박사

(A) study on polysilicon layer in passivating contact silicon solar cells

박현정 2020년
논문상세정보
' (A) study on polysilicon layer in passivating contact silicon solar cells' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • High efficiency passivating contact
  • silicon solar cell
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
11 0

0.0%

' (A) study on polysilicon layer in passivating contact silicon solar cells' 의 참고문헌

  • [9] M. Osborne, "Trina Solar launches 425Wp bifacial i-TOPCon module," 13 6 2019. [Online]. Available: https://www.pv-tech.org/products/trina-solar-launches-425wp-bifaciali-topcon-module.
  • [5] J. Schmidt, A. G. Aberle and R. Hezel, "Investigation of carrier lifetime instabilities in CZgrown silicon," 26th IEEE Photovoltaic Specialists Conference, vol. 9, pp. 13-18, 1997.
  • [4] D. M. Chapin, C. S. Fuller and G. L. Pearson, "A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power," Journal of Applied Physics, vol. 25, no. 5, pp. 676-677, 1954.
  • [40] K. R. McIntosh and S. C. Baker-Finch, "OPAL 2: Rapid optical simulation of silicon solar cells," 38th IEEE Photovoltaic Specialists Conference, pp. 265-271, 2012.
  • [3] A. Fahrenbruch and R. Bube, Fundamentals of Solar Cells: Photo Voltaic Solar Energy Conversion, New York, USA: Academic Press, 1983.
  • [35] K. McIntosh and P. Altermatt, "A freeware 1d emitter model for silicon solar cells," Proceedings of the 35th IEEE Photovoltaic Specialists Conference (PVSC), pp. 002188- 002193, 2010.
  • [34] H. T. Nguyen, A. Liu, D. Yan, H. Guthrey, T. N. Truong, M. Tebyetekerwa, Z. Li, Z. Li, M. M. Al-Jassim, A. Cuevas and D. Macdonald, "Sub-Bandgap Luminescence from Doped Polycrystalline and Amorphous Silicon Films and Its Application to Understanding Passivating-Contact Solar Cells," ACS Appl. Energy Mater., vol. 1, no. 11, pp. 6619-6625, 2018.
  • [32] H. Park, H. Park, S. J. Park, S. Bae, H. Kim, J. W. Yang, J. Y. Hyun, C. H. Lee, S. H. Shin, Y. Kang, H.-S. Lee and D. Kim, "Passivation quality control in poly-Si/SiOx/c-Si passivated contact solar cells with 734mV implied open circuit voltage," Solar Energy Materials and Solar Cells, vol. 189, pp. 21-26, 2019.
  • [30] R. Peibst, U. Romer, K. Hofmann, B. Lim, T. Wietler, J. Krugener, N.-P. Harder and R. Brendel, "A simple model describing the symmetric i-v characteristics of p poly crystalline/n monocrystalline si and n polycrystalline si/p monocrystalline si junctions," IEEE Journal of Photovoltaics, vol. 4, no. 3, pp. 841-850, 2014.
  • [2] R. Sinton and A. Cuevas, "Contactless determination of current-voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data," Applied Physics Letters, vol. 69, no. 17, pp. 2510-2512, 1996.
  • [24] P. Scherrer, "Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-Physikalische Klasse," Kolloidchemie Ein Lehrbuch, pp. 387-409, 1912.
  • [22] S. Rein, Lifetime Spectroscopy, 2005.
  • [21] J. Dziewior and W. Schmid, "Auger coefficients for highly doped and highly excited silicon," Applied Physics Letters, vol. 31, p. 346, 1977.
  • [20] R. J. Nerson and R. G. Sobers, "Minority?carrier lifetimes and internal quantum efficiency of surface?free GaAs," Journal of Applied Physics, vol. 49, p. 6103, 1978.
  • [1] NREL, "Best Research-Cell Efficiency Chart," 6 11 2019. [Online]. Available: https://www.nrel.gov/pv/cell-efficiency.html.
  • [19] P. Negrini, D. Nobili and S. Solmi, "Kinetics of Phosphorus Predeposition in SIlicon Using POCl3," Journal of The Electrochemical Society, vol. 122, no. 9, pp. 1254-1260, 1975.
  • [18] I. M. Mackintosh, "The Diffusion of Phosphorus in Silicon," Journal of The Electrochemical Society, vol. 109, no. 5, pp. 392-401, 1962.
  • [17] P. Wurfel and U. Wurfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts, 2016.
  • [15]C. Battaglia, A.Cuevas and S. D. Wolf, "High-efficiencyCrystalline silicon solarCells:status and perspectives,Energy and Environmental Science, vol. 9, pp. 1552-1576, 2016.
    vol . 9 , pp . 1552-1576 [2016]
  • [14] U. Wurfel, A. Cuevas and P. Wurfel, "Charge Carrier Separation in Solar Cells," IEEE Journal of Photovoltaics, vol. 5, no. 1, p. 461, 2015.
  • [13] S. W. Glunz and F. Feldmann, "SiO2 surface passivation layers ? a key technology for silicon solar cells," Solar Energy Materials and Solar Cells, vol. 185, p. 260?269, 2018.
  • [10] H. Kim, S. Bae, K. s. Ji, S. M. Kim, Y. Jee Woong, L. Chang Hyun, K. D. Lee, S. Kim, Y. M. Kang, H. Lee and D. Kim, "Passivation properties of tunnel oxide layer in passivated contact silicon solar cells," Applied Surface Science, vol. 409, pp. 140-148, 2017.
  • Working principle of carrier selective poly-si/c-si junctions : is tunnelling the whole story ?
    vol . 158 , pp . 60-67 [2016]
  • V. Naumann and C. Hagendorf , Study of pinhole conductivity at passivated carrier-selected contacts of silicon solar cells
    vol . 92 , pp . 116-121 [2016]
  • Structural evolution of tunneling oxide passivating contact upon thermal annealing
    vol . 7 , p. 12853 [2017]
  • SolarCells : Operating Principles , Technology and System Applications
    [1986]
  • Silicon heterojunction solarCell with interdigitated backContacts for a photoconversion efficiency over 26 %
    vol . 2 , p. 17032 [2017]
  • Role of polysilicon in poly-Si/SiO x passivatingContacts for highefficiency silicon solarCells
    vol . 9 , pp . 23261-23266 , [2019]
  • Recombination behavior andContact resistance of n+ and p+ poly-crystalline Si/mono-crystalline Si junctions ,
    vol . 131 , p. 85 ? 91 [2014]
  • Pinhole density andContact resistivity ofCarrier selective junctions with polycrystalline silicon on oxide
    vol . 110 , no . 25 , p. 253902 [2017]
  • Phosphorus-diffused polysilicon contacts for solar cells
    vol . 142 , p. 75 ? 82 [2015]
  • M. Hermlea and S. W.Glunz , n-Type Si solar cells with passivating electron contact : Identifying sources for efficiency limitations by wafer thickness and resistivity variation
    pp . 173 , 96-105 [2017]
  • Lifetime Analysis for Comparing POCl 3 Diffused Emitter Doping Characteristics in p - Type Silicon Solar Cells Using QSSPC
    vol . 17 , pp . 4914-4919 [2017]
  • Kim , H. Guim , Y. Kang , H.- S. Lee , D. Kim and J. Yi , Tunnel oxide passivating
    n ? type silicon solar cells with amorphous silicon passivating hole
  • Growth and Physical Properties of LPCVD Polycrystalline Silicon Films
    vol . 131 , no . 3 , pp . 675-682 [1984]
  • Evolution of oxide disruptions : The ( w ) hole story about poly-si/c-si passivating contacts
    pp . 1-4 [2017]
  • Electrochemical nature of contact firing reactions for screen ? printed silicon solar cells : origin of ¡°gray finger¡± phenomenon
    vol . 24 , no . 9 , pp . 1237-1250 [2016]
  • Efficient carrier injection from amorphous silicon into crystalline silicon determined from photo luminescence
    pp . 238-241 [2017]
  • Effective impurity gettering by phosphorusand boron-diffused polysilicon passivating contacts for silicon solar cells
    vol . 179 , pp . 136-141 [2018]
  • Direct Observation of the Impurity Gettering Layers in Polysilicon-Based Passivating Contacts for Silicon Solar Cells
    vol . 1 , no . 5 , pp . 2275-2282 [2018]
  • Characteristics of the surface-state charge ( qss ) of thermally oxidized silicon
    vol . 114 , no . 3 , pp . 266-274 [1967]
  • A Free and Fast Three-Dimensional/Two-Dimensional Solar Cell Simulator Featuring Conductive Boundary and Quasi-Neutrality Approximations ,
    vol . 60 , no . 2 , pp . 733-738 [2013]
  • 24.7 % Record Efficiency HIT Solar Cell on Thin Silicon Wafer
    vol . 40 , no . 1 , pp . 96-99 [2014]