박사

Bioreducible polymers with crosslinked structure and fluorinated arginine-functionalization for gene delivery systems

이경진 2020년
논문상세정보
' Bioreducible polymers with crosslinked structure and fluorinated arginine-functionalization for gene delivery systems' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 화학공학과 관련공학
  • arginine
  • bioreducible polymer
  • cellular uptake
  • crosslinking
  • fluorination
  • gene delivery
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,582 0

0.0%

' Bioreducible polymers with crosslinked structure and fluorinated arginine-functionalization for gene delivery systems' 의 참고문헌

  • siRNA delivery systems forCancer treatment
    61 ( [2009]
  • reactive oxygen species ( ROS ) -potentiated gene delivery inCancerCells mediated by fluorinated , diselenidecrosslinked polyplexes
    https : //doi.org/10.1039/c7bm00334j . [2017]
  • endosome disruptive , and cationic network-type polymer as a highly efficient and nontoxic gene delivery carrier
    13 ( [2002]
  • disulfide-l-lysine ) based redox-responsive cationic polymer for efficient gene transfection
    7 ( [2019]
  • [97] H. Li, T. Luo, R. Sheng, J. Sun, Z. Wang, A. Cao, Achieving high gene delivery performance with caveolae-mediated endocytosis pathway by (l)-arginine/(l)-histidine co-modified cationic gene carriers, Colloids Surfaces B Biointerfaces. 148 (2016) 73–84. https://doi.org/10.1016/j.colsurfb.2016.08.035.
  • [92] T. il Kim, M. Ou, M. Lee, S.W. Kim, Arginine-grafted bioreducible poly(disulfide amine) for gene delivery systems, Biomaterials. 30 (2009) 658–664. https://doi.org/10.1016/j.biomaterials.2008.10.009.
  • [91] H.Y. Nam, K. Nam, H.J. Hahn, B.H. Kim, H.J. Lim, H.J. Kim, J.S. Choi, J.S. Park, Biodegradable PAMAM ester for enhanced transfection efficiency with low cytotoxicity, Biomaterials. 30 (2009) 665–673. https://doi.org/10.1016/j.biomaterials.2008.10.013.
  • [83] B. Musafia, V. Buchner, D. Arad, Complex salt bridges in proteins: Statistical analysis of structure and function, J. Mol. Biol. 254 (1995) 761–770. https://doi.org/10.1006/jmbi.1995.0653.
  • [82] C.L. Borders, J.A. Broadwater, P.A. Bekeny, J.E. Salmon, A.S. Lee, A.M. Eldridge, V.B. Pett, A structural role for arginine in proteins: Multiple hydrogen bonds to backbone carbonyl oxygens, Protein Sci. 3 (1994) 541–548. https://doi.org/10.1002/pro.5560030402.
  • [81] T.I. Yusufaly, Y. Li, G. Singh, W.K. Olson, Argininephosphate salt bridges between histones and DNA: Intermolecular actuators that control nucleosome architecture, J. Chem. Phys. 141 (2014) 165102. https://doi.org/10.1063/1.4897978.
  • [80] D. Frigyes, F. Alber, S. Pongor, P. Carloni, Argininephosphate salt bridges in protein-DNA complexes: A CarParrinello study, J. Mol. Struct. THEOCHEM. 574 (2001) 39–45. https://doi.org/10.1016/S0166-1280(01)00368-2.
  • [79] J. Derouchey, B. Hoover, D.C. Rau, A comparison of DNA compaction by arginine and lysine peptides: A physical basis for arginine rich protamines, Biochemistry. 52 (2013) 3000–3009. https://doi.org/10.1021/bi4001408.
  • [78] A. Borrelli, A.L. Tornesello, M.L. Tornesello, F.M. Buonaguro, Cell penetrating peptides as molecular carriers for anticancer agents, Molecules. 23 (2018) 295. https://doi.org/10.3390/molecules23020295.
  • [76] A. Borrelli, A.L. Tornesello, M.L. Tornesello, F.M. Buonaguro, Cell penetrating peptides as molecular carriers for anticancer agents, Molecules. 23 (2018) 295. https://doi.org/10.3390/molecules23020295.
  • [75] S. Futaki, I. Nakase, Cell-Surface Interactions on ArginineRich Cell-Penetrating Peptides Allow for Multiplex Modes of Internalization, Acc. Chem. Res. 50 (2017) 2449–2456. https://doi.org/10.1021/acs.accounts.7b00221.
  • [74] D.M. Copolovici, K. Langel, E. Eriste, Ü. Langel, Cellpenetrating peptides: Design, synthesis, and applications, ACS Nano. 8 (2014) 1972–1994. https://doi.org/10.1021/nn4057269.
  • [73] A.D. Frankel, C.O. Pabo, Cellular uptake of the tat protein from human immunodeficiency virus, Cell. 55 (1988) 1189–1193. https://doi.org/10.1016/0092-8674(88)90263-2.
  • [72] M. Green, P.M. Loewenstein, Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein, Cell. 55 (1988) 1179–1188. https://doi.org/10.1016/0092-8674(88)90262-0.
  • [70] S. Taranejoo, R. Chandrasekaran, W. Cheng, K. Hourigan, Bioreducible PEI-functionalized glycol chitosan: A novel gene vector with reduced cytotoxicity and improved transfection efficiency, Carbohydr. Polym. 153 (2016) 160–168. https://doi.org/10.1016/j.carbpol.2016.07.080.
  • [6] T.G. Park, J.H. Jeong, S.W. Kim, Current status of polymeric gene delivery systems, Adv. Drug Deliv. Rev. 58 (2006) 467–486. https://doi.org/10.1016/j.addr.2006.03.007.
  • [69] H.C. Kang, H.J. Kang, Y.H. Bae, A reducible polycationic gene vector derived from thiolated low molecular weight branched polyethyleneimine linked by 2-iminothiolane, Biomaterials. 32 (2011) 1193–1203. https://doi.org/10.1016/j.biomaterials.2010.08.079.
  • [65] X. Xu, J. Wu, S. Liu, P.E. Saw, W. Tao, Y. Li, L. Krygsman, S. Yegnasubramanian, A.M. De Marzo, J. Shi,C.J. Bieberich, O.C. Farokhzad, Redox-Responsive Nanoparticle-Mediated Systemic RNAi for EffectiveCancer Therapy, Small. 14 (2018) 1802565. https://doi.org/10.1002/smll.201802565.
    14 ( [2018]
  • [61] C.Y. Li, H.J. Wang, J.M. Cao, J. Zhang, X.Q. Yu, Bioreducible cross-linked polymers based on G1 peptide dendrimer as potential gene delivery vectors, Eur. J. Med. Chem. 87 (2014) 413–420. https://doi.org/10.1016/j.ejmech.2014.09.091.
  • [57] S. Liu, Y. Gao, D. Zhou, M. Zeng, F. Alshehri, B. Newland, J. Lyu, J. O’Keeffe-Ahern, U. Greiser, T. Guo, F. Zhang, W. Wang, Highly branched poly(β-amino ester) delivery of minicircle DNA for transfection of neurodegenerative disease related cells, Nat. Commun. 10 (2019) 3307. https://doi.org/10.1038/s41467-019- 11190-0.
  • [56] J. Yan, H. Zhang, F. Cheng, Y. He, T. Su, X. Zhang, M. Zhang, Y. Zhu, C. Li, J. Cao, B. He, Highly stable RGD/disulfide bridgebearing star-shaped biodegradable nanocarriers for enhancing drug-loading efficiency, rapid cellular uptake, and on-demand cargo release, Int. J. Nanomedicine. Volume 13 (2018) 8247–8268. https://doi.org/10.2147/IJN.S179906.
  • [54] L. Song, A.X. Ding, K.X. Zhang, B. Gong, Z.L. Lu, L. He, Degradable polyesters: Via ring-opening polymerization of functional valerolactones for efficient gene delivery, Org. Biomol. Chem. 15 (2017) 6567–6574. https://doi.org/10.1039/c7ob00822h.
  • [52] R.B. Arote, D. Jere, H.-L. Jiang, Y.-K. Kim, Y.-J. Choi, C.- S. Cho, Biodegradable poly(ester amine)s for gene delivery applications, Biomed. Mater. 4 (2009) 044102. https://doi.org/10.1088/1748-6041/4/4/044102.
  • [49] S. Maity, P. Choudhary, M. Manjunath, A. Kulkarni, N. Murthy, A biodegradable adamantane polymer with ketal linkages in its backbone for gene therapy, Chem. Commun. 51 (2015) 15956– 15959. https://doi.org/10.1039/c5cc05242d.
  • [48] M.S. Shim, Y.J. Kwon, Controlled delivery of plasmid DNA and siRNA to intracellular targets using ketalized polyethylenimine, Biomacromolecules. 9 (2008) 444–455. https://doi.org/10.1021/bm7007313.
  • [46] Janaszewska, Lazniewska, Trzepiński, Marcinkowska, Klajnert-Maculewicz, Cytotoxicity of Dendrimers, Biomolecules. 9 (2019) 330. https://doi.org/10.3390/biom9080330.
  • [42] Z.Q. Yu, J.J. Yan, Y.Z. You, Q.H. Zhou, Bioreducible and acid-labile poly(amido amine)s for efficient gene delivery, Int. J. Nanomedicine. 7 (2012) 5819–5832. https://doi.org/10.2147/IJN.S37334.
  • [35] K.L. Kozielski, S.Y. Tzeng, B.A. Hurtado De Mendoza, J.J. Green, Bioreducible cationic polymer-based nanoparticles for efficient and environmentally triggered cytoplasmic siRNA delivery to primary human brain cancer cells, ACS Nano. 8 (2014) 3232– 3241. https://doi.org/10.1021/nn500704t.
  • [34] H. Park, J.W. Nichols, H.C. Kang, Y.H. Bae, Bioreducible polyspermine as less toxic and efficient gene carrier, Polym. Adv. Technol. 25 (2014) 545–551. https://doi.org/10.1002/pat.3269.
  • [33] Z. Guo, H. Tian, J. Xia, J. Chen, L. Lin, X. Chen, Bioreducible crosslinked low molecular weight branched PEI-PBLG as an efficient gene carrier, Sci. China Chem. 53 (2010) 2490–2496. https://doi.org/10.1007/s11426-010-4144-3.
  • [30] S. Son, R. Namgung, J. Kim, K. Singha, W.J. Kim, Bioreducible polymers for gene silencing and delivery, Acc. Chem. Res. 45 (2012) 1100–1112. https://doi.org/10.1021/ar200248u.
  • [29] T. Il Kim, S.W. Kim, Bioreducible polymers for gene delivery, React. Funct. Polym. 71 (2011) 344–349. https://doi.org/10.1016/j.reactfunctpolym.2010.11.016.
  • [27] J. Luten, C.F. van Nostrum, S.C. De Smedt, W.E. Hennink, Biodegradable polymers as non-viral carriers for plasmid DNA delivery, J. Control. Release. 126 (2008) 97–110. https://doi.org/10.1016/j.jconrel.2007.10.028.
  • [26] M. Thomas, Q. Ge, J.J. Lu, J. Chen, A.M. Klibanov, Crosslinked small polyethylenimines: While still nontoxic, deliver DNA efficiently to mammalian cells in vitro and in vivo, Pharm. Res. 22 (2005) 373–380. https://doi.org/10.1007/s11095-004-1874-y.
  • [25] Y. Li, D. Maciel, J. Rodrigues, X. Shi, H. Tomás, Biodegradable polymer nanogels for drug/nucleic acid delivery, Chem. Rev. 115 (2015) 8564–8608. https://doi.org/10.1021/cr500131f.
  • [24] D. Jere, H.L. Jiang, R. Arote, Y.K. Kim, Y.J. Choi, M.H. Cho, T. Akaike, C.S. Cho, Degradable polyethylenimines as DNA and small interfering RNA carriers, Expert Opin. Drug Deliv. 6 (2009) 827–834. https://doi.org/10.1517/17425240903029183.
  • [23] M. Breunig, U. Lungwitz, R. Liebl, A. Goepferich, Breaking up the correlation between efficacy and toxicity for nonviral gene delivery, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 14454–14459. https://doi.org/10.1073/pnas.0703882104.
  • [20] Y. Wang, M. Zheng, F. Meng, J. Zhang, R. Peng, Z. Zhong, Branched polyethylenimine derivatives with reductively cleavable periphery for safe and efficient in vitro gene transfer, Biomacromolecules. 12 (2011) 1032–1040. https://doi.org/10.1021/bm101364f.
  • [1] T. Friedmann, R. Roblin, Gene therapy for human genetic disease?, Science (80-. ). 175 (1972) 949–955. https://doi.org/10.1126/science.175.4025.949.
  • [19] Y. Yang, H. Zhao, Y. Jia, Q. Guo, Y. Qu, J. Su, X. Lu, Y. Zhao, Z. Qian, A novel gene delivery composite system based on biodegradable folate-poly (ester amine) polymer and thermosensitive hydrogel for sustained gene release, Sci. Rep. 6 (2016). https://doi.org/10.1038/srep21402.
  • [16] Y.S. Lee, S.W. Kim, Bioreducible polymers for therapeutic gene delivery, J. Control. Release. 190 (2014) 424–439. https://doi.org/10.1016/j.jconrel.2014.04.012.
  • [169] A. Kakigi, T. Okada, T. Takeda, D. Taguchi, R. Nishioka, M. Nishimura, Actin filaments and microtubules regulate endocytosis in marginal cells of the stria vascularis, Acta Otolaryngol. 128 (2008) 856–860. https://doi.org/10.1080/00016480701777373.
  • [168] H.S. Kruth, N.L. Jones, W. Huang, B. Zhao, I. Ishii, J. Chang, C.A. Combs, D. Malide, W.Y. Zhang, Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein, J. Biol. Chem. 280 (2005) 2352 –2360. https://doi.org/10.1074/jbc.M407167200.
  • [166] G. Bloomfield, R.R. Kay, Uses and abuses of macropinocytosis, J.Cell Sci. 129 (2016) 2697–2705. https://doi.org/10.1242/jcs.176149.
    129 ( [2016]
  • [165] J.F. Casella, M.D. Flanagan, S. Lin, Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change, Nature. 293 (1981) 302–305. https://doi.org/10.1038/293302a0.
  • [162] J. Weyermann, D. Lochmann, A. Zimmer, A practical note on the use of cytotoxicity assays, Int. J. Pharm. 288 (2005) 369–376. https://doi.org/10.1016/j.ijpharm.2004.09.018.
  • [161] R. Hamid, Y. Rotshteyn, L. Rabadi, R. Parikh, P. Bullock, Comparison of alamar blue and MTT assays for high through-put screening, Toxicol. Vitr. 18 (2004) 703–710. https://doi.org/10.1016/j.tiv.2004.03.012.
  • [159] P. Shah, A.D. Westwell, The role of fluorine in medicinal chemistry, J. Enzyme Inhib. Med. Chem. 22 (2007) 527–540. https://doi.org/10.1080/14756360701425014.
  • [157] G.J. Lee, K. Ryu, K. Kim, J. Choi, T. Kim, Crosslinked Polypropylenimine Dendrimers with Bioreducible Linkages for Gene Delivery Systems and Their Reductive Degradation Behaviors, Macromol. Biosci. 15 (2015) 1595–1604. https://doi.org/10.1002/mabi.201500141.
  • [154] W.T. Godbey, K.K. Wu, A.G. Mikos, Poly(ethylenimine)- mediated gene delivery affects endothelial cell function and viability., Biomaterials. 22 (2001) 471–80. https://doi.org/10.1016/s0142-9612(00)00203-9.
  • [152] S.M. Moghimi, P. Symonds, J.C. Murray, A.C. Hunter, G. Debska, A. Szewczyk, A two-stage poly(ethylenimine)-mediated cytotoxicity: Implications for gene transfer/therapy, Mol. Ther. 11 (2005) 990–995. https://doi.org/10.1016/j.ymthe.2005.02.010.
  • [151] K. Kim, K. Ryu, T. Il Kim, Cationic methylcellulose derivative with serum-compatibility and endosome buffering ability for gene delivery systems, Carbohydr. Polym. 110 (2014) 268–277. https://doi.org/10.1016/j.carbpol.2014.03.073.
  • [146] J.W. Wiseman, C.A. Goddard, D. McLelland, W.H. Colledge, A comparison of linear and branched polyethylenimine (PEI) with DCChol/DOPE liposomes for gene delivery to epithelial cells in vitro and in vivo, Gene Ther. 10 (2003) 1654–1662. https://doi.org/10.1038/sj.gt.3302050.
  • [145] S. Son, K. Singha, W.J. Kim, Bioreducible BPEI-SS-PEGcNGR polymer as a tumor targeted nonviral gene carrier, Biomaterials. 31 (2010) 6344–6354. https://doi.org/10.1016/j.biomaterials.2010.04.047.
  • [143] I. Kopatz, J.-S. Remy, J.-P. Behr, A model for non-viral gene delivery: through syndecan adhesion molecules and powered by actin, J. Gene Med. 6 (2004) 769–776. https://doi.org/10.1002/jgm.558.
  • [141] T. il Kim, M. Lee, S.W. Kim, A guanidinylated bioreducible polymer with high nuclear localization ability for gene delivery systems, Biomaterials. 31 (2010) 1798–1804. https://doi.org/10.1016/j.biomaterials.2009.10.034.
  • [134] J.H. Gong, Y. Wang, L. Xing, P.F. Cui, J. Bin Qiao, Y.J. He, H.L. Jiang, Biocompatible fluorinated poly(β-amino ester)s for safe and efficient gene therapy, Int. J. Pharm. 535 (2018) 180–193. https://doi.org/10.1016/j.ijpharm.2017.11.015.
  • [132] G. Chen, K. Wang, Q. Hu, L. Ding, F. Yu, Z. Zhou, Y. Zhou, J. Li, M. Sun, D. Oupický, Combining Fluorination and Bioreducibility for Improved siRNA Polyplex Delivery, ACS Appl. Mater. Interfaces. 9 (2017) 4457–4466. https://doi.org/10.1021/acsami.6b14184.
  • [130] X. Cai, R. Jin, J. Wang, D. Yue, Q. Jiang, Y. Wu, Z. Gu, Bioreducible Fluorinated Peptide Dendrimers Capable of Circumventing Various Physiological Barriers for Highly Efficient and Safe Gene Delivery, ACS Appl. Mater. Interfaces. 8 (2016) 5821–5832. https://doi.org/10.1021/acsami.5b11545.
  • [12] H. Eliyahu, Y. Barenholz, A.J. Domb, Polymers for DNA delivery, Molecules. 10 (2005) 34–64. https://doi.org/10.3390/10010034.
  • [124] T. Zhang, Y. Huang, X. Ma, N. Gong, X. Liu, L. Liu, X. Ye, B. Hu, C. Li, J.H. Tian, A. Magrini, J. Zhang, W. Guo, J.F. Xing, M. Bottini, X.J. Liang, Fluorinated Oligoethylenimine Nanoassemblies for Efficient siRNA-Mediated Gene Silencing in Serum-Containing Media by Effective Endosomal Escape, Nano Lett. 18 (2018) 6301– 6311. https://doi.org/10.1021/acs.nanolett.8b02553.
  • [122] Y.P. Xiao, J. Zhang, Y.H. Liu, Z. Huang, B. Wang, Y.M. Zhang, X.Q. Yu, Cross-linked polymers with fluorinated bridges for efficient gene delivery, J. Mater. Chem. B. 5 (2017) 8542–8553. https://doi.org/10.1039/c7tb02158e.
  • [11] D.R. Jacobson, O.A. Saleh, Counting the ions surrounding nucleic acids, Nucleic Acids Res. 45 (2017) 1596–1605. https://doi.org/10.1093/nar/gkw1305.
  • [112] M. Wang, H. Liu, L. Li, Y. Cheng, A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios, Nat. Commun. 5 (2014). https://doi.org/10.1038/ncomms4053.
  • [111] S.D. Xiong, L. Li, J. Jiang, L.P. Tong, S. Wu, Z.S. Xu, P.K. Chu, Cationic fluorine-containing amphiphilic graft copolymers as DNA carriers, Biomaterials. 31 (2010) 2673–2685. https://doi.org/10.1016/j.biomaterials.2009.12.014.
  • [110] D. O ’ Hagan, Fluorine in health care: Organofluorine containing blockbuster drugs, J. Fluor. Chem. 131 (2010) 1071– 1081. https://doi.org/10.1016/j.jfluchem.2010.03.003.
  • [109] J. Fried, E.F. Sabo, 9α-Fluoro derivatives of cortisone and hydrocortisone, J. Am. Chem. Soc. 76 (1954) 1455–1456. https://doi.org/10.1021/ja01634a101.
  • [108] N.A. Meanwell, Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design, J. Med. Chem. 61 (2018) 5822–5880. https://doi.org/10.1021/acs.jmedchem.7b01788.
  • [107] E.P. Gillis, K.J. Eastman, M.D. Hill, D.J. Donnelly, N.A. Meanwell, Applications of Fluorine in Medicinal Chemistry, J. Med. Chem. 58 (2015) 8315–8359. https://doi.org/10.1021/acs.jmedchem.5b00258.
  • [106] Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J.L. Acenã, V.A. Soloshonok, K. Izawa, H. Liu, Next Generation of FluorineContaining Pharmaceuticals, Compounds Currently in Phase II-III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas, Chem. Rev. 116 (2016) 422–518. https://doi.org/10.1021/acs.chemrev.5b00392.
  • [105] J. Gardiner, Fluoropolymers: Origin, Production, and Industrial and Commercial Applications, Aust. J. Chem. 68 (2015) 13–22. https://doi.org/10.1071/CH14165.
  • [102] H. Chang, J. Zhang, H. Wang, J. Lv, Y. Cheng, A Combination of Guanidyl and Phenyl Groups on a Dendrimer Enables Efficient siRNA and DNA Delivery, Biomacromolecules. 18 (2017) 2371– 2378. https://doi.org/10.1021/acs.biomac.7b00567.
  • Versatile Redox-Responsive Polyplexes for the Delivery of Plasmid DNA , Messenger RNA , and CRISPR-Cas9 Genome-Editing Machinery
    https : //doi.org/10.1021/acsami.8b09642 . [2018]
  • VEGF siRNA delivery system using arginine-grafted bioreducible poly ( disulfide amine )
    6 ( [2009]
  • Tumor-Penetrating PeptideFunctionalized Redox-Responsive Hyperbranched Poly ( amido amine ) Delivering siRNA for Lung Cancer Therapy
    https : //doi.org/10.1021/acsbiomaterials.7b00971 . [2018]
  • Tumor targeting RGD conjugated bio-reducible polymer for VEGF siRNA expressing plasmid delivery
    35 ( [2014]
  • Tumor Microenvironment-Regulated Redox Responsive Cationic Galactose-Based Hyperbranched Polymers for siRNA Delivery
    30 ( [2019]
  • Therapeutic plasmid DNA versus siRNA delivery : Common and different tasks for synthetic carriers ,
    161 ( [2012]
  • Therapeutic gene delivery using bioreducible polymers
    37 ( [2014]
  • The lower-generation polypropylenimine dendrimers are effective gene-transfer agents.
    19 ( [2002]
  • The influence of RGD addition on the gene transfer characteristics of disulfide-containing polyethyleneimine/DNA complexes ,
    29 ( [2008]
  • The effect of fluorination on the transfection efficacy of surface-engineered dendrimers
    35 ( [2014]
  • The different interactions of lysine and arginine side chains with lipid membranes
    117 ( [2013]
  • Targeted Gene Delivery : Importance of Administration Routes , in : Nov. Gene Ther
  • Structure–activity relationship of dendrimers engineered with twenty common amino acids in gene delivery
    29 ( [2016]
  • Structure-activity relationships of fluorinated dendrimers in DNA and siRNA delivery
    46 ( [2016]
  • Statistical : Versus block fluoropolymers in gene delivery
    6 ( [2018]
  • Stabilizing Salt-Bridge Enhances Protein Thermostability by Reducing the Heat Capacity Change of Unfolding
    6 ( [2011]
  • Size matters for in vitro gene delivery : investigating the relationships amongComplexation protocol ,
    Rep. 7 (44134. https : //doi.org/10.1038/srep44134 . [2017]
  • Sitespecific drug delivery , targeting , and gene therapy , in : Nanoarchitectonics Biomed.
    pp . 473–505 . https : //doi.org/10.1016/b978-0-12-816200-2.00013-x . [2019]
  • Serum albumin enhances polyethylenimine-mediated gene delivery to human respiratory epithelialCells ,
    7 ( [2005]
  • SelfAssembling Multifunctional Peptide Dimers for Gene Delivery Systems
    1–9 . https : //doi.org/10.1155/2015/852584 . [2015]
  • Self-assembled fluorodendrimers in theCo-delivery of fluorinated drugs and therapeutic genes
    7 ( [2016]
  • Self-Assembled FluorodendrimersCombine the Features of Lipid and Polymeric Vectors in Gene Delivery
    54 ( [2015]
  • Salt bridges : Geometrically specific , designable interactions , Proteins Struct . Funct . Bioinforma
    79 ( [2011]
  • Salt bridge stability in monomeric proteins
    293 ( [1999]
  • Relations between the structure and strength ofCertain organic bases in aqueous solution
    54 ( 1932 ) 3469–3485 . https : //doi.org/10.1021/ja01348a001 .
  • Reducible poly ( amido ethylenimine ) s designed for triggered intracellular gene delivery
    17 ( [2006]
  • Reducible poly ( 2-dimethylaminoethyl methacrylate ) : Synthesis ,Cytotoxicity , and gene delivery activity
    122 ( [2007]
  • Reducible Branched Ester-Amine Quadpolymers ( rBEAQs )Codelivering Plasmid DNA and RNA Oligonucleotides EnableCRISPR/Cas9 Genome Editing
    11 ( [2019]
  • Redox-sensitive dendrimersomes assembled from amphiphilic Janus dendrimers for siRNA delivery †
    6 ( [2018]
  • Recent Advances in the Development of Bio-Reducible Polymers for EfficientCancer Gene Delivery Systems. ,
    2 (
  • Reactive oxygen species in vascular biology : Implications in hypertension , Histochem
    122 ( [2004]
  • ROS-responsive fluorinated polycations as non-viral gene vectors
    182 ( [2019]
  • RNA interference : From gene silencing to gene-specific therapeutics , Pharmacol . Ther
    107 ( [2005]
  • RGD targeting hyaluronic acidCoating system for PEI-PBLG polycation geneCarriers ,
    155 ( [2011]
  • Progress and perspectives in developing polymeric vectors for in vitro gene delivery
    1 ( [2013]
  • Polymers modified with double-tailed fluorousCompounds for efficient DNA and siRNA delivery
    22 ( [2015]
  • Polylysine-based transfection systems utilizing receptor-mediated delivery.
    30 ( [1998]
  • Polyethylenimine-Poly ( amidoamine ) Dendrimer Modified with L-Arginines as an Efficient Gene Delivery Vector
    23 ( [2015]
  • Polyethylenimine with acid-labile linkages as a biodegradable geneCarrier
    103 ( [2005]
  • Polycations for Gene Delivery : Dilemmas and Solutions
    30 ( [2018]
  • Poly-cross-linked PEI through aromaticallyConjugated imine linkages as a newClass of pH-responsive nucleic acids packingCationic polymers
    7 (https : //doi.org/10.3389/fphar.2016.00015 . [2016]
  • Poly ( ester amine )Constructed from polyethylenimine and pluronic for gene delivery in vitro and in vivo
    23 ( [2016]
  • PEGylation of polypropylenimine dendrimers : effects on cytotoxicity , DNA condensation , gene delivery and expression in cancer cells
    Rep. 8 (9410. https : //doi.org/10.1038/s41598-018-27400-6 . [2018]
  • PEGylation as a strategy for improving nanoparticle-based drug and gene delivery
    99 ( [2016]
  • Overcoming gene-delivery hurdles : Physiological considerations for nonviral vectors
    34 ( [2016]
  • Novel reduction-responsive cross-linked polyethylenimine derivatives by click chemistry for nonviral gene delivery
    21 ( [2010]
  • Novel guanidinylated bioresponsive poly ( Amidoamine ) s designed for short hairpin RNA delivery
    11 ( [2016]
  • Novel biodegradable poly ( disulfide amine ) s for gene delivery with high efficiency and low cytotoxicity.
    19 ( [2008]
  • Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide ,
    97 ( [2008]
  • Mutation of exposed hydrophobic amino acids to arginine to increase protein stability
    5 ( [2004]
  • M. Devocelle , Poly ( ethylene glycol ) -Based Peptidomimetic “ PEGtide ” of Oligo-Arginine Allows for Efficient siRNA Transfection and Gene Inhibition
    https : //doi.org/10.1021/acsomega.9b00265 . [2019]
  • Low molecular weight PEI-based fluorinated polymers for efficient gene delivery
    162 ( [2019]
  • Liquid perfluorochemicals as flexible and efficient gas carriers applied in bioprocess engineering : An updated overview and future prospects
    35 ( [2014]
  • Library of Cationic Polymers Composed of Polyamines and Arginine as Gene Transfection Agents
    4 ( 2019 ) 2090–2101 . https : //doi.org/10.1021/acsomega.8b02977 .
  • L. Charles , P. Rocchi , L. Peng , A Fluorinated Bola-Amphiphilic Dendrimer for OnDemand Delivery of
    Oxygen Species
  • J.S . Suk , Highly compacted biodegradable DNA nanoparticles capable of overcoming the mucus barrier for
    U. S.
  • Intracellular water-specific MR of microbeadadherent cells : The HeLa cell intracellular water exchange lifetime , NMR Biomed
    21 ( [2008]
  • Interaction of nocodazole with tubulin isotypes
    55 ( [2002]
  • Increased number of Arginine-based salt bridges contributes to the thermotolerance of thermotolerant acetic acid bacteria , Acetobacter tropicalis SKU1100
    409 ( [2011]
  • In vitro gene delivery by degraded polyamidoamine dendrimers
    7 ( [1996]
  • Improved packing of poly ( ethylenimine ) /DNA complexes increases transfection efficiency , Gene Ther
    6 ( [1999]
  • Hyperbranched lysine−arginine copolymer for gene delivery
    26 ( [2015]
  • Human serum albumin enhances DNA transfection by lipoplexes and confers resistance to inhibition by serum ,
    1463 ( [2000]
  • Histidine and arginine conjugated starch-PEI and its corresponding gold nanoparticles for gene delivery
    120 ( [2018]
  • Highly Efficient and Safe Delivery of VEGF siRNA by Bioreducible Fluorinated Peptide Dendrimers for Cancer Therapy
    9 ( [2017]
  • High DNA-Binding Affinity and Gene-Transfection Efficacy of Bioreducible Cationic Nanomicelles with a Fluorinated Core
    55 ( [2016]
  • Guanidinylated block copolymers for gene transfer : A comparison with amine-based materials for invitro and invivo gene transfer efficiency
    54 ( [2015]
  • Grafting zwitterionic polymer chains onto PEI as a convenient strategy to enhance gene delivery performance
    4 ( [2013]
  • Glutathione and endosomal pH-responsive hybrid vesicles fabricated by zwitterionic polymer block poly ( Laspartic acid ) as a smart anticancer delivery platform
    119 ( [2017]
  • Glutathione Metabolism and Its Implications for Health
    134 ( [2004]
  • Gene therapy progress and prospects : nonviral vectors
    9 ( [2002]
  • Gene Therapy : A New Approach in Modern Medicine
    5 ( [2018]
  • Gene Delivery Systems : Recent Progress in Viral and Non-Viral Therapy
  • Fluorocarbon Modified Low-Molecular-Weight Polyethylenimine for siRNA Delivery
    27 ( [2016]
  • Fluoro- Vs hydrocarbon surfactants : Why do they differ in wetting performance ?
    210 ( [2014]
  • FluorineDoped Cationic Carbon Dots for Efficient Gene Delivery
    1 ( [2018]
  • Fluorination on polyethylenimine allows efficient 2D and 3D cell culture gene delivery
    3 ( [2015]
  • Fluorination effect to intermediate molecular weight polyethylenimine for gene delivery systems ,
    107 ( [2019]
  • Fluorination Enhances Serum Stability of Bioreducible Poly ( amido amine ) Polyplexes and Enables Efficient Intravenous siRNA Delivery
    7 ( [2018]
  • Fluorinated poly ( propylenimine ) dendrimers as gene vectors
    35 ( [2014]
  • Fluorinated dendrimer for TRAIL gene therapy in cancer treatment
    4 (https : //doi.org/10.1039/c5tb02712h . [2016]
  • Fluorinated Acid-Labile Branched Hydroxyl-Rich Nanosystems for Flexible and Robust Delivery of Plasmids
    14 (https : //doi.org/10.1002/smll.201803061 . [2018]
  • Enhancing polyethylenimine ’ s delivery of plasmid DNA into mammalian cells
    99 ( [2002]
  • Engineering of multiple arginines into the Ser/Thr surface of Trichoderma reesei endo-1,4-β-xylanase II increases the thermotolerance and shifts the pH optimum towards alkaline pH
    15 ( [2002]
  • Engineering biodegradable and multifunctional peptide-based polymers for gene delivery
    7 ( [2013]
  • Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine ,
    12 ( [2001]
  • Efficient Nonviral Gene Therapy Using Folate-Targeted Chitosan-DNA Nanoparticles In Vitro
    1–9 . https : //doi.org/10.5402/2012/369270 . [2012]
  • Effectiveness of small interfering RNA delivery via arginine-rich polyethylenimine-based polyplex in metastatic and doxorubicin-resistant breast cancer cells
    370 (902–910 . https : //doi.org/10.1124/jpet.119.256909 . [2019]
  • Disulfide cross-linked polyethylenimines ( PEI ) prepared via thiolation of low molecular weight PEI as highly efficient gene vectors
    19 ( [2008]
  • Disulfide cross-linked low generation dendrimers with high gene transfection efficacy , low cytotoxicity , and low cost
    134 ( [2012]
  • Development of fluorinated polyplex nanoemulsions for improved small interfering RNA delivery and cancer therapy
    11 ( [2018]
  • Design of PEI-conjugated bioreducible polymer for efficient gene delivery
    545 ( [2018]
  • . Wang , J. Wang , Quantitative imaging of glutathione in liveCells using
    , ACS