박사

In vitro and in vivo evaluation of UV-photofunctionalized turned implants

이준범 2020년
논문상세정보
' In vitro and in vivo evaluation of UV-photofunctionalized turned implants' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 외과의 다방면
  • dental implants
  • osseointegration
  • photofunctionalization
  • surface treatment
  • titanium
  • ultraviolet light
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
2,460 0

0.0%

' In vitro and in vivo evaluation of UV-photofunctionalized turned implants' 의 참고문헌

  • Y. Photo-catalytic preparation of silver-coated TiO2 particles for antibacterial applications .
    18 , 133–139 , doi:10.1023/A:1014455310342 . [2002]
  • W. Photofunctionalization of Titanium : An Alternative Explanation of Its Chemical-Physical Mechanism
    11 , e0157481 , doi:10.1371/journal.pone.0157481 [2016]
  • The preformed autologous bone graft . An experimental study in the rabbit
    12 , 215-223 , doi:10.3109/02844317809012997 [1978]
  • T. The influence of storage media on early osseointegration of titanium implants
    6 , 3–12 , doi:10.4103/0974-6781.190381 . [2016]
  • T. The effect of ultraviolet functionalization of titanium on integration with bone
    30 , 1015–1025 , doi:10.1016/j.biomaterials.2008.11.004 [2009]
  • T. The effect of UV-photofunctionalization on the time-related bioactivity of titanium and chromium-cobalt alloys
    30 , 4268–4276 , doi:10.1016/j.biomaterials.2009.04.048 . [2009]
  • T. The Use of Photofunctionalized Implant . for Low or Extremely Low Primary Stability Cases
    31 , 439–447 , doi:10.11607/jomi.4054 [2016]
  • T. Success rate and strength of osseointegration of immediately loaded UV-photofunctionalized implants in a rat model .
    118 , 357–362 , doi:10.1016/j.prosdent.2016.11.008 . [2017]
  • T. Spontaneous progression of peri-implantitis at different types of implants . An experimental study in dogs . I : Clinical and radiographic observations
    19 , 997–1002 , doi:10.1111/j.1600-0501.2008.01589.x . [2008]
  • T. Spontaneous progression of experimental peri-implantitis at implants with different surface characteristics : An experimental study in dogs .
    39 , 182–187 , doi:10.1111/j.1600-051X.2011.01820.x . [2012]
  • T. Risk Factors in Early Implant Failure : A Meta-Analysis
  • T. Photofunctionalization enhances bone-implant contact , dynamics of interfacial osteogenesis , marginal bone seal , and removal torque value of implants : A dog jawbone study .
  • T. Light-induced amphiphilic surfaces
    388 , 431 , doi:10.1038/41233 . [1997]
  • T. Effects of titanium surface topography on bone integration : A systematic review
    20 , 172–184 , doi:10.1111/j.1600-0501.2009.01775.x [2009]
  • T. Effect of UV Photofunctionalization on Osseointegration in Aged Rats .
    25 , 744–750 , doi:10.1097/ID.0000000000000459 . [2016]
  • T. Current knowledge about the hydrophilic and nanostructured SLActive surface
    3 , 59–67 , doi:10.2147/CCIDEN.S15949 . [2011]
  • S. Implant placement and loading protocols in partially edentulous patients : A systematic review
    29 , 106–134 , doi:10.1111/clr.13276 [2018]
  • S. Enhanced bone apposition to aChemically modified SLA titanium surface .
    83 , 529–533 , doi:10.1177/154405910408300704 . [2004]
  • R. Effect of UV-photofunctionalization on oral bacterial attachment and biofilm formation to titanium implant material
    67 , 84–92 , doi:10.1016/j.biomaterials.2015.07.030 [2015]
  • P. Risk Factors for Implant Failure and Peri-Implant Pathology in Systemic Compromised Patients
    P rosthodont .27 , 409–415 , doi:10.1111/jopr.12508 . [2018]
  • Oral implant surfaces : Part 1—Review focusing on topographic and chemical properties of different surfaces and in vivo responses to them
    17 , 536–543 [2004]
  • Oral implant restoration for enhanced oral function
    32 , 123–127 , doi:10.1111/j.1440-1681.2005.04140.x [2005]
  • Optimization of surface micromorphology for enhanced osteoblast responses in vitro .
    7 , 302–310 , doi:10.1097/00008505-199305000-00011 . [1992]
  • Modification of the TRI reagent procedure for isolation of RNA from polysaccharide-and proteoglycan-rich sources
    19 , 942–945 . [1995]
  • M. Photo-induced hydrophilicity enhances initial cell behavior and early bone apposition
    19 , 491–496 , doi:10.1111/j.1600-0501.2007.01509.x [2008]
  • M. Dental implants in the medically compromised patient
    41 , 195–206 , doi:10.1016/j.jdent.2012.12.008 . [2013]
  • J. Spontaneous progression of ligature induced peri-implantitis at implants with different surface roughness : An experimental study in dogs .
    18 , 655–661 , doi:10.1111/j.1600-0501.2007.01397.x . [2007]
  • J. Osseointegrated titanium implants . Requirements for ensuring a long-lasting , direct bone-to-implant anchorage in man
    52 , 155–170 , doi:10.3109/17453678108991776 . [1981]
  • J. Biomaterial and implant surfaces : On the role of cleanliness , contamination , and preparation procedures .
    22 , 145–158 , doi:10.1002/jbm.820221307 [1988]
  • Influence of sterilization on the mineralization of titanium implants induced by incubation in various biological model fluids
    24 , 4749–4760 , doi:10.1016/S0142-9612 ( 03 ) 00372-7 . [2003]
  • G. A method for the study of undecalcified bones and teeth with attached soft tissues * The Säge-Schliff ( sawing and grinding ) Technique
  • Factors Influencing Early Dental Implant Failures
    95 , 995–1002 , doi:10.1177/0022034516646098 . [2016]
  • F. Dental implants in the elderly population : A systematic review and meta-analysis .
    28 , 920–930 , doi:10.1111/clr.12898 . [2017]
  • Effects of implant microtopography on osteoblast cell attachment .
    12 , 175–181 , doi:10.1097/01.id.0000058309.77613.87 . [2003]
  • Effects of implant design and surface on bone regeneration and implant stability : An experimental study in the dog mandible .
    3 , 2–8 , doi:10.1111/j.1708-8208.2001.tb00123.x . [2001]
  • Effect of ultraviolet treatment on bacterial attachment and osteogenic activity to alkali-treated titanium with nanonetwork structures
    12 , 4633–4646 , doi:10.2147/IJN.S136273 [2017]
  • Effect of Photofunctionalization on Early Implant Failure
    33 , 1098–1102 , doi:10.11607/jomi.6541 . [2018]
  • Cellular responses evoked by different surface characteristics of intraosseous titanium implants
    171945 , doi:10.1155/2015/171945 . [2015]
  • Bone Quality and Quantity and Dental Implant Failure : A Systematic Review and Meta-analysis
    30 , 219–237 , doi:10.11607/ijp.5142 . [2017]
  • A. Photocatalytic decomposition of estrogens in aquatic environment by reciprocating immersion of TiO2-modified polytetrafluoroethylene mesh sheets
    160 , 115–120 , doi:10.1016/S1010-6030 ( 03 ) 00229-6 . [2003]
  • ; et al . Biological and PhysicochemicalCharacteristics of 2 Different Hydrophilic SurfacesCreated by
    Dent . 2018 , 27
  • 45. Flanagan, D. Photofunctionalization of Dental Implant.. J . Oral Implantol. 2016, 42, 445–450, doi:10.1563/aaid-joi-D-15-00145.
  • 44. Choi, S.H.; Jeong, W.S.; Cha, J.Y.; Lee, J.H.; Lee, K.J.; Yu, H.S.; Choi, E.H.; Kim, K.M.; Hwang, C.J. Overcoming the biological aging of titanium using a wet storage method after ultraviolet treatment. Sci. Rep. 2017, 7, 3833, doi:10.1038/s41598-017-04192-9.
  • 3. De Angelis, F.; Papi, P.; Mencio, F.; Rosella, D.; Di Carlo, S.; Pompa, G. Implant survival and success rates in patients with risk factors: Results from a long-term retrospective study with a 10 to 18 years follow-up. Eur. Rev. Med. P harmacol. Sci. 2017, 21, 433–437.
  • 26. Park, K.H.; Koak, J.Y.; Kim, S.K.; Han, C.H.; Heo, S.J. The effect of ultraviolet-C irradiation via a bactericidal ultraviolet sterilizer on an anodized titanium implant: A study in rabbits. Int. J . Oral Maxillofac. Implant. 2013, 28, 57–66, doi:10.11607/jomi.2638.
  • 20. Ueno, T.; Yamada, M.; Suzuki, T.; Minamikawa, H.; Sato, N.; Hori, N.; Takeuchi, K.; Hattori, M.; Ogawa, T. Enhancement of bone-titanium integration profile with UV-photofunctionalized titanium in a gap healing model. Biomaterials 2010, 31, 1546–1557, doi:10.1016/j.biomaterials.2009.11.018.