologia. 2005, 143 (1), 1-10.
  • (33) Pape, A.; Switzer, C.; McCosh, N.; Knapp, C. W. Impacts of thermal and smouldering remediation on plant growth and soil ecology. Geoderma. 2015, 243, 1-9.17
  • (33) Lee, S. H.; Choi, C. S. Chemical activation of high sulfur petroleum cokes by alkali metal compounds. Fuel. Process. Technol. 2000, 64 (1-3), 141-153.
  • (32) Simkovic, I.; Dlapa, P.; Doerr, S. H.; Mataix-Solera, J.; Sasinkova, V. Thermal destruction of soil water repellency and associated changes to soil organic matter as observed by FTIR spectroscopy. Catena. 2008, 74 (3), 205-211.
  • (32) Cai, Y.; Pan, Y.; Xue, J.; Sun, Q.; Su, G.; Li, X. Comparative XPS study between experimentally and naturally weathered pyrites. Appl. Surf. Sci. 2009, 255 (21), 8750-8760.
  • (32) Badía, D.; Martí, C. Plant ash and heat intensity effects on chemicaland physical properties of two contrasting soils. Arid. Land. Res. Mang. 2003, 17 (1), 23-41.
  • (31) Sierra, M. J.; Millán, R.; López, F. A.; Alguacil, F. J.; Cañadas, I. Sustainable remediation of mercury contaminated soils by thermal desorption. Environ. Sci. Pollut. Res. 2016, 23 (5), 4898-4907.
  • (31) Hanay, A.; Büyüksönmez, F.; Kiziloglu, F. M.; Canbolat, M. Y. Reclamation of saline-sodic soils with gypsum and MSW compost. Compost. Sci. Util. 2004, 12 (2), 175-179.
  • (30) Mace, J.; Amrhein, C.; Oster, J. Comparison of gypsum and sulfuric acid for sodic soil reclamation. Arid. Soil. Res. Rehab. 1999, 13 (2), 171-188.
  • (30) Li, D.-C.; Xu, W.-F.; Mu, Y.; Yu, H.-Q.; Jiang, H.; Crittenden, J. C. Remediation of petroleum-contaminated soil and simultaneous recovery of oil by fast pyrolysis. Environ. Sci. Technol. 2018, 52 (9), 5330-5338.
  • (3) Vidonish, J. E.; Zygourakis, K.; Masiello, C. A.; Gao, X.; Mathieu, J.; Alvarez, P. J. Pyrolytic treatment and fertility enhancement of soils contaminated with heavy hydrocarbons. Environ. Sci. Technol. 2016, 50 (5), 2498-2506.
  • (3) Moutsatsou, A.; Gregou, M.; Matsas, D.; Protonotarios, V. Washing as a remediation technology applicable in soils heavily polluted by mining–metallurgical activities. Chemosphere. 2006, 63 (10), 1632-1640.
  • (3) Glover, A. G.; Smith, C. R. The deep-sea floor ecosystem: current status and prospects of anthropogenic change by the year 2025. Environ. Conserv. 2003, 30 (3), 219-241.
  • (29) Song, W.; Vidonish, J. E.; Kamath, R.; Yu, P.; Chu, C.; Moorthy, B.; Gao, B.; Zygourakis, K.; Alvarez, P. J. Pilot-Scale Pyrolytic Remediation of Crude-Oil Contaminated Soil in a Continuously-Fed Reactor: Treatment Intensity Tradeoffs. Environ. Sci. Technol. 2019. 53 (4), 2045-2053.
  • (29) Bernstein, L. Effects of salinity and sodicity on plant growth. Annu. Rev. Phytopathol. 1975, 13 (1), 295-312.
  • (28) Vidonish, J. E.; Zygourakis, K.; Masiello, C. A.; Gao, X.; Mathieu, J.; Alvarez, P. J. Pyrolytic treatment and fertility enhancement of soils contaminated with heavy hydrocarbons. Environ. Sci. Technol. 2016, 50 (5), 2498-2506.
  • (28) Vidonish, J. E.; Alvarez, P. J.; Zygourakis, K. Pyrolytic Remediation of OilContaminated Soils: Reaction Mechanisms, Soil Changes, and Implications for Treated Soil Fertility. Ind. Eng. Chem. Res. 2018, 57 (10), 3489-3500.
  • (28) Moon, D. H.; Lee, J.-R.; Wazne, M.; Park, J.-H., Assessment of soil washing for Zn contaminated soils using various washing solutions. Journal of Industrial and Engineering Chemistry 2012, 18, (2), 822-825.
  • (27) Van Benschoten, J. E.; Reed, B. E.; Matsumoto, M. R.; McGarvey, P. Metal removal by soil washing for an iron oxide coated sandy soil. Water. Environ. Res. 1994, 66 (2), 168-174.
  • (27) Qi, Z.; Chen, T.; Bai, S.; Yan, M.; Lu, S.; Buekens, A.; Yan, J.; Bulmău, C.; Li, X. Effect of temperature and particle size on the thermal desorption of PCBs from contaminated soil. Environ. Sci. Pollut. Res. 2014, 21 (6), 4697-4704.
  • (27) Pan, B.; Huang, P.; Wu, M.; Wang, Z.; Wang, P.; Jiao, X.; Xing, B. Physicochemical and sorption properties of thermally-treated sediments with high organic matter content. Bioresour. Technol. 2012, 103 (1), 367-373.
  • (26) Shultz, E. B.; Linden, H. Hydrogenolysis of Petroleum Oils. J. Ind. Eng, Chem. 1956, 48, (5) 895-899.
  • (26) Makino, T.; Kamiya, T.; Takano, H.; Itou, T.; Sekiya, N.; Sasaki, K.; Maejima, Y.; Sugahara, K. Remediation of cadmium-contaminated paddy soils by washing with calcium chloride: verification of on-site washing. Environ. Pollut. 2007, 147 (1), 112-119.
  • (26) Falciglia, P.; Giustra, M.; Vagliasindi, F. Low-temperature thermal desorption of diesel polluted soil: influence of temperature and soil texture on contaminant removal kinetics. J. Hazard. Mater. 2011, 185, (1) 392-400.
  • (25) Zhao, C.; Dong, Y.; Feng, Y.; Li, Y.; Dong, Y., Thermal desorption for remediation of contaminated soil: A review. Chemosphere. 2019.
  • (25) Tampouris, S.; Papassiopi, N.; Paspaliaris, I. Removal of contaminant metals from fine grained soils, using agglomeration, chloride solutions and pile leaching techniques. J. Hazard. Mater. 2001, 84, (2-3), 297-319.
  • (25) Ibrahim, H. S.; Ibrahim, M. A.; Samhan, F. A. Distribution and bacterial bioavailability of selected metals in sediments of Ismailia Canal, Egypt. J. Hazard. Mater. 2009, 168 (2-3), 1012-1016.
  • (25) Ho, T.; Lee, H.; Shiao, C.; Hopper, J. R.; Bostick, W. Metal behavior during fluidized bed thermal treatment of soil. Waste Manage. 1995, 15 (5-6), 325-334.
  • (24) Wei, Y.-L.; Yang, Y.-W.; Cheng, N. Study of thermally immobilized Cu in analogue minerals of contaminated soils. Environ. Sci. Technol. 2001, 35 (2), 416- 421.
  • (24) Li, D.-C.; Xu, W.-F.; Mu, Y.; Yu, H.-Q.; Jiang, H.; Crittenden, J. C. Remediation of petroleum-contaminated soil and simultaneous recovery of oil by fast pyrolysis. Environ. Sci. Technol. 2018, 52 (9), 5330-5338.
  • (24) Calmano, W.; Hong, J.; Förstner, U. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci. Technol. 1993, 28 (8-9), 223-235.
  • (23) Semer, R.; Reddy, K. R. Evaluation of soil washing process to remove mixed contaminants from a sandy loam. J. Hazard. Mater. 1996, 45 (1), 45-57.
  • (23) Kinraide, T. B. Interactions among Ca2+, Na+ and K+ in salinity toxicity: quantitative resolution of multiple toxic and ameliorative effects. J. Exp. Bot. 1999, 50 (338), 1495-1505.
  • (23) Huang, Y.-T.; Hseu, Z.-Y.; Hsi, H.-C. Influences of thermal decontamination on mercury removal, soil properties, and repartitioning of coexisting heavy metals. Chemosphere. 2011, 84 (9), 1244-1249.
  • (23) Certini, G. Effects of fire on properties of forest soils: a review. Oecologia. 2005, 143 (1), 1-10.
  • (22) Tavakkoli, E.; Fatehi, F.; Coventry, S.; Rengasamy, P.; McDonald, G. K. Additive effects of Na+ and Cl–ions on barley growth under salinity stress. J. Exp. Bot. 2011, 62 (6), 2189-2203.
  • (22) Stoof, C. R.; Wesseling, J. G.; Ritsema, C. J. Effects of fire and ash on soil water retention. Geoderma. 2010, 159 (3-4), 276-285.
  • (22) Nelson, R. K.; Kile, B. M.; Plata, D. L.; Sylva, S. P.; Xu, L.; Reddy, C. M.; Gaines, R. B.; Frysinger, G. S.; Reichenbach, S. E. Tracking the weathering of an oil spill with comprehensive two-dimensional gas chromatography. Environ. Forensics. 2006, 7 (1), 33-44.
  • (22) Moon, D. H.; Park, J.-W.; Koutsospyros, A.; Cheong, K. H.; Chang, Y.-Y.; Baek, K.; Jo, R.; Park, J.-H. Assessment of soil washing for simultaneous removal of heavy metals and low-level petroleum hydrocarbons using various washing solutions. Environ. Earth Sci. 2016, 75 (10), 884.
  • (21) Tobe, K.; Li, X.; Omasa, K. Effects of five different salts on seed germination and seedling growth of Haloxylon ammodendron (Chenopodiaceae). Seed Sci. Res. 2004, 14 (4), 345-353.
  • (21) Fuentes, A.; Lloréns, M.; Sáez, J.; Aguilar, M. I.; Ortuño, J. F.; Meseguer, V. F. Phytotoxicity and heavy metals speciation of stabilised sewage sludges. J. Hazard. Mater. 2004, 108 (3), 161-169.
  • (21) Basso, A. S.; Miguez, F. E.; Laird, D. A.; Horton, R.; Westgate, M. Assessing potential of biochar for increasing water‐holding capacity of sandy soils. Gcb. Bioenergy. 2013, 5 (2), 132-143.
  • (20) Pape, A.; Switzer, C.; McCosh, N.; Knapp, C. W. Impacts of thermal and smouldering remediation on plant growth and soil ecology. Geoderma. 2015, 243, 1-9.
  • (20) Kulakow, P. A.; Schwab, A.; Banks, M. Screening plant species for growth on weathered, petroleum hydrocarbon-contaminated sediments. Int. J. Phytorem. 2000, 2 (4), 297-317.
  • (20) Fuentes, A.; Lloréns, M.; Sáez, J.; Aguilar, M. I.; Ortuño, J. F.; Meseguer, V. F. Phytotoxicity and heavy metals speciation of stabilised sewage sludges. J. Hazard. Mater. 2004, 108, (3), 161-169.
  • (2) Yoo, J.-C.; Lee, C.-D.; Yang, J.-S.; Baek, K. Extraction characteristics of heavy metals from marine sediments. Chem. Eng. J. 2013, 228, 688-699.
  • (2) Rothermich, M. M.; Hayes, L. A.; Lovley, D. R. Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment. Environ. Sci. Technol. 2002, 36 (22), 4811-4817.
  • (2) Pape, A.; Switzer, C.; McCosh, N.; Knapp, C. W. Impacts of thermal and smouldering remediation on plant growth and soil ecology. Geoderma. 2015, 243- 244, 1-9.
  • (2) Mulligan, C. N.; Yong, R. N.; Gibbs, B. F., Heavy metal removal from sediments by biosurfactants. J. Hazard. Mater. 2001, 85 (1-2), 111-125.
  • (19) U.S. Environmental Protection Agency. SW-846 Test Method 1311: Toxicity Characteristic Leaching Procedure, Washington, DC, 1992.
  • (19) Giovannini, C.; Lucchesi, S.; Giachetti, M. Effects of heating on some chemical parameters related to soil fertility and plant growth. Soil. Sci. 1990, 149 (6), 344-350.
  • (19) Daliakopoulos, I.; Tsanis, I.; Koutroulis, A.; Kourgialas, N.; Varouchakis, A.; Karatzas, G.; Ritsema, C. The threat of soil salinity: A European scale review. Sci. Total Environ. 2016, 573 727-739.
  • (18) Tessier, A.; Campbell, P. G.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51 (7), 844-851.
  • (18) Terefe, T.; Mariscal-Sancho, I.; Peregrina, F.; Espejo, R. Influence of heating on various properties of six Mediterranean soils. A laboratory study. Geoderma. 2008, 143 (3-4), 273-280.
  • (18) Rengasamy, P. Soil processes affecting crop production in salt-affected soils. Funct. Plant Biol. 2010, 37 (7), 613-620.
  • (18) Korean Ministry of Environment. Korean Standard Method for Soil analysis, Korea, 2002.
  • (17) U.S. Environmental Protection Agency. SW-846 Test Method 8260B: Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MSD), Washington, DC, 1996.
  • (17) U.S. Environmental Protection Agency. SW-846 Test Method 1311: Toxicity Characteristic Leaching Procedure, Washington, DC, 1992.
  • (17) Grattan, S.; Grieve, C. Salinity–mineral nutrient relations in horticultural crops. Sci. Hortic. 1999, 78 (1-4), 127-157.
  • (17) Certini, G., Effects of fire on properties of forest soils: a review. Oecologia 2005, 143 (1), 1-10.
  • (16) Semer, R.; Reddy, K. R. Evaluation of soil washing process to remove mixed contaminants from a sandy loam. J. Hazard. Mater. 1996, 45 (1), 45-57.
  • (15) Vidonish, J. E.; Alvarez, P. J.; Zygourakis, K. Pyrolytic Remediation of OilContaminated Soils: Reaction Mechanisms, Soil Changes, and Implications for Treated Soil Fertility. Ind. Eng. Chem. Res. 2018, 57 (10), 3489-3500.
  • (15) Smith, C. R.; Hatcher, P. G.; Kumar, S.; Lee, J. W. Investigation into the sources of biochar water-soluble organic compounds and their potential toxicity on aquatic microorganisms. ACS Sustainable Chem. Eng. 2016, 4 (5), 2550-2558.
  • (15) Moon, D. H.; Park, J.-W.; Koutsospyros, A.; Cheong, K. H.; Chang, Y.-Y.; Baek, K.; Jo, R.; Park, J.-H. Assessment of soil washing for simultaneous removal of heavy metals and low-level petroleum hydrocarbons using various washing solutions. Environ. Earth. Sci. 2016, 75 (10), 884.
  • (15) Goulding, K. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil. Use. Manage. 2016, 32 (3), 390-399.
  • (14) Moutsatsou, A.; Gregou, M.; Matsas, D.; Protonotarios, V. Washing as a remediation technology applicable in soils heavily polluted by mining–metallurgical activities. Chemosphere. 2006, 63 (10), 1632-1640.
  • (14) Fuentes, A.; Lloréns, M.; Sáez, J.; Aguilar, M. I.; Ortuño, J. F.; Meseguer, V. F. Phytotoxicity and heavy metals speciation of stabilised sewage sludges. J. Hazard. Mater. 2004, 108 (3), 161-169.
  • (13) Dermont, G.; Bergeron, M.; Mercier, G.; Richer-Laflèche, M. Soil washing for metal removal: a review of physical/chemical technologies and field applications. J. Hazard. Mater. 2008, 152 (1), 1-31.
  • (13) Bremner, J.; Mulvaney, C. Nitrogen-total Methods of soil analysis. Part 3- chemical methods. Soil. Sci. Soc. Am. Am. Soc. Agron. SSSA Page 1982, 1085.
  • (12) Yoo, J.-C.; Lee, C.-D.; Yang, J.-S.; Baek, K. Extraction characteristics of heavy metals from marine sediments. Chem. Eng. J. 2013, 228, 688-699.
  • (12) Walkley, A.; Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil. Sci. 1934, 37 (1), 29-38.
  • (12) Tessier, A.; Campbell, P. G.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51 (7), 844-851.
  • (12) Mulligan, C. N.; Yong, R. N.; Gibbs, B. F. Heavy metal removal from sediments by biosurfactants. J. Hazard. Mater. 2001, 85 (1-2), 111-125.
  • (11) U.S. Environmental Protection Agency, SW-846 Test Method 8260B: Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MSD), Washington, DC, 1996.
  • (11) Meers, E.; Samson, R.; Tack, F.; Ruttens, A.; Vandegehuchte, M.; Vangronsveld, J.; Verloo, M. Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environ. Exp. Bot. 2007, 60 (3), 385-396.
  • (10) Sørensen, M. A.; Koch, C. B.; Stackpoole, M. M.; Bordia, R. K.; Benjamin, M. M.; Christensen, T. H. Effects of thermal treatment on mineralogy and heavy metal behavior in iron oxide stabilized air pollution control residues. Environ. Sci. Technol. 2000, 34 (21), 4620-4627.
  • (10) Ko, I.; Chang, Y.-Y.; Lee, C.-H.; Kim, K.-W. Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction. J. Hazard. Mater. 2005, 127, (1-3), 1-13.
  • (10) Dazy, M.; Férard, J.-F.; Masfaraud, J.-F. Use of a plant multiple-species experiment for assessing the habitat function of a coke factory soil before and after thermal desorption treatment. Ecol. Eng. 2009, 35 (10), 1493-1500.
  • (1) Kim, K.; Yang, W.; Nam, K.; Choe, J. K.; Cheong, J.; Choi, Y. Prediction of long-term heavy metal leaching from dredged marine sediment applied inland as a construction material. Environ. Sci. Pollut. Res. Int. 2018, 25 (27), 27352-27361.
  • (1) Kim, K.; Yang, W.; Nam, K.; Choe, J. K.; Cheong, J.; Choi, Y. Prediction of long-term heavy metal leaching from dredged marine sediment applied inland as a construction material. Environ. Sci. Pollut. Res. 2018, 25 (27), 27352-27361.