박사

Effect of Binders in Enhancing the Electrochemical Performance of Bimetallic Anodes in Sodium Ion Batteries = 나트륨 이온 배터리에서 바이메탈 양극의 전기화학적 성능 향상을 위한 바인더의 영향

논문상세정보
' Effect of Binders in Enhancing the Electrochemical Performance of Bimetallic Anodes in Sodium Ion Batteries = 나트륨 이온 배터리에서 바이메탈 양극의 전기화학적 성능 향상을 위한 바인더의 영향' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 다른 유기생산품의 기술
  • 바이메탈양극
  • 전기화학
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
54 0

0.0%

' Effect of Binders in Enhancing the Electrochemical Performance of Bimetallic Anodes in Sodium Ion Batteries = 나트륨 이온 배터리에서 바이메탈 양극의 전기화학적 성능 향상을 위한 바인더의 영향' 의 참고문헌

  • Z.-K. , Poly ( vinylidene fluoride ) /poly ( acrylic acid ) /calcium carbonate composite membranes via mineralization .
    454 , 144-154 . [2014]
  • Z. , Automotive Li-ion batteries : current status and future perspectives
    2 ( 1 ) , 1-28 . [2019]
  • Update on anode materials for Na-ion batteries
    3 ( 35 ) , 17899-17913 . [2015]
  • Understanding the interaction of the carbonates and binder in Na-ion batteries : a combined bulk and surface study
    27 ( 4 ) , 1210-1216 . [2015]
  • Two-dimensional nanostructures for sodium-ion battery anodes .
    6 ( 8 ) , 3284-3303 . [2018]
  • Three-dimensionally interconnected nickel– antimony intermetallic hollow nanospheres as anode material for high-rate sodium-ion batteries
    16 , 389-398 . [2015]
  • The role of graphene for electrochemical energy storage
    14 ( 3 ) , 271-279 . [2015]
  • The emerging chemistry of sodium ion batteries for electrochemical energy storage
    54 ( 11 ) , 3431- 3448 . [2015]
  • Synthesis of high volumetric capacity graphene oxide-supported tellurantimony Na-and Li-ion battery anodes by hydrogen peroxide sol gel processing .
  • Synthesis and electrochemical performance of transition metal-coated carbon nanofibers as anode materials for lithium secondary batteries
    68 , 161-167 [2018]
  • Structural design of anode materials for sodium-ion batteries
    6 ( 15 ) , 6183-6205 . [2018]
  • SodiumCarboxymethylCellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries
    44 , 66-69 . [2014]
  • Sodium-ion batteries : present and future
    46 ( 12 ) , 3529-3614 . [2017]
  • Sodium-Ion Batteries : From Academic Research to PracticalCommercialization
    8 ( 4 ) , 1701428 . [2018]
  • Sodium metal anodes for roomtemperature sodium-ion batteries : applications ,Challenges and solutions
    16 , 6-23 . [2019]
  • Sodium and sodium-ion batteries : 50 years of research
    8 ( 17 ) , 1703137 [2018]
  • SnTe–TiC–CComposites as highperformance anodes for Li-ion batteries .
    365 , 372-379 . [2017]
  • SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries
    176 , 1296- 1301 . [2015]
  • SnSe alloy as a promising anode material for Na-ion batteries
    51 ( 1 ) , 50-53 . [2015]
  • Small things make big deal : powerful binders of lithium batteries and post-lithium batteries
    [2018]
  • Small things make a big difference : binder effects on the performance of Li and Na batteries
    16 ( 38 ) , 20347-20359 . [2014]
  • Sb–Si Alloys and Multilayers for Sodium-Ion Battery Anodes .
    2 ( 3 ) , 2205-2213 . [2019]
  • Sb nanoparticles encapsulated in a reticular amorphousCarbon network for enhanced sodium storage
    11 ( 40 ) , 5381-5387 . [2015]
  • Sb nanoparticles decorated N-richCarbon nanosheets as anode materials for sodium ion batteries with superior rateCapability and longCycling stability .
    50 ( 85 ) , 12888-12891 . [2014]
  • Safety Issues in Lithium Ion Batteries : Materials andCell Design
    7 , 65 [2019]
  • S. , Poly ( acrylic acid ) –based hybrid inorganic–organic electrolytes membrane for electrical double layerCapacitors application
    8 ( 5 ) , 179 [2016]
  • Room-temperature stationary sodium-ion batteries for large-scale electric energy storage .
    6 ( 8 ) , 2338-2360 . [2013]
  • Role ofConductive binder to direct solid–electrolyte interphase formation over silicon anodes .
    21 ( 31 ) , 17356-17365 . [2019]
  • Research development on sodium-ion batteries
    114 ( 23 ) , 11636-11682 . [2014]
  • Polymeric binder based on PAA andConductive PANI for high performance silicon-based anodes .
    6 ( 103 ) , 101622- 101625 . [2016]
  • Performance and mechanism of FeSb2 as negative electrode for Na-ion batteries
    280 , 588-592 . [2015]
  • Opportunities and challenges for a sustainable energy future
    488 ( 7411 ) , 294 . [2012]
  • One pot synthesis of ordered mesoporous carbon–silica– titania with parallel alignment against graphene as advanced anode material in lithium ion batteries
    71 , 93-98 . [2019]
  • Novel Methods for SodiumIon Battery Materials .
    1 ( 5 ) , 1600063 . [2017]
  • Na-ion battery anodes : materials and electrochemistry .
    49 ( 2 ) , 231-240 . [2016]
  • Na reactivity toward carbonate-based electrolytes : the effect of FEC as additive .
    163 ( 10 ) , A2333-A2339 . [2016]
  • Materials for lithium-ion battery safety
    4 ( 6 ) , eaas9820 . [2018]
  • Material and structural design of novel binder systems for high-energy , high-power lithium-ion batteries
    50 ( 11 ) , 2642-2652 . [2017]
  • M. R. , Non-aqueous electrolytes for sodium-ion batteries .
    3 ( 1 ) , 22-42 . [2015]
  • Low-Defect and LowPorosity Hard Carbon with High Coulombic Efficiency and High Capacity for Practical Sodium Ion Battery Anode
    8 ( 20 ) , 1703238 [2018]
  • Layered Sb 2 Te 3 and its nanocomposite : a new and outstanding electrode material for superior rechargeable Li-ion batteries .
    4 ( 22 ) , 8562-8565 . [2016]
  • L. F. Sodium and Sodium-Ion Energy Storage Batteries
    16 ( 4 ) , 168-177 . [2012]
  • Investigation of electrochemical performance on carbon supported tin-selenium bimetallic anodes in lithium-ion batteries
    266 , 193-201 . [2018]
  • In Executive overview : energy storage options for a sustainable energy future
    pp 2309-2314 [2004]
  • Highly disordered carbon as a superior anode material for roomtemperature sodium-ion batteries
    1 ( 1 ) , 83-86 . [2014]
  • Highly Reversible Na-Ion Reaction in Nanostructured Sb2Te3-C Composites as Na-Ion Battery Anodes .
    164 ( 9 ) , A2056-A2064 . [2017]
  • High-performance FeSb–TiC–C nanocomposite anodes for sodium-ion batteries .
    16 ( 25 ) , 12884-12889 . [2014]
  • High-capacity te anode confined in microporous carbon for long-life Na-ion batteries
    7 ( 50 ) , 27838-27844 . [2015]
  • High-Capacity Anode Materials for Sodium-Ion Batteries
    20 ( 38 ) , 11980-11992 . [2014]
  • High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries
    48 ( 56 ) , 7070-7072 . [2012]
  • Functional separator with lower resistance toward lithium ion transport for enhancing the electrochemical performance of lithium ion batteries
    71 , 228-233 [2019]
  • Functional binders for reversible lithium intercalation into graphite in propylene carbonate and ionic liquid media
    195 ( 18 ) , 6069-6074 [2010]
  • From lithium-ion to sodium-ion batteries : advantages , challenges , and surprises
    57 ( 1 ) , 102- 120 . [2018]
  • Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries .
    3 ( 11 ) , 4165-4168 . [2011]
  • Facile synthesis of aluminum-antimony alloys and their application for lithium-ion and sodium-ion storage
    17 ( 10 ) , 7575-7578 . [2017]
  • Facile synthesis and in situ transmission electron microscopy investigation of a highly stable Sb2Te3/C nanocomposite for sodium-ion batteries
    9 , 214-220 . [2017]
  • Fabrication of Continuous Microfibers Containing Magnetic Nanoparticles by a Facile MagnetoMechanical Drawing
    11 ( 1 ) , 426 . [2016]
  • F.-F. ; Aurbach , D. , Comparison between Na-Ion and Li-Ion cells : understanding the critical role of the cathodes stability and the
    applied materials & interfaces 2016 , 8
  • Exploration of Advanced Electrode Materials for Rechargeable Sodium-Ion Batteries
    9 ( 23 ) , 1800212 . [2019]
  • Exploration of Advanced Electrode Materials for Rechargeable Sodium-Ion Batteries
    1800212 [2018]
  • Excavated carbon with embedded Si nanoparticles for ultrafast lithium storage .
    68 , 146-152 . [2018]
  • Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes
    10 ( 1 ) , 725 . [2019]
  • Energy , environment and sustainable development
    64 ( 1-4 ) , 427-440 . [1999]
  • Electrolytes , SEI Formation , and Binders : A Review of Nonelectrode Factors for Sodium-Ion Battery Anodes .
    14 ( 16 ) , 1703576 . [2018]
  • Electrolyte Additives for Room-Temperature , Sodium-Based , Rechargeable Batteries .
    13 ( 19 ) , 2770-2780 . [2018]
  • Electrode materials for rechargeable sodiumion batteries : potential alternatives to current lithium-ion batteries
    2 ( 7 ) , 710-721 . [2012]
  • Electroactive phases of poly ( vinylidene fluoride ) : Determination , processing and applications
    39 ( 4 ) , 683-706 . [2014]
  • Effects of functional binders on electrochemical performance of graphite anode in potassium-ion batteries
    25 ( 6 ) , 2563-2574 . [2019]
  • Effects of binders on electrochemical performance of nitrogen-doped carbon nanotube anode in sodium-ion battery
    174 , 970-977 . [2015]
  • Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode
    161 ( 2 ) , 1254-1259 . [2006]
  • Effect of TiC addition on SnSb–C composite anodes for sodium-ion batteries .
    269 , 848-854 . [2014]
  • E. D. , Cracking resistance and electrochemical performance of silicon anode on binders with different mechanical characteristics
    [2019]
  • Determination of the crystalline phases of poly ( vinylidene fluoride ) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy
    89 ( 4 ) , 1093-1100 [2003]
  • Cubic crystal-structured SnTe for superior Li-and Na-ion battery anodes .
    11 ( 6 ) , 6074-6084 . [2017]
  • Copper–antimony–red phosphorus composites as promising anode materials for sodium-ion batteries
    362 , 115-122 [2017]
  • Conversion-Alloying Anode Materials for Na-ion Batteries : Recent Progress , Challenges , and Perspective for the Future
    55 ( 4 ) , 307-324 . [2018]
  • Convective flow adsorption of nickel ions in PVDF membrane embedded with multi-walled carbon nanotubes and PAA coating .
    80 ( 1 ) , 155-162 . [2011]
  • Concentration Effect of Fluoroethylene Carbonate on the Formation of Solid Electrolyte Interphase Layer in Sodium-Ion Batteries
    10 ( 34 ) , 28525-28532 [2018]
  • Challenges in the development of advanced Li-ion batteries : A review
    4 ( 9 ) , 3243-3262 . [2011]
  • Carbon embedded SnSb composite tailored by carbothermal reduction process as high performance anode for sodium-ion batteries
    60 , 451-457 . [2018]
  • C. S. , Sodium-ion batteries
    23 ( 8 ) , 947-958 . [2013]
  • Binary Cu/ZnO decorated graphene nanocomposites as an efficient anode for lithium ion batteries
    59 , 108-114 [2018]
  • Batteries and fuel cells for emerging electric vehicle markets
    3 ( 4 ) , 279-289 . [2018]
  • Atom-level understanding of the sodiation process in silicon anode material
    5 ( 7 ) , 1283-1288 . [2014]
  • Antimony nanoparticles anchored on interconnected carbon nanofibers networks as advanced anode material for sodium-ion batteries
    284 , 227-235 [2015]
  • An overview on thermal safety issues of lithium-ion batteries for electric vehicle application
    6 , 23848-23863 . [2018]
  • An electrochemical study of Sb/acetylene black composite as anode for sodium-ion batteries
    146 , 328-334 . [2014]
  • An Advanced MoS2/Carbon Anode for High-Performance Sodium-Ion Batteries
    11 ( 4 ) , 473-481 . [2015]
  • Alloy-based anode materials toward advanced sodium-ion batteries
    29 ( 48 ) , 1700622 . [2017]
  • Advances and challenges of sodium ion batteries as post lithium ion batteries
    5 ( 65 ) , 53129-53154 [2015]
  • Additive effect of fluoroethylene and difluoroethylene carbonates for the solid electrolyte interphase film formation in sodium-ion batteries : a quantum chemical study
    6 ( 69 ) , 65232-65242 . [2016]
  • A. M. , Stable anode performance of an Sb–carbon nanocomposite in lithium-ion batteries and the effect of ball milling mode in the course of its preparation
    2 ( 12 ) , 4282-4291 [2014]
  • A review of carbon materials and their composites with alloy metals for sodium ion battery anodes
    98 , 162-178 [2016]
  • A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells
    19 ( 22 ) , 4006-4011 . [2007]
  • A cost and resource analysis of sodium-ion batteries
    3 ( 4 ) , 18013 . [2018]
  • A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries
    2 ( 44 ) , 19036-19045 . [2014]
  • A comparative study of polyacrylic acid ( PAA ) and carboxymethyl cellulose ( CMC ) binders for Si-based electrodes
    258 , 453-466 [2017]
  • A comparative study of different binders and their effects on electrochemical properties of LiMn2O4 cathode in lithium ion batteries
    247 , 1-8 [2014]
  • 95. Nagulapati, V. M.; Kim, D. S.; Oh, J.; Lee, J. H.; Hur, J.; Kim, I. T.; Lee, S. G., Enhancing the Electrochemical Performance of SbTe Bimetallic Anodes for High-Performance Sodium-Ion Batteries: Roles of the Binder and Carbon Support Matrix. Nanomaterials 2019, 9 (8), 1134.
  • 92. Piriya, V. A.; Shende, R. C.; Seshadhri, G. M.; Ravindar, D.; Biswas, S.; Loganathan, S.; Balasubramanian, T.; Rambabu, K.; Kamaraj, M.; Ramaprabhu, S., Synergistic Role of Electrolyte and Binder for Enhanced Electrochemical Storage for Sodium-Ion Battery. ACS Omega 2018, 3 (8), 9945- 9955.
  • 88. Choi, H.; Baeck, J. H.; Kim, T.-H.; Song, J. Y.; Shin, S.; Cho, H.; Ko, D.-H.; Kim, J.-S.; Jeong, K. H.; Cho, M.-H., Synthesis of self-ordered Sb 2 Te 2 films with atomically aligned Te layers and the effect of phonon scattering modulation. Journal of Materials Chemistry C 2013, 1 (42), 7043-7053.
  • 82. Parikh, P.; Sina, M.; Banerjee, A.; Wang, X.; D'Souza, M. S.; Doux, J.-M.; Wu, E. A.; Trieu, O. Y.; Gong, Y.; Zhou, Q., Role of Polyacrylic acid (PAA) binder on the solid electrolyte interphase in silicon anodes. Chemistry of Materials 2019.
  • 70. Nagulapati, V. M.; Yoon, Y. H.; Kim, D. S.; Kim, H.; Lee, W. S.; Lee, J. H.; Kim, K. H.; Hur, J.; Kim, I. T.; Lee, S. G., Effect of binders and additives to tailor the electrochemical performance of Sb2Te3– TiC alloy anodes for high-performance sodium-ion batteries. Journal of Industrial and Engineering Chemistry 2019.
  • 63. Ji, L.; Gu, M.; Shao, Y.; Li, X.; Engelhard, M. H.; Arey, B. W.; Wang, W.; Nie, Z.; Xiao, J.; Wang, C., Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Advanced materials 2014, 26 (18), 2901-2908.
  • 53. Jeong, S. Y.; Ghosh, S.; Kim, J.-K.; Kang, D.-W.; Jeong, S. M.; Kang, Y. C.; Cho, J. S., Multichannel-contained few-layered MoSe2 nanosheet/N-doped carbon hybrid nanofibers prepared using diethylenetriamine as anodes for high-performance sodium-ion batteries. Journal of Industrial and Engineering Chemistry 2019, 75, 100-107.
  • 46. Pawar, S.; Pawar, B.; Hou, B.; Ahmed, A.; Chavan, H.; Jo, Y.; Cho, S.; Kim, J.; Seo, J.; Cha, S., Facile electrodeposition of high-density CuCo2O4 nanosheets as a high-performance Li-ion battery anode material. Journal of industrial and engineering chemistry 2019, 69, 13-17.
  • 33. Parikh, P.; Sina, M.; Banerjee, A.; Wang, X.; D’Souza, M. S.; Doux, J.-M.; Wu, E. A.; Trieu, O. Y.; Gong, Y.; Zhou, Q., Role of Polyacrylic acid (PAA) binder on the solid electrolyte interphase in silicon anodes. Chemistry of Materials 2019, 31 (7), 2535-2544.
  • 32. Nagulapati, V. M.; Yoon, Y. H.; Kim, D. S.; Kim, H.; Lee, W. S.; Lee, J. H.; Kim, K. H.; Hur, J.; Kim, I. T.; Lee, S. G., Effect of binders and additives to tailor the electrochemical performance of Sb2Te3- TiC alloy anodes for high-performance sodium-ion batteries. Journal of Industrial and Engineering Chemistry 2019, 76, 419-428.
  • 30 years of lithium-ion batteries
    30 ( 33 ) , 1800561 . [2018]
  • 23. Farbod, B.; Cui, K.; Kalisvaart, W. P.; Kupsta, M.; Zahiri, B.; Kohandehghan, A.; Lotfabad, E. M.; Li, Z.; Luber, E. J.; Mitlin, D., Anodes for sodium ion batteries based on tin–germanium–antimony alloys. ACS nano 2014, 8 (5), 4415-4429.
  • 19. Mukherjee, S.; Bin Mujib, S.; Soares, D.; Singh, G., Electrode Materials for High-Performance Sodium-Ion Batteries. Materials 2019, 12 (12), 1952.
  • 113. Nitta, N.; Lei, D.; Jung, H.-R.; Gordon, D.; Zhao, E.; Gresham, G.; Cai, J.; Luzinov, I.; Yushin, G., Influence of binders, carbons, and solvents on the stability of phosphorus anodes for Li-ion batteries. ACS applied materials & interfaces 2016, 8 (39), 25991-26001.
  • 'Li-ion battery materials : present and future
    18 ( 5 ) , 252-264 . [2015]