박사

클리트 충격에 대한 유연 다물체 차량의 동역학 및 음향 해석 = Dynamic and Acoustic Analysis of Flexible Multibody Vehicles for Cleat Impacts

한명재 2020년
논문상세정보
' 클리트 충격에 대한 유연 다물체 차량의 동역학 및 음향 해석 = Dynamic and Acoustic Analysis of Flexible Multibody Vehicles for Cleat Impacts' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Acoustic Radiation
  • Boundary Element Method
  • Cleat Impact Analysis
  • Multi-body Dynamics
  • Quarter Vehicle
  • finite-elementmethod
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
139 0

0.0%

' 클리트 충격에 대한 유연 다물체 차량의 동역학 및 음향 해석 = Dynamic and Acoustic Analysis of Flexible Multibody Vehicles for Cleat Impacts' 의 참고문헌

  • ¡°Vibro-acoustic responses of aCoupled propeller-shaft-hull system due to propeller forces¡±
    Vol . 173 , pp . 460-468 [2019]
  • ¡°Vibro-acoustic analysis ofCoupled spherical-cylindrical-spherical shells stiffened by ring and stringer reinforcements¡± ,
    Vol . 355 , pp . 345-359 [2015]
  • ¡°Vibro-acoustic analysis of the acoustic-structure interaction of flexible structure due to acoustic excitation¡± ,
    Vol . 108 , pp . 129-145 [2015]
  • ¡°Transient dynamic response analysis of 3-D patterned tire rolling overCleat¡±
    Vol . 24 , pp . 519-531 [2005]
  • ¡°Transient dynamic behavior of finite element tire traversing obstacles with different heights¡±
    Vol . 56 , pp . 1-16 [2014]
  • ¡°Structural-acoustic modalCoupling analysis and application to noise reduction in a vehicle passengerCompartment¡± ,
    Vol . 225 , No . 5 , pp . 989-999 , [1999]
  • ¡°Structural-acoustic finite element analysis of the automobile passengerCompartment : a review ofCurrent practice¡±
    Vol . 80 , No . 2 , pp . 247-266 [1982]
  • ¡°Structural vibration and acoustic radiation ofCoupled propeller-shafting and submarine hull system due to propeller forces¡±
    Vol . 401 , pp . 76-93 [2017]
  • ¡°Short term spectral analysis , synthesis , and modification by discrete Fourier transform¡± ,
    Vol . 25 , No . 3 , pp . 235~238 [1977]
  • ¡°Numerical modeling of engine noise radiation through the use of acoustic transfer vectors ACase Study¡±
    [2001]
  • ¡°Numerical and experimental investigation on vibro-acoustic response of a shaft-hull system¡± , Engineering Analysis with Boundary Elements
    Vol . 71 , pp . 129-139 [2016]
  • ¡°Modal synthesis forCombined structural-acoustic systems¡±
    Vol . 15 , No . 5 , pp . 743-745 , [1977]
  • ¡°Low-frequency acoustic-structure analysis usingCoupled FEM-BEM method¡±
    Article 583079 [2013]
  • ¡°Fast BEM-FEM mortarCoupling for acoustic-structure interaction¡±
    Vol . 62 , No.12 , pp . 1677-1690 [2005]
  • ¡°Explicit evaluation of hypersingular boundary integral equations for acoustic sensitivity analysis based on direct differential method¡± ,
    Vol . 35 , pp . 1225-1235 [2011]
  • ¡°Dynamic analysis of rubber-like material using absolute nodalCoordinate formulation based on the non-linearConstitutive law
    Vol . 63 , No . 1-2 , pp . 149-157 [2011]
  • ¡°Automotive panel noiseContribution modeling based on finite element and measured structural-acoustic spectra¡±
    Vol . 60 , No . 4 , pp . 505-519 [2000]
  • ¡°An acoustic finite element approach for studying boundary flexibility and sound transmission between irregular enclosures¡±
    Vol . 30 , No . 3 , pp . 343-357 , [1973]
  • ¡°ACollocation BEM for 3D acoustic problems based on a non-singular Burton-Miller formulation with linearContinuous elements¡±
    Vol . 332 , pp . 191-216 [2018]
  • ¡°A unified boundary element method for the analysis of sound and shell-like structure interactions . I. formulation and verification¡±
    Vol . 103 , No . 3 , pp . 1247-1254 [1999]
  • ¡°A unified boundary element method for the analysis of sound and shell-like structure interaction . I. formulation and verification¡±
    Vol . 106 , No . 3 , pp . 1247-1254 , [1999]
  • ¡°A study on design for the high performance tire using the fluid-structure interaction analysis¡±
    [2017]
  • [9] G. C. Everstine, ¡°A symmetric potential formulation for fluid-structure interaction¡±, Journal of Sound and Vibration, Vol. 79, No. 1, pp. 157-160, 1981.
  • [8] M. Petyt and S. P. Lim, ¡°Finite element analysis of the noise inside a mechanically excited cylinder¡±, International Journal for Numerical Methods in Engineering, Vol. 13, pp. 109-122, 1978.
  • [7] O. C. Zienkiewicz and P. Bettess, ¡°Fluid-structure dynamic interaction and wave forces; an introduction to numerical treatment¡±, International Journal for Numerical Methods in Engineering, Vol. 13, pp. 1-16, 1978.
  • [6] O. C. Zienkiewicz and R. E. Newton, ¡°Coupled vibrations of a structure submerged in a compressible fluid, Proceedings of the Symposium on Finite Element Techniques¡±, University of Stuttgart, pp. 360-379, 1969.
  • [60] MATLAB R2019a, https://kr.mathworks.com/help/signal/ref/stft.html
  • [55] M. Berdychowski and K. J. Walus, ¡°Verification of the simulation model with actual research vertical stiffness passenger car tire¡±, Machine Dynamics Research , Vol. 37, No. 25, pp. 5-14, 2013.
  • [54] M. Rafie, M. H. R. Ghoreishy and G. Naderi, ¡°Thermo-mechanical coupled finite element simulation of tire cornering characteristics-effect of complex material models and law¡±, Mathematics and Computers in Simulation, Vol. 144, pp. 35-51, 2018.
  • [53] O. H. Yeoh, ¡°Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chemitsry and Technology, Vol. 63, No. 5, pp. 792-805, 1990.
  • [51] M. Shahzad, A. Kamran, M. Z. Siddiqui and M. Farhan, ¡°Mechanical characterization and FE modelling of a hyperelastic material¡±, Materials Research, Vol. 18, No. 5, pp. 918-924, 2015.
  • [50] ABAQUS User¡¯s Manual 6.14
  • [4] A. J. Pretlove, ¡°Forced vibrations of a rectangular panel backed by a closed rectangular cavity¡±, Journal of Sound and Vibration, Vol. 3, No. 3, pp. 252-261, 1966.
  • [49] G. L. Bradley, P. C. Chang and G. B. Mckenna, ¡°Rubber modeling using uniaxial test data¡±, Journal of Applied Polymer Science, Vol 81, No. 4, pp. 837-848, 2001.
  • [46] D. T. Wilton, ¡°Acoustic radiation and scattering from elastic structures¡±, International Journal for Numerical Methods in Engineering, Vol. 13, pp. 123-138, 1978.
  • [3] A. J. Pretlove, ¡°Free vibrations of a rectangular panel backed by a closed rectangular cavity¡±, Journal of Sound and Vibration, Vol. 2, No. 3, pp. 197-209, 1965.
  • [37] M. Geradin and A. Cardona, Flexible multibody dynamics: a finite element appraoch, John Wiley & Sons, 2000.
  • [2] J. W. S. Rayleigh, The Theory of Sound, 2nd ed., MacMillan, London (reprinted by Dover, New York, 1945), Vol. 2, pp. 162-169.
  • [28] S. Kopuz, Y. S. Unlusoy and M. Caliskan, ¡°Integrated FEM/BEM approach to the dynamic and acoustic analysis of plate structures¡±, Engineering Analysis with Boundary Elements, Vol. 17, No. 4, pp. 269-277, 1996.
  • [27] G. C. Everstine and F. M. Henderson, ¡°Coupled finite element/boundary element approach for fluid-structure interaction¡±, The Journal of the Acoustical Society of America, Vol. 87, No. 5, pp. 1938-1947, 1990.
  • [25] S. H. Sung and D. J. Nefske, ¡°A coupled structural-acoustic finite element model for vehicle interior noise analysis¡±, Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 106, No. 2, pp. 314-318, 1984.
  • [1] N. Zafeiropoulos, Active noise contorl in a Luxury vehicle, PhD thesis, University of Salford, 2015.
  • [17] R. Citarella, L. Federico and A. Cicatiello, ¡°Modal acoustic transfer vector approach in a FEM-BEM vibro-acoustic analysis¡±, Engineering Analysis with Boundary Elements, Vol. 31, pp. 248-258, 2007.
  • [15] H. A. Schenck, ¡°Improved integral formulation for acoustic radiation problems¡±, The Journal of the Acoustical Society of America, Vol. 44, No. 1, pp. 41-58, 1968.
  • [12] A. Sommerfeld, Partial differential equations in physics, Academic Press, New York, 1949.
  • [11] J. F. Unruh, ¡°Finite element subvolume technique for structural-borne interior noise prediction¡±, Journal of Aircraft , Vol. 17, No. 6, pp. 434-441, 1980.
  • U. Sandberg and E. P. Mun ,
    No . FHWA-IF-08-004 [2007]
  • The finite element method : its basis and fundamentals
    [2005]
  • T. K. Pellinen and W. J. Weiss , ¡°An Introduction to Tire/Pavement Noise of Asphalt Pavement¡±
    [2005]
  • S. K. Lee and J. P. Koh , ¡°CWT-Based Method for Identifying the Location of the Impact Source in Buried Pipes¡±
    Vol . 34 , No . 11 , pp . 1555~1565 [2010]
  • P. Sendur and I. Basdogan , ¡°Vibro-acoustic analysis of a heavy duty truck cabin¡± ,
    Vol . 2 , No . ESDA2014-20559 , pp . V002T07A025 ; 7 pages , [2014]
  • M. Felice and A. Selmane , ¡°Acoustic transfer vectors for numerical modeling of engine noise¡± , Sound Vib
    Vol . 36 , pp . 20 ? 25 [2002]
  • H. Van Brussel and W. Desmet , ¡°Concurrent mechatronic design approach for active control of cavity noise¡± ,
    Vol . 314 , No . 3-5 , pp . 507-525 [2008]
  • FUNDAMENTALS OF SIGNAL PROCESSING FOR SOUND AND VIBRATION ENGINEERS
    [2008]
  • F. J. Rizzo and D. J. Shippy , ¡°A boundary element model for acoustic-elastic interaction with applications in ultrasonic NDE¡± ,
    Vol . 9 , No . 2/3 , pp . 101-112 , [1990]
  • E. Deckers and W. Desmet , ¡°Stability-preserving model order reduction for time-domain simulation of vibro-acoustic FE models¡± ,
    Vol . 109 , No . 6 , pp . 889-912 [2017]
  • D. E. Smith and T. G. Byrom
    [2001]
  • Computer-aided analysis of rigid and flexible mechanical systems
    [1994]
  • A. Parente and M. Pirelli , Vibro-acoustic numerical analysis for the chain cover of a car engine¡±
    Vol . 7 , No . 610 , [2017]
  • A. Parente and M. Pirelli , FEM-BEM numerical procedure for insertion loss assessment of an engine beauty cover¡±
    Vol . 7 , pp . 27-34 [2013]
  • A. Mosquera Sanchez and L. A. M. Goncalves , Loudness scattering due to vibro-acoustic model variability¡±
    Vol . 34 , pp . 604-611 [2012]