박사

Robotic biceps exercise machine : design using series elastic actuator and control with cascade disturbance observer

김경남 2020년
논문상세정보
' Robotic biceps exercise machine : design using series elastic actuator and control with cascade disturbance observer' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • disturbance observer
  • human-robot interaction
  • robotic exercise machine
  • series elastic actuator
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
46 0

0.0%

' Robotic biceps exercise machine : design using series elastic actuator and control with cascade disturbance observer' 의 참고문헌

  • ¡°Variable admittanceControl of robot manipulators based on human intention ,
    vol . 24 , no . 3 , pp . 1023 ? 1032 [2019]
  • ¡°Ude-based variable impedanceControl of uncertain robot systems
    vol . 49 , no . 12 , pp . 2487 ? 2498 [2019]
  • ¡°TrackingControl of manipulator based on high-order disturbance observer
    vol . 6 , pp . 26753 ? 26764 [2018]
  • ¡°Stiffness adjustment for a single-link robot arm driven by series elastic actuator in muscle training
    vol . 7 , pp . 65029 ? 65039 [2019]
  • ¡°Series elastic actuators for high fidelity forceControl
    vol . 29 , no . 3 , pp . 234 ? 241 [2002]
  • ¡°Series and parallel elastic actuation : Influence of operating positions on design andControl
    vol . 22 , no . 1 , pp . 521 ? 529 [2017]
  • ¡°Robust speed regulation for pmsm servo system with multiple sources of disturbances via an augmented disturbance observer
    vol . 23 , no . 2 , pp . 769 ? 780 [2018]
  • ¡°Robust disturbance observer for the trackfollowingControl system of an optical disk drive
    vol . 12 , no . 5 , pp . 577 ? 585 [2004]
  • ¡°Resistive torque analysis of 5 nautilus exercise machines , ¡± Medicine and Science in Sports and Exercise
    vol . 15 , no . 2 , pp . 113 ? 113 [1983]
  • ¡°Proof ofConcept for robot-aided upper limb rehabilitation using disturbance observers ,
    vol . 45 , no . 1 , pp . 110 ? 118 [2015]
  • ¡°Preventing metabolic syndrome in morbid obesity with resistance training : Reporting interindividual variability , ¡± Nutrition Metabolism andCardiovascular Diseases
    vol . 29 , no . 12 , pp . 1368 ? 1381 [2019]
  • ¡°Passivity guaranteed stiffnessControl with multiple frequency band specifications for aCable-driven series elastic actuator
    vol . 117 , pp . 709 ? 722 [2019]
  • ¡°On the tracking performance improvement of optical disk drive servo systems using error-based disturbance observer ,
    vol . 52 , no . 1 , pp . 270 ? 279 [2005]
  • ¡°On the robustness and performance of disturbance observers for second-order systems
    vol . 48 , no . 2 , pp . 315 ? 320 [2003]
  • ¡°Muscle strength and damage following two modes of variable resistance training
    vol . 10 , no . 4 , pp . 635 ? 642 [2011]
  • ¡°MotionControl for advanced mechatronics , ¡± IEEE-ASME Transactions on Mechatronics
    vol . 1 , no . 1 , pp . 56 ? 67 [1996]
  • ¡°Modeling of force sensing and validation of disturbance observer for forceControl
    vol . 54 , no . 1 , pp . 530 ? 538 [2007]
  • ¡°Minimizing energyConsumption and peak power of series elastic actuators : AConvex optimization framework for elastic element design
    vol . 24 , no . 3 , pp . 1334 ? 1345 [2019]
  • ¡°Kinetic and electromyographic analysis of single repetitionConstant and variable resistance leg press actions
    vol . 21 , no . 2 , pp . 262 ? 269 [2011]
  • ¡°Improved track following in magnetic disk drives using a disturbance observer ,
    vol . 5 , no . 1 , pp . 3 ? 11 [2000]
  • ¡°Implementation of mass-independent impedanceControl for rfsea using a linkage arm ,
    vol . 7 , pp . 104823 ? 104832 [2019]
  • ¡°ImpedanceControl of hydraulic actuation systems with inherent backdrivability ,
    vol . 24 , no . 5 , pp . 1921 ? 1930 [2019]
  • ¡°ImpedanceControl an approach to manipulation .3. applications
    vol . 107 , no . 1 , pp . 17 ? 24 [1985]
  • ¡°ImpedanceControl an approach to manipulation .2. implementation , ¡± Journal of Dynamic Systems Measurement andControl-Transactions of the ASME
    vol . 107 , no . 1 , pp . 8 ? 16 [1985]
  • ¡°ImpedanceControl an approach to manipulation .1. theory ,
    vol . 107 , no . 1 , pp . 1 ? 7 [1985]
  • ¡°Hybrid motion/forceControl : a review
    vol . 31 , no . 19-20 , pp . 1102 ? 1113 [2017]
  • ¡°High-precision robust forceControl of a series elastic actuator
    vol . 22 , no . 1 , pp . 71 ? 80 [2017]
  • ¡°High-intensity resistance training improves glycemicControl in older patients with type 2 diabetes
    vol . 25 , no . 10 , pp . 1729 ? 1736 [2002]
  • ¡°Haptic-based resistance training machine and its application to biceps exercises
    vol . 12 , no . 1 , pp . 21 ? 30 [2011]
  • ¡°Forms of variable resistance training , ¡± Strength andConditioning Journal
    vol . 31 , no . 1 , pp . 50 ? 64 [2009]
  • ¡°Finite-time disturbance observer for robotic manipulators
    vol . 19 , no . 8 , p. 11 [2019]
  • ¡°External force selfsensing based onCable-tension disturbance observer for surgical robot end-effector ,
    vol . 19 , no . 13 , pp . 5274 ? 5284 [2019]
  • ¡°Evolution strategies learning with variable impedanceControl for grasping under uncertainty
    vol . 66 , no . 10 , pp . 7788 ? 7799 [2019]
  • ¡°Dynamic dumbbell novel muscle training robot with programmable exercise load ,
    pp . 1 ? 9 [2018]
  • ¡°Disturbance observer-basedConsensusControl for multiple robotic manipulators
    vol . 6 , pp . 51348 ? 51354 [2018]
  • ¡°Disturbance observer-based terminal sliding modeControl of a 5-dof upper-limb exoskeleton robot
    vol . 7 , pp . 62833 ? 62839 [2019]
  • ¡°Disturbance observer-based robot endConstantContact force-trackingControl
    vol . 2019 , p. 20 [2019]
  • ¡°Disturbance observer-based fuzzyControl of uncertain mimo mechanical systems with input nonlinearities and its application to robotic exoskeleton
    vol . 47 , no . 4 , pp . 984 ? 994 [2017]
  • ¡°Development of a new variable remoteCenterCompliance ( vrcc ) with modified elastomer shear pad ( esp ) for robot assembly ,
    vol . 2 , no . 2 , pp . 193 ? 197 [2005]
  • ¡°Design of a novel passive binary-controlled variable stiffness joint ( bpvsj ) towards passive haptic interface application
    vol . 6 , pp . 63045 ? 63057 [2018]
  • ¡°Design andControl of a series elastic actuator withClutch for hip exoskeleton for precise assistive magnitude and timingControl and improved mechanical safety , ¡± IEEE/ASME Transactions on Mechatronics
    vol . 24 , no . 5 , pp . 2215 ? 2226 [2019]
  • ¡°Control of smart exercise machines .2. self-optimizingControl ,
    vol . 2 , no . 4 , pp . 248 ? 258 [1997]
  • ¡°Control of smart exercise machines . 1. problem formulation and nonadaptiveControl
    vol . 2 , no . 4 , pp . 237 ? 247 [1997]
  • ¡°Control of rotary series elastic actuator for ideal force-mode actuation in human ? robot interaction applications ,
    vol . 14 , no . 1 , pp . 105 ? 118 [2009]
  • ¡°Composite disturbance-observer-basedControl and termi98nal sliding modeControl for non-linear systems with disturbances
    vol . 82 , no . 6 , pp . 1082 ? 1098 [2009]
  • ¡°An overview of robot forceControl
    vol . 15 , pp . 473 ? 482 [1997]
  • ¡°An acceleration-based robust motionController design for a novel series elastic actuator
    vol . 63 , no . 3 , pp . 1900 ? 1910 [2016]
  • ¡°Adaptive regulation to nominal response for uncertain mechanical systems and its application to optical disk drive
    vol . 65 , no . 2 , pp . 1450 ? 1458 [2018]
  • ¡°Adaptive force regulation of muscle strengthening rehabilitation device with magnetorheological fluids
    vol . 14 , no . 1 , pp . 55 ? 63 [2006]
  • ¡°Adaptive admittanceControl of an upper extremity rehabilitation robot with neural-network-based disturbance observer ,
    vol . 7 , pp . 123807 ? 123819 [2019]
  • ¡°A stability analysis for the acceleration-based robust positionControl of robot manipulators via disturbance observer ,
    vol . 23 , no . 5 , pp . 2369 ? 2378 [2018]
  • ¡°A rehabilitation robot with force-position hybrid fuzzyController : Hybrid fuzzyControl of rehabilitation robot
    vol . 13 , no . 3 , pp . 349 ? 358 [2005]
  • ¡°A novel disturbance observer design for magnetic hard drive servo system with a rotary actuator
    vol . 34 , no . 4 , pp . 1892 ? 1894 [1998]
  • ¡°A nonsmoothCompositeControl design framework for nonlinear systems with mismatched disturbances : Algorithms and experimental tests ,
    vol . 65 , no . 11 , pp . 8828 ? 8839 [2018]
  • robot interactionControl of rehabilitation robots with series elastic actuators
    vol . 31 , no . 5 , pp . 1089 ? 1100 [2015]
  • [8] S. J. Fleck and W. Kraemer, Designing Resistance Training Programs, 4E. Human Kinetics, 2014.
  • [85] M. Khamar and M. Edrisi, ¡°Designing a backstepping sliding mode controller for an assistant human knee exoskeleton based on nonlinear disturbance observer,¡± Mechatronics, vol. 54, pp. 121?132, 2018.
  • [79] H. Muramatsu and S. Katsura, ¡°An adaptive periodic-disturbance observer for periodic-disturbance suppression,¡± IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4446?4456, 2018.
  • [76] L. Yi and M. Tomizuka, ¡°Two-degree-of-freedom control with robust feedback control for hard disk servo systems,¡± IEEE/ASME Transactions on Mechatronics, vol. 4, no. 1, pp. 17?24, 1999.
  • [6] C. W. Wagoner, E. D. Hanson, E. D. Ryan, R. Brooks, W. A. Wood, B. C. Jensen, J. T. Lee, E. M. Coffman, and C. L. Battaglini, ¡°Two weeks of lower body resistance training enhances cycling tolerability to improve precision of maximal cardiopulmonary exercise testing in sedentary middle-aged females,¡± Applied Physiology Nutrition and Metabolism, vol. 44, no. 11, pp. 1159?1164, 2019.
  • [63] E. Sariyildiz, G.Chen, and H. Yu, ¡°A unified robust motionController design for series elastic actuators,¡± IEEE/ASME Transactions on Mechatronics, vol. 22, no. 5, pp. 2229?2240, 2017.
    vol . 22 , no . 5 , pp . 2229 ? 2240 [2017]
  • [5] P. Aagaard, ¡°Spinal and supraspinal control of motor function during maximal eccentric muscle contraction: Effects of resistance training,¡± Journal of Sport and Health Science, vol. 7, no. 3, pp. 282?293, 2018.
  • [57] F. Stuhlenmiller, D. Clos, S. Rinderknecht, P. Beckerle, and J. M. Font-Llagunes, ¡°Impact of friction and gait parameters on the optimization of series elastic actuators for gait assistance,¡± Mechanism and Machine Theory, vol. 133, pp. 737?749, 2019.
  • [55] S. Wolf, G. Grioli, O. Eiberger, W. Friedl, M. Grebenstein, H. Hoppner, E. Burdet, D. G.Caldwell, R.Carloni, M. G.Catalano, D. Lefeber, S. Stramigioli, N. Tsagarakis, M. Van Damme, R. Van Ham, B. Vanderborght, L.C. Visser, A. Bicchi, and A. Albu-Schaffer, ¡°Variable stiffness actuators: Review on design andComponents,¡± IEEE/ASME Transactions on Mechatronics, vol. 21, no. 5, pp. 2418?2430, 2016.
    , L. C. Visser , A. Bicchi , and A. Albu-Schaffer , ¡°Variable
  • [54] B. Vanderborght, A. Albu-Schaeffer, A. Bicchi, E. Burdet, D. G. Caldwell, R. Carloni, M. Catalano, O. Eiberger, W. Friedl, G. Ganesh, M. Garabini, M. Grebenstein, G. Grioli, S. Haddadin, H. Hoppner, A. Jafari, M. Laffranchi, D. Lefeber, F. Petit, S. Stramigioli, N. Tsagarakis, M. Van Damme, R. Van Ham, L. C. Visser, and S. Wolf, ¡°Variable impedance actuators: A review,¡± Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1601?1614, 2013.
  • [51] A. Q. L. Keemink, H. van der Kooij, and A. H. A. Stienen, ¡°Admittance control for physical human?robot interaction,¡± The International Journal of Robotics Research, vol. 37, no. 11, pp. 1421?1444, 2018.
  • [43] M. H. Raibert and J. J. Craig, ¡°Hybrid position-force control of manipulators,¡± Journal of Dynamic Systems Measurement and Control-Transactions of the Asme, vol. 103, no. 2, pp. 126?133, 1981.
  • [42] A. Gutierrez-Giles and M. Arteaga-Perez, ¡°Output feedback hybrid force/motion control for robotic manipulators interacting with unknown rigid surfaces,¡± Robotica, vol. 38, no. 1, pp. 136?158, 2020.
  • [3] W. J. Kraemer and N. A. Ratamess, ¡°Hormonal responses and adaptations to resistance exercise and training,¡± Sports Medicine, vol. 35, no. 4, pp. 339?361, 2005.
  • [39] A. Calanca, R. Muradore, and P. Fiorini, ¡°A review of algorithms for compliant control of stiff and fixed-compliance robots,¡± IEEE/ASME Transactions on Mechatronics, vol. 21, no. 2, pp. 613?624, 2016.
  • [38] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer, 2016.
  • [37] J. De Schutter, H. Bruyninckx, W.-H. Zhu, and M. W. Spong, Force control: a bird¡¯s eye view, pp. 1?17. Springer, 1998.
  • [35] S. P. Patarinski and R. G. Botev, ¡°Robot force control - a review,¡± Mechatronics, vol. 3, no. 4, pp. 377?398, 1993.
  • [34] D. E. Whitney, ¡°Historical perspective and state-of-the-art in robot force control,¡± International Journal of Robotics Research, vol. 6, no. 1, pp. 3?14, 1987.
  • [33] M. A. Pizzimenti, ¡°Mechanical analysis of the nautilus leg curl machine,¡± Canadian Journal of Sport Sciences-Revue Canadienne Des Sciences Du Sport, vol. 17, no. 1, pp. 41?48, 1992.
  • [31] L. Cabell and C. J. Zebas, ¡°Resistive torque validation of the nautilus multi-biceps machine,¡± Journal of Strength and Conditioning Research, vol. 13, no. 1, pp. 20?23, 1999.
  • [2] M. R. Deschenes and W. J. Kraemer, ¡°Performance and physiologic adaptations to resistance training,¡± American Journal of Physical Medicine & Rehabilitation, vol. 81, no. 11, pp. S3?S16, 2002.
  • [25] M. M. Williamson, Series elastic actuators. Thesis, M.I.T, 1995.
  • [24] G. A. Pratt and M. M. Williamson, ¡°Series elastic actuators,¡± in Proceedings of the 1995 IEEE/RSJ InternationalConference on Intelligent Robots and Systems. (Anon, ed.), vol. 1, pp. 399?406, IEEE, 1995.
    vol . 1 , pp . 399 ? 406 [1995]
  • [20] H. Vallery, J. Veneman, E. van Asseldonk, R. Ekkelenkamp, M. Buss, and H. van Der Kooij, ¡°Compliant actuation of rehabilitation robots,¡± IEEE Robotics & Automation Magazine, vol. 15, no. 3, pp. 60?69, 2008.
  • [1] R. W. Braith and K. J. Stewart, ¡°Resistance exercise training - its role in the prevention of cardiovascular disease,¡± Circulation, vol. 113, no. 22, pp. 2642?2650, 2006.
  • [18] K. G. Gim and D. W. Hong, ¡°Design of a series elastic resistance mechanism for exercise and rehabilitation,¡± in 16th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2016, pp. 1239?1244, IEEE Computer Society, 2016.
  • [12] J. Folland and B. Morris, ¡°Variable-cam resistance training machines: Do they match the angle-torque relationship in humans?,¡± Journal of Sports Sciences, vol. 26, no. 2, pp. 163?169, 2008.
  • W. J. Kraemer , and K. Hakkinen , ¡°Neuromuscular and hormonal responses to constant and variable resistance loadings
    vol . 43 , no . 1 , pp . 26 ? 33 [2011]
  • Kinesiology of the musculoskeletal system : foundations for rehabilitation
    [2013]
  • Embedding internal model in disturbance observer with robust stability
    vol . 61 , no . 10 , pp . 3128 ? 3133 [2016]
  • Disturbance observer-based control : methods and applications
    [2016]
  • A compact rotary series elastic actuator for human assistive systems
    vol . 17 , no . 2 , pp . 288 ? 297 [2012]