박사

(A) study on the sensitivity enhancement of electrochemical sensors by using nanostructured materials

한지훈 2020년
논문상세정보
' (A) study on the sensitivity enhancement of electrochemical sensors by using nanostructured materials' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Laser induced graphene
  • bio-sensor
  • electrochemical sensor
  • nafionmembrane
  • nanostructuredmaterial
  • zno nanorod
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
161 0

0.0%

' (A) study on the sensitivity enhancement of electrochemical sensors by using nanostructured materials' 의 참고문헌

  • ¡°The effect of membrane thickness on theConductivity of Nafion
    vol . 51 , no . 13 , pp . 2743 ? 2755 [2006]
  • ¡°Structure-property relationships at Nafion thin-film interfaces : Thickness effects on hydration and anisotropic ion transport
    vol . 46 , no . February , pp . 91 ? 100 [2018]
  • ¡°Stretchable biofuelCells as wearable textile-based self-powered sensors
    vol . 4 , no . 47 , pp . 18342 ? 18353 [2016]
  • ¡°Skin electronics from scalable fabrication of an intrinsically stretchable transistor array
    vol . 555 , no . 7694 , pp . 83 ? 88 [2018]
  • ¡°Sensors and Actuators B :Chemical A low temperatureCo-firedCeramic based microfluidicClark-type oxygen sensor for real-time oxygen sensing , ¡± Sensors Actuators B
    vol . 240 , pp . 392 ? 397 [2017]
  • ¡°ProtonConductivity of nafion 117 as measured by a four-electrode AC impedance method
    vol . 143 , no . 4 , pp . 1254 ? 1259 [1996]
  • ¡°Problems associated with the thin-film Ag/AgCl reference electrode and a novel structure with improved durability
    vol . 46 , no . 2 , pp . 104 ? 113 [1998]
  • ¡°PVDFNafion nanomembranesCoated microneedles for in vivo transcutaneous implantable glucose sensing , ¡± Biosens . Bioelectron.
    vol . 74 , pp . 1047 ? 1052 [2015]
  • ¡°OxygenCalibration and Solubility in Experimental Media
    vol . 12 , no . April , pp . 1 ? 12 [2010]
  • ¡°Monitoring oocyte/embryo respiration using electrochemical-based oxygen sensors
    vol . 276 , no . August , pp . 72 ? 81 [2018]
  • ¡°Mitochondria-based model for fetal origin of adult disease and insulin resistance , ¡± Ann . N. Y. Acad . Sci.
    vol . 1042 , pp . 1 ? 18 [2005]
  • ¡°MiR24-mediated knockdown of H2AX damages mitochondria and the insulin signaling pathway ,
    vol . 49 , no . 4 , pp . e313- 13 [2017]
  • ¡°Membrane Materials for PEM-Fuel-Cells : A Microstructural Approach
    23 , pp . 241 ? 246 [1995]
  • ¡°IonicConductivity of an extruded Nafion 1100 EW series of membranes , ¡± J. Electrochem
    vol . 149 , no . 12 , pp . 1556 ? 1564 [2002]
  • ¡°Ion transport in Nation 117 membrane , ¡± J. Electroanal .
    vol . 428 , no . 1 ? 2 , pp . 81 ? 89 [1997]
  • ¡°Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances : Recent Progress , Applications , and Future Perspective
    vol . 119 , no . 1 , pp . 120 ? 194 [2019]
  • ¡°Fabrication of miniatureClark oxygen sensor integrated with microstructure
    vol . 110 , no . 2 , pp . 342 ? 349 [2005]
  • ¡°Fabrication andCharacterization of micro dissolved oxygen sensor activated on demand using electrolysis ,
    vol . 241 , pp . 923 ? 930 [2017]
  • ¡°DisposableChemical Oxygen Demand Sensor Using a MicrofabricatedClark-Type Oxygen Electrode with a TiO2 Suspension Solution
    vol . 12 , pp . 1334 ? 1338 [2000]
  • ¡°Development of multi-well-based electrochemical dissolved oxygen sensor array
    vol . 306 , pp . 127465 , [2020]
  • ¡°Designing anti-diabetic ¥â-cells microcapsules using polystyrenic sulfonate , polyallylamine , and a tertiary bile acid : Morphology , bioenergetics , andCytokine analysis
    vol . 32 , no . 2 , pp . 501 ? 509 [2016]
  • ¡°A review of polymer electrolyte membrane fuelCells : Technology , applications , and needs on fundamental research
    vol . 88 , no . 4 , pp . 981 ? 1007 [2011]
  • ¡°A reservoirtype oxygen sensor with 2¡¿3 array for measuringCellular respiration levels
    vol . 176 , pp . 913 ? 920 [2013]
  • ¡°A multi-virus detectable microfluidic electrochemical immunosensor for simultaneous detection of H1N1 , H5N1 , and H7N9 virus using ZnO nanorods for sensitivity enhancement ,
    vol . 228 , pp . 36-42 [2016]
  • ¡°A miniatureClark-type oxygen electrode using a polyelectrolyte and its application as a glucose sensor ,
    vol . 6 , no . 5 , pp . 395 ? 400 [1991]
  • ¡°A low temperatureCo-firedCeramic based microfluidicClark-type oxygen sensor for real-time oxygen sensing ,
    vol . 240 , pp . 392 ? 397 [2017]
  • [9] T. A. Zawodzinski et al., ¡°Water uptake by and transport through Nafion(R) 117 membranes,¡± J. Electrochem. Soc., vol. 140, no. 4, pp. 1041?1047, 1993.
  • [6] D. Kim and A. E. Herr, ¡°Protein immobilization techniques for microfluidic assays,¡± Biomicrofluidics, vol. 7, no. 4, 2013.
  • [5] S. Cagnin et al., ¡°Overview of electrochemical DNA biosensors: New approaches to detect the expression of life,¡± Sensors (Switzerland), vol. 9, no. 4, pp. 3122?3148, 2009.
  • [5] B. K. Wagner et al., ¡°Large-scale chemical dissection of mitochondrial function,¡± Nat. Biotechnol., vol. 26, no. 3, pp. 343?351, 2008.
  • [4] H. A. Abdulbari and E. A. M. Basheer, ¡°Electrochemical Biosensors: Electrode Development, Materials, Design, and Fabrication,¡± ChemBioEng Rev., vol. 4, no. 2, pp. 92?105, 2017.
  • [4] D. J. Alexander and I. H. Brown, "Recent zoonoses caused by influenza A viruses," Revue scientifique et technique (International Office of Epizootics), vol. 19, pp. 197-225, 2000.
  • [3] S. K. Vashist et al., ¡°Nanotechnology-Based Biosensors and Diagnostics: Technology Push versus Industrial/Healthcare Requirements,¡± Bionanoscience, vol. 2, no. 3, pp. 115?126, 2012.
  • [3] I. Capua and D. J. Alexander, "Avian influenza and human health," Acta Tropica, vol. 83, pp. 1-6, 2002.
  • [39] R.W. Dreyfus,CN temperatures above laser ablated polyimide, Appl. Phys. A Solids Surfaces. 55 (1992) 335?339.
    55 ( [1992]
  • [34] P. Bajaj et al., ¡°Patterning the differentiation of C2C12 skeletal myoblasts,¡± Integr. Biol., vol. 3, no. 9, p. 897, 2011.
  • [32] K. D. Kreuer, ¡°On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells,¡± J. Memb. Sci., vol. 185, no. 1, pp. 29?39, 2001.
  • [2] M. Bariya, H.Y.Y. Nyein, A. Javey, Wearable sweat sensors, Nat. Electron. 1 (2018) 160?171.
  • [26] T. A. Zawodzinski, ¡°A Comparative Study of Water Uptake By and Transport Through Ionomeric Fuel Cell Membranes,¡± J. Electrochem. Soc., vol. 140, no. 7, p. 1981, 1993.
  • [25] Y. a N. He-qing and L. U. J. Deparpment, ¡°SOLID POLYlUER ELECTROLYTE-BASED OXYGEN SENSOR,¡± Sensors And Actuators, vol. 19, pp. 33?40, 1989.
  • [22] A. Degen and M. Kosec, "Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution," Journal of the European Ceramic Society, vol. 20, pp. 667-673, 2000.
  • [1] W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen, A. Peck, H.M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D.-H.H. Lien, G.A. Brooks, R.W. Davis, A. Javey, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis, Nature. 529 (2016) 509? 514.
  • [1] R. S. Balaban, S. Nemoto, and T. Finkel, ¡°Mitochondria, oxidants, and aging,¡± Cell, vol. 120, no. 4, pp. 483?495, 2005.
  • [1] L. C. Clark and C. Lyons, ¡°Electrode Systems for Continuous Monitoring in Cardiovascular Surgery,¡± Ann. N. Y. Acad. Sci., vol. 102, no. 1, pp. 29?45, 1962.
  • [1] A. C. M. Boon, A. M. F. French, D. M. Fleming, and M. C. Zambon, "Detection of influenza a subtypes in community-based surveillance," Journal of Medical Virology, vol. 65, pp. 163-170, 2001.
  • [19] T. J. Smith and K. J. Stevenson, ¡°Reference Electrodes,¡± in Handbook of Electrochemistry, Elsevier, 2007, pp. 73?110.
  • [17] S. Borgmann, A. Schulte, S. Neugebauer, and W. Schuhmann, "Amperometric biosensors,Advances in Electrochemical Science and Engineering, 2011.
    [2011]
  • [16] Y. Uludag, Z. Olcer, and M. S. Sagiroglu, "Design and characterisation of a thin-film electrode array with shared reference/counter electrodes for electrochemical detection," Biosens Bioelectron, vol. 57, pp. 85-90, 2014.
  • [15] N. Thomas, I. Lahdesmaki, B.A.A. Parviz, AContact lens with an integrated lactate sensor, Sensors Actuators, BChem. 162 (2012) 128?134.
    162 ( [2012]
  • [14] R. D. Vaughan, C. K. O¡¯Sullivan, and G. G. Guilbault, "Development of a quartz crystal microbalance (QCM) immunosensor for the detection of Listeria monocytogenes," Enzyme and Microbial Technology, vol. 29, pp. 635-638, 2001.
  • [14] K. Schmidt-Rohr and Q.Chen, ¡°ParallelCylindrical water nanochannels in nafion fuel-cell membranes,¡± Mater. Sustain. Energy ACollect. Peer-Reviewed Res. Rev. Artic. from Nat. Publ. Gr., pp. 238?246, 2010.
    pp . 238 ? 246 [2010]
  • [11] F.C. Luft, Lactic Acidosis Update for Critical Care Clinicians, J Am Soc Nephrol. 12 Suppl 1 (2001) 15?19. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=P ubMed&dopt=Citation&list_uids=11251027.
  • [10] K. M. Nouel and P. S. Fedkiw, ¡°Nafion¢ç -based composite polymer electrolyte membranes,¡± Electrochim. Acta, vol. 43, no. 16?17, pp. 2381?2387, 1998.
  • ZnO nanorod matrix based electrochemical immunosensors for sensitivity enhanced detection of Legionella pneumophila
    vol . 200 , pp . 173-180 [2014]
  • Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module
    vol . 3 , no . 3 , pp . 1 ? 9 [2017]
  • Water Quality : An Introduction , 2nd ed
    [2005]
  • Utility of noninvasive biomatrices in pharmacokinetic studies , Biomed . Chromatogr .
    27 ( [2013]
  • Ultrasensitive electrochemical immunosensor for SCCA detection based on ternary Pt/PdCu nanocube anchored on three-dimensional graphene framework for signal amplification
    79 ( [2016]
  • Twodimensional layered semiconductor/graphene heterostructures for solar photovoltaic applications
    6 ( [2014]
  • The Science and Translation of Lactate Shuttle Theory757 ? 785
    27 ( [2018]
  • Size effects in electronic andCatalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid ,
    110 ( [2006]
  • Simultaneous determination of lactate and pyruvate in human sweat using reversed-phase high-performance liquidChromatography : A noninvasive approach
    26 ( [2012]
  • Seroprevalence of antibodies to avian influenza A ( H5 ) and A ( H9 ) viruses among market poultry workers , Hanoi , Vietnam , 2001
    vol . 7 , p. e43948 [2012]
  • Scalable fabrication of immunosensors based onCarbon nanotube polymerComposites
    vol . 19 [2008]
  • Rapid detection of avian influenza virus inChicken fecal samples by immunomagneticCapture reverse transcriptase ? polymeraseChain reaction assay , Diagnostic Microbiology and Infectious Disease
    vol . 69 , pp . 258-265 [2011]
  • Raman spectrum of graphene and graphene layers
    97 ( [2006]
  • Prussian Blueand lactate oxidase-based amperometric biosensor for lactic acid
    79 ( [2001]
  • Potentiometric sensor for non invasive lactate determination in human sweat
    989 (80 ? 87 [2017]
  • PdCu alloy nanoclusters : Generation and activity tuning for electrocatalytic oxidation of nitrite , Microchim . Acta
    159 ( [2007]
  • Parallel Cylindrical Water Nanochannels in Nafion Fuel- Cell Membranes
    vol . 7 , no . 1 , pp . 75 ? 83 [2008]
  • Oxygen diffusion in cation-form Nafion membrane of microbial fuel cells
    vol . 276 , pp . 268 ? 283 [2018]
  • Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing ,
    22 ( 2012 ) 4440 ? 4443
  • Novel flexible enzyme laminate-based sensor for analysis of lactate in sweat
    242 ( [2017]
  • Nonenzymatic sensor for lactate detection in human sweat
    89 ( [2017]
  • Non-Enzymatic and Highly Sensitive H 2 O 2 Sensor Based on Pd Nanoparticle Modified Gold Nanowire Array ElectrodeB825 ? B829
    159 ( [2012]
  • Newly-designed complex ternary Pt/PdCu nanoboxes anchored on three-dimensional graphene framework for highly efficient ethanol oxidation
    24 ( [2012]
  • Nanoporous PdCu alloy with enhanced electrocatalytic performance
    13 ( [2011]
  • Multilayer membranes via layer-by-layer deposition of organic polymer protected prussian blue nanoparticles and glucose oxidase for glucose biosensing
    21 ( [2005]
  • Mitochondria : Dynamic Organelles in Disease , Aging , and Development
    vol . 125 , no . 7 , pp . 1241 ? 1252 [2006]
  • Mimotope ELISA for Detection of Broad Spectrum Antibody against Avian H5N1 Influenza Virus
    vol . 6 , p. e24144 [2011]
  • Limiting current oxygen sensor based on La0 . 8Sr0 . 2Ga0.8Mg0.2O3 ? ¥ä as both dense diffusion barrier and solid electrolyte
    vol . 43 , pp . 6329-6332 [2017]
  • Laser-induced porous graphene films from commercial polymers
    5 ( [2015]
  • Laser-Scribed Graphene Electrodes for AptamerBased Biosensing
    2 ( [2017]
  • Laser-Induced Graphene fibers , Carbon N. Y1609 ? 1620
    51 ( [2018]
  • Laminated Object Manufacturing of 3D-Printed Laser-Induced Graphene Foams
    30 ( [2018]
  • Lactate Production by the Lungs Injury ,
    156 ( [1997]
  • L-lactate measures in brain tissue with ceramic-based multisite microelectrodes ,
    20 ( [2005]
  • L .. ¡°New electrochemical sensors for oxygen determination
    vol . 53 , pp . 39-43 [1992]
  • Ion selective electrochemical sensors ? Fe+3 , Cu+2
    vol . 118 , pp . 571-576 [1971]
  • Integration of an Immunosorbent Assay System : Analysis of Secretory Human Immunoglobulin A on Polystyrene Beads in a Microchip
    vol . 72 , pp . 1144-1147 [2000]
  • Immunosensor based on the ZnO nanorod networks for the detection of H1N1 swine in ? uenza virus
    vol . 12 , pp . 5173-5177 [2012]
  • Hybrid graphene/geopolymeric cement as a superionic conductor for structural health monitoring applications
    25 ( [2016]
  • Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors ,
    5 ( [2015]
  • Highly Efficient Laser Scribed Graphene Electrodes for On-Chip Electrochemical Sensing Applications
    2 ( [2016]
  • Graphene paper supported MoS2 nanocrystals monolayer with Cu submicronbuds : High-performance flexible platform for sensing in sweat
    543 (82 ? 89 [2018]
  • Flow injection analysis of blood l-lactate by using a Prussian Blue-based biosensor as amperometric detector
    365 ( [2007]
  • Enzyme‐Based Glucose Sensor : From Invasive to Wearable Device
    7 ( [2018]
  • Enzymatic sensing with organic electrochemical transistors .
    vol . 18 , pp . 116-120 [2008]
  • Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition ,
    vol . 89 [2006]
  • Electrodeposition of Prussian blue nanoparticles on polyaniline coated halloysite nanotubes for nonenzymatic hydrogen peroxide sensing ,6896 ? 6903
    7 ( [2015]
  • Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration
    [2013]
  • Electrochemical immunoassay for carcinoembryonic antigen based on signal amplification strategy of nanotubular mesoporous PdCu alloy
    36 ( [2012]
  • Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures
    vol . 87 , no . 1 , pp . 230 ? 249 [2015]
  • Dissolving Behavior and Stability of ZnO Wires in Biofluids : A Study on Biodegradability and Biocompatibility of ZnO Nanostructures ,
    vol . 18 , pp . 2432-2435 [2006]
  • Direct competitive ELISA based on a monoclonal antibody for detection of aflatoxin B1
    vol . 384 , pp . 286-294 [2006]
  • Development of a chemiluminescent optical fiber immunosensor to detect Streptococcus pneumoniae antipolysaccharide antibodies , Applied Biochemistry and Biotechnology Part A Enzyme Engineering and Biotechnology
    vol . 89 , pp . 117-126 [2000]
  • Determination of lactate levels in biological fluids using a disposable ion-selective potentiometric sensor based on polypyrrole films
    296 ( [2019]
  • Detection of Anti-Influenza A Nucleoprotein Antibodies in Pigs Using a Commercial Influenza Epitope-Blocking Enzyme-Linked Immunosorbent Assay Developed for Avian Species
    vol . 22 , pp . 3-9 ,
  • Cellular Level Biocompatibility and Biosafety of ZnO Nanowires ,
    vol . 112 , pp . 20114-20117 ,
  • Carbon with ultrahigh capacitance when graphene paper meets K3Fe ( CN ) 6
    7 ( [2015]
  • Biomimetic arrays of oriented helical ZnO nanorods and columns
    vol . 124 , pp . 12954- 12955 [2002]
  • Bimetallic PdCu nanoparticle decorated three-dimensional graphene hydrogel for non-enzymatic amperometric glucose sensor .
    190 ( [2014]
  • BSA-stabilized Au clusters as peroxidase mimetics for use in xanthine detection
    vol . 26 , pp . 3614-3619 [2011]
  • Antiviral combinations for severe influenza ,
    vol . 14 , pp . 1259-1270 [2014]
  • Analytical Chemistry 2.0 ? an open-access digital textbook .
    vol . 399 , pp . 149- 152 [2011]
  • An amperometric lactate biosensor using H2O2 reduction via a Prussian Blue impregnated poly ( ethyleneimine ) surface on screen printed carbon electrodes to detect anastomotic leak and sepsis ,
    186 ( [2013]
  • Amperometric biosensors based on the immobilization of oxidases in a Prussian blue film by electrochemical codeposition
    310 ( [1995]
  • A. Spector , and W. L. Olbricht , Micromachined dissolved oxygen sensor based on solid polymer electrolyte
    vol . 153 , no . 1 , pp . 145 ? 151 [2011]
  • A solid polymer electrolytebased ethanol gas sensor .
    vol . 26 , pp . 933-937 [1996]
  • A piezoelectric immunosensor using hybrid self-assembled monolayers for detection of Schistosoma japonicum
    vol . 7 , p. e30779 [2012]
  • A novel electrochemical immunosensor based on hydrogen evolution inhibition by enzymatic copper deposition on platinum nanoparticlemodified electrode
    vol . 24 , pp . 600-605 [2008]
  • A novel assay for influenza virus quantification using surface plasmon resonance
    vol . 28 , pp . 759-766 [2010]
  • A nonenzymatic method for the determination of picomole amounts of lactate using HPLC : Its application to single muscle fibers
    169 ( [1988]
  • A Conducting Salt-Based Amperometric Biosensor for Measurement of Extracellular Lactate Accumulation in Ischemic Myocardium
    69 ( [1997]