박사

Design of multicomponent metal alloy electrocatalysts for improving electrochemical performance

박훈기 2020년
논문상세정보
' Design of multicomponent metal alloy electrocatalysts for improving electrochemical performance' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 기술과 연합작용
  • Electrocatalyst
  • Medium Entropy Alloy
  • Metal hydroxide
  • Nanostructure
  • Ni-Fe
  • electrochemicalwatersplitting
  • electrodeposition
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
981 0

0.0%

' Design of multicomponent metal alloy electrocatalysts for improving electrochemical performance' 의 참고문헌

  • [6] Lu, Q.; Hutchings, G. S.; Yu, W.; Zhou, Y.; Forest, R. V.; Tao, R.; Rosen, J.; Yonemoto, B. T.; Cao, Z.; Zheng, H.; Xiao, J. Q.; Jiao, F.; Chen, J. G., Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nat Commun 2015, 6, 6567.
  • [5] Chang Kwon, K.; Choi, S.; Lee, J.; Hong, K.; Sohn, W.; Andoshe, D. M.; Choi, K. S.; Kim, Y.; Han, S.; Kim, S. Y.; Jang, H. W., Drastically enhanced hydrogen evolution activity by 2D to 3D structural transition in anion-engineered molybdenum disulfide thin films for efficient Si-based water splitting photocathodes. Journal of Materials Chemistry A 2017, 5 (30), 15534-15542.
  • [4] Oh, H. S.; Kim, S. J.; Odbadrakh, K.; Ryu, W. H.; Yoon, K. N.; Mu, S.; Kormann, F.; Ikeda, Y.; Tasan, C. C.; Raabe, D.; Egami, T.; Park, E. S., Engineering atomic-level complexity in high-entropy and complex concentrated alloys. Nat Commun 2019, 10 (1), 2090.
  • [4] Lee, M. G.; Moon, C. W.; Park, H.; Sohn, W.; Kang, S. B.; Lee, S.; Choi, K. J.; Jang, H. W., Dominance of Plasmonic Resonant Energy Transfer over Direct Electron Transfer in Substantially Enhanced Water Oxidation Activity of BiVO4 by Shape-Controlled Au Nanoparticles. Small 2017, 13 (37).
  • [4] H. L. Tuller, Materials for renewable and sustainable energy, 2017, 6, 3.
  • [44] Verlage, E.; Hu, S.; Liu, R.; Jones, R. J. R.; Sun, K.; Xiang, C.; Lewis, N. S.; Atwater, H. A., A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO2 films. Energy & Environmental Science 2015, 8 (11), 3166-3172.
  • [3]C. Jiang, S. J. Moniz, A. Wang, T. Zhang and J. Tang,Chem. Soc. Rev., 2017, 46, 4645.
    46 , 4645 . [2017]
  • [3] Lim, J.; Hörantner, M. T.; Sakai, N.; Ball, J. M.; Mahesh, S.; Noel, N. K.; Lin, Y.-H.; Patel, J. B.; McMeekin, D. P.; Johnston, M. B.; Wenger, B.; Snaith, H. J., Elucidating the long-range charge carrier mobility in metal halide perovskite thin films. Energy & Environmental Science 2019, 12 (1), 169-176.
  • [39] Ali-Löytty, H.; Louie, M. W.; Singh, M. R.; Li, L.; Sanchez Casalongue, H. G.; Ogasawara, H.; Crumlin, E. J.; Liu, Z.; Bell, A. T.; Nilsson, A.; Friebel, D., Ambient-Pressure XPS Study of a Ni–Fe Electrocatalyst for the Oxygen Evolution Reaction. The Journal of Physical Chemistry C 2016, 120 (4), 2247-2253.
  • [36] Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science 2011, 257 (7), 2717-2730.
  • [1] Middleton, R. S.; Keating, G. N.; Stauffer, P. H.; Jordan, A. B.; Viswanathan, H. S.; Kang, Q. J.; Carey, J. W.; Mulkey, M. L.; Sullivan, E. J.; Chu, S. P.; Esposito, R.; Meckel, T. A., The cross-scale science of CO2 capture and storage: from pore scale to regional scale. Energy & Environmental Science 2012, 5 (6).
  • [1] A. E. Outlook, US Department of Energy, United States Government Printing Office: Washington, DC, 2013.
  • [13] Kargar, A.; Sun, K.; Jing, Y.; Choi, C.; Jeong, H.; Zhou, Y.; Madsen, K.; Naughton, P.; Jin, S.; Jung, G. Y.; Wang, D., Tailoring n-ZnO/p-Si branched nanowire heterostructures for selective photoelectrochemical water oxidation or reduction. Nano Lett 2013, 13 (7), 3017-22.
  • XPS study of Ni-base alloys oxide films formed in primary conditions of pressurized water reactor
    47 ( 5 ) , 632-642 . [2015]
  • Weng , T. C. ; Alonso-Mori , R. ; Davis , R. C. ; Bargar , J.
    Nilsson , A. ; Bell , A.
  • Water-splitting catalysis and solar fuel devices : artificial leaves on the move
    52 ( 40 ) , 10426-37 . [2013]
  • Water photolysis at 12.3 % efficiency via perovskite photovoltaics and Earth-abundant catalysts
    345 ( 6204 ) , 1593-6 . [2014]
  • W. , Insulator Layer Engineering toward Stable Si Photoanode for Efficient Water Oxidation
    8 ( 10 ) , 9238-9244 . [2018]
  • Visible-light driven heterojunction photocatalysts for water splitting ? a critical review
    8 ( 3 ) , 731-759 . [2015]
  • Unraveling the hidden function of a stabilizer in a precursor in improving hybrid perovskite film morphology for high efficiency solar cells
    9 ( 3 ) , 867-872 . [2016]
  • Toward Mass Production of CVD Graphene Films
    31 ( 9 ) , e1800996 . [2019]
  • Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction
    50 ( 49 ) , 6479-82 . [2014]
  • Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution
    24 ( 18 ) , 3659-3666 . [2012]
  • The geographical distribution of fossil fuels unused when limiting global warming to 2 degrees C. Nature
    517 ( 7533 ) , 187-90 . [2015]
  • The effect of crystallinity on photocatalytic performance of Co3O4 water-splitting cocatalysts
    18 ( 7 ) , 5172-8 . [2016]
  • Temperature Dependence of Electrocatalytic and Photocatalytic Oxygen Evolution Reaction Rates Using NiFe Oxide .
    6 ( 3 ) , 1713-1722 . [2016]
  • Synergetic strengthening of layered steel sheet investigated using an in situ neutron diffraction tensile test
    9 ( 1 ) , 6829 . [2019]
  • Strong and Ductile Non-equiatomic High-Entropy Alloys : Design , Processing , Microstructure , and Mechanical Properties
    69 ( 11 ) , 2099-2106 . [2017]
  • SpectroscopicCharacterization of Mixed Fe–Ni Oxide Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Electrolytes .
    2 ( 8 ) , 1793-1801 . [2012]
  • Solution-cast metal oxide thin film electrocatalysts for oxygen evolution
    134 ( 41 ) , 17253-61 . [2012]
  • Self-supported NiMo hollow nanorod array : an efficient 3D bifunctionalCatalytic electrode for overall water splitting .
    3 ( 40 ) , 20056-20059 . [2015]
  • Selenide-Based Electrocatalysts and Scaffolds for Water Oxidation Applications
    28 ( 1 ) , 77-85 . [2016]
  • Recent developments in solar water-splitting photocatalysis
    36 ( 01 ) , 17-22 . [2011]
  • Rational design of mesoporous NiFe-alloy-based hybrids for oxygenConversion electrocatalysis .
    3 ( 15 ) , 7986-7993 . [2015]
  • Raman and X-ray diffraction studies of superparamagnetic NiFe2O4 nanoparticles prepared by sol–gel auto-combustion method
    323 ( 15 ) , 2049-2054 . [2011]
  • R. O. , High-entropy alloys
    4 ( 8 ) , 515-534 . [2019]
  • Preparation and properties of medium entropyCoCrNi/boride metal matrixComposite
    748 , 979-988 . [2018]
  • PredictingCatalytic Activity of High-Entropy Alloys for Electrocatalysis
    5 ( 3 ) , 502-504 . [2019]
  • PorousCobalt-iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting .
    52 ( 85 ) , 12614-12617 . [2016]
  • Opportunities and challenges for a sustainable energy future
    488 ( 7411 ) , 294-303 . [2012]
  • One-Step Synthesis of Self-Supported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation
    54 ( 28 ) , 8188-92 . [2015]
  • Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy
    430 , 104-111 . [2019]
  • Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts : the role of intentional and incidental iron incorporation .
    136 ( 18 ) , 6744-53 . [2014]
  • Nickel surface anodic oxidation and electrocatalysis of oxygen evolution
    12 ( 11 ) , 1469-1479 . [2008]
  • Ni-Mo Nanocatalysts on N-Doped Graphite Nanotubes for Highly Efficient Electrochemical Hydrogen Evolution in Acid
    10 ( 11 ) , 10397-10403 [2016]
  • Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction
    135 ( 25 ) , 9267-70 . [2013]
  • Nanoparticle Superlattices as Efficient Bifunctional Electrocatalysts for Water Splitting .
    137 ( 45 ) , 14305-12 . [2015]
  • Nam , K. T. ; Han , S. ; Kim
    W. , Wafer-scale transferable molybdenum disulfide thin-film
  • N-doped graphene layers encapsulated NiFe alloy nanoparticles derived from MOFs with superior electrochemical performance for oxygen evolution reaction
    6 , 34004 . [2016]
  • MonitoringB-site ordering and strain relaxation in NiFe2O4epitaxial films by polarized Raman spectroscopy
    83 ( 1 ) . [2011]
  • K. K. Sakimoto , D. Hong and P. Yang
    54 , 3259 . [2015]
  • J. Zhang and D. P. Wilkinson
    41 , 5654 . [2012]
  • J. Y. , A Three-Terminal Monolithic Perovskite/Si Tandem Solar Cell Characterization Platform
    [2018]
  • J. R. McKone , S. W. Boettcher , Q. Mi , E. A. Santori and N. S. Lewis
    110 , 6446 . [2010]
  • Identifying champion nanostructures for solar water-splitting
    12 ( 9 ) , 842-9 . [2013]
  • Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets .
    51 ( 25 ) , 6131-5 . [2012]
  • High-entropy alloy CoCrFeMnNi produced by powder metallurgy .
    60 ( 3 ) , 184-197 . [2017]
  • High-Entropy Alloys as a Discovery Platform for Electrocatalysis
    3 ( 3 ) , 834-845 . [2019]
  • Grain-boundary-dependent CO2 electroreduction activity
    137 ( 14 ) , 4606-9 . [2015]
  • First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation
    138 , 22-27 [2017]
  • Facile one-step electrodeposition preparation of porous NiMo film as electrocatalyst for hydrogen evolution reaction
    40 ( 5 ) , 2173-2181 . [2015]
  • Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures
    7 , 10602 . [2016]
  • Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers
    7 ( 8 ) , 2504-2517 . [2014]
  • Electrosynthesis of high-entropy metallic glass nanoparticles for designer , multi-functional electrocatalysis
    10 ( 1 ) , 2650 . [2019]
  • Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis .
    54 ( 14 ) , 3726-3734 . [2009]
  • Electrochemical Determination of Porosity and Surface Area of Thin Films of Interconnected Nickel Nanowires .
    166 ( 6 ) , D227-D235 . [2019]
  • Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction
    8 ( 03 ) , 1230-1235 . [2018]
  • Electrically benign behavior of grain boundaries in polycrystalline CuInSe2 films
    99 ( 23 ) , 235504 . [2007]
  • Electrical characterization of grain boundaries of CZTS thin films using conductive atomic force microscopy techniques
    70 , 373-378 . [2015]
  • Effect of interlayer anions on -LDH nanosheet water oxidation activity
    9 ( 5 ) , 1734-1743 . [2016]
  • Ductilizing brittle high-entropy alloys via tailoring valence electron concentrations of precipitates by controlled elemental partitioning
    6 ( 10 ) , 600-606 . [2018]
  • Discovery of a Multinary Noble Metal-Free Oxygen Reduction Catalyst
    8 ( 34 ) . [2018]
  • Design of non-equiatomic medium-entropy alloys
    8 ( 1 ) , 1236 . [2018]
  • Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy
    8 , 15719 . [2017]
  • Conformally coated BiVO 4 nanodots on porosity-controlled WO 3 nanorods as highly efficient type II heterojunction photoanodes for water oxidation
    28 , 250-260 . [2016]
  • Catalyzing the hydrogen evolution reaction ( HER ) with molybdenum sulfide nanomaterials
    4 ( 11 ) , 3957-3971 . [2014]
  • C. B. , Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting .
    136 ( 7 ) , 2843-50 . [2014]
  • Artificial photosynthesis for solar water-splitting
    6 ( 8 ) , 511-518 . [2012]
  • An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen
    135 ( 33 ) , 12329-37 . [2013]
  • An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation
    135 ( 23 ) , 8452-5 . [2013]
  • Achieving high strength and high ductility in Al0.3CoCrNi medium-entropy alloy through multi-phase hierarchical microstructure
    8 [2019]
  • A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10 % solar-to-hydrogen efficiency
    6 ( 12 ) . [2013]
  • A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles
    2 ( 3 ) , 169-74 . [2016]
  • A 3D Nanoporous Ni-Mo Electrocatalyst with Negligible Overpotential for Alkaline Hydrogen Evolution
    1 ( 7 ) , 1138-1144 . [2014]
  • ; Moser ,C. ; Ballif ,C. , Solar-to-Hydrogen Production at 14.2
    Electrocatalysts . Journal of The Electrochemical Society