박사

LIDAR and vision-based SLAM system using frequency image-based place recognition in indoor environments

박찬수 2020년
논문상세정보
' LIDAR and vision-based SLAM system using frequency image-based place recognition in indoor environments' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Deep learning
  • Frequency image
  • Place recognition
  • mobile robots
  • slam
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,396 0

0.0%

' LIDAR and vision-based SLAM system using frequency image-based place recognition in indoor environments' 의 참고문헌

  • ¡°Vins-mono : A robust and versatile monocular visual-inertial state estimator ,
    vol . 34 , no . 4 , pp . 1004-1020 [2018]
  • ¡°Unsupervised learning to detect loops using deep neural networks for visual SLAM system ,
    vol . 41 , no . 1 , pp . 1-18 [2017]
  • ¡°Unsupervised learning of phase transitions : From principalComponent analysis to variational autoencoders
    [2017]
  • ¡°Unsupervised anomaly detection with generative adversarial networks to guide marker discovery
    pp . 146-157 [2017]
  • ¡°Surf : Speeded up robust features
    pp . 404-417 [2006]
  • ¡°Stereo Visual Inertial LiDAR Simultaneous Localization and Mapping ,
    [2019]
  • ¡°Semantic place recognition based on deep belief networks and tiny images
    [2012]
  • ¡°RoughComputational methods on reducingCost ofComputation in Markov localization for mobile robots
    vol . 2 , pp . 1226-1230 [2002]
  • ¡°Robust visual inertial odometry using a direct EKF-based approach
    pp . 298-304 [2015]
  • ¡°Robust vision-based localization byCombining an image-retrieval system with MonteCarlo localization ,
    vol . 21 , no . 2 , pp . 208-216 [2005]
  • ¡°Robust stereo visual inertial odometry for fast autonomous flight ,
    vol . 3 , no . 2 , pp . 965-972 [2018]
  • ¡°Real-time topometric localization
    pp . 1635-1642 [2012]
  • ¡°Random sampleConsensus : a paradigm for model fitting with applications to image analysis and automatedCartography
    vol . 24 , no . 6 , pp . 381-395 [1981]
  • ¡°RGB-D mapping : Using Kinect-style depthCameras for dense 3D modeling of indoor environments
    vol . 31 , no . 5 , pp . 647-663 [2012]
  • ¡°RGB-D dense SLAM with keyframe-based method , ¡± Three-Dimensional Image Acquisition and Display Technology and Applications
    vol . 10845 , pp . 110-120 [2018]
  • ¡°Places : A 10 million image database for scene recognition
    vol . 40 , no . 6 , pp . 1452-1464 [2017]
  • ¡°Place recognition withConvnet landmarks : Viewpoint-robust ,Condition-robust , training-free ,
    [2015]
  • ¡°Parallel tracking and mapping for small AR workspaces
    pp . 1-10 [2007]
  • ¡°Overfeat : Integrated recognition , localization , and detection usingConvolutional networks
    [2013]
  • ¡°ORB : An efficient alternative to SIFT or SURF ,
    pp . 2564- 2571 [2011]
  • ¡°NetVLAD :CNN architecture for weakly supervised place recognition ,
    pp . 5297-5307 [2016]
  • ¡°Modeling the shape of the scene : A holistic representation of the spatial envelope
    vol . 42 , no . 3 , pp . 145-175 [2001]
  • ¡°Low-rank sift : an affine invariant feature for place recognition
    pp . 5731-5735 [2014]
  • ¡°Lightweight unsupervised deep loopClosure ,
    pp . 1-8 [2018]
  • ¡°Learning deep representation for place recognition in SLAM ,
    pp . 557-564 [2017]
  • ¡°Large-margin multi-modal deep learning for RGB-D object recognition
    vol . 17 , no . 11 , pp . 1887-1898 [2015]
  • ¡°Keyframe-based visual-inertial slam using nonlinear optimization
    [2013]
  • ¡°Incremental learning for place recognition in dynamic environments
    pp . 721-728 [2007]
  • ¡°IlluminationCompensation and normalization for robust face recognition using discreteCosine transform in logarithm domain
    vol . 36 , no . 2 , pp . 458-466 [2006]
  • ¡°Freak : Fast retina keypoint
    pp . 510-517 [2012]
  • ¡°FastSLAM 2.0 : An improved particle filtering algorithm for simultaneous localization and mapping that provablyConverges ,
    pp . 1151-1156 [2003]
  • ¡°FAB-MAP : Probabilistic Localization and Mapping in the Space of Appearance
    vol . 27 , no . 6 , pp . 647-665 [2008]
  • ¡°Evaluating bag-ofvisual-words representations in sceneClassification ,
    pp . 197-206 [2007]
  • ¡°Efficient autonomous global localization for service robots using dual laser scanners and rotational motion
    vol . 15 , no . 2 , pp . 743-751 [2017]
  • ¡°Deep learning features at scale for visual place recognition ,
    pp . 3223-3230 [2017]
  • ¡°Convolutionalrecursive deep learning for 3d objectClassification , ¡± Advances in neural information processing systems
    pp . 656-664 [2012]
  • ¡°Contrast limited adaptive histogram equalization , ¡± Graphics Gems IV . P.S . Heckbert ( Eds . )
    pp . 474-485 [1994]
  • ¡°Consistency of the EKF-SLAM algorithm
    pp . 3562-3568 [2006]
  • ¡°Clustering and probabilistic matching of arbitrarily shapedCeiling features for monocular vision-based SLAM ,
    vol . 27 , no . 10 , pp . 739-747 [2013]
  • ¡°CI-Graph SLAM for 3D reconstruction of large andComplex environments using a multicamera system
    vol . 27 , no . 5 , pp . 561-586 [2010]
  • ¡°BRIEF :Computing a local binary descriptor very fast ,
    vol . 34 , no . 7 , pp . 1281-1298 [2011]
  • ¡°An Autoencoder-Based Image Descriptor for Image Matching
    [2016]
  • ¡°A loopClosure improvement method of Gmapping for lowCost and resolution laser scanner
    vol . 49 , no . 12 , pp . 168-173 [2016]
  • [9] G. Dudek and D. Jugessur, ¡°Robust place recognition using local appearance based methods,¡± IEEE Int. Conf. on Robotics and Automation, vol. 2, pp. 1030-1035, 2000.
  • [8] I. Ulrich and I. Nourbakhsh, ¡°Appearance-based place recognition for topological localization,¡± IEEE Int. Conf. on Robotics and Automation, vol. 2, pp. 1023-1029, 2000.
  • [87] D. Olid, J. M. Facil, and J. Civera, ¡°Single-view place recognition under seasonal changes,¡± arXiv preprint arXiv:1808.06516, 2018.
  • [84] E. H. Land and J. J. McCann, ¡°Lightness and retinex theory,¡± Josa, vol. 61, no. 1, pp. 1-11, 1971.
  • [81] A. Glassner, ¡°An Introduction to Ray tracing,¡± Morgan Kaufmann, San Francisco, 1989.
  • [80] M. Labbe and F. Michaud, ¡°Online global loop closure detection for largescale multi-session graph-based SLAM,¡± IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2661-2666, 2014.
  • [74] M. Leonardi and A. Stahl, ¡°Convolutional Autoencoder aided loop closure detection for monocular SLAM,¡± IFAC-PapersOnLine, vol. 51, no. 29, pp. 159-164, 2018.
  • [6] R. Mur-Artal and J. D. Tardos, ¡°ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras,¡± IEEE Trans. on Robotics, vol. 33, no. 5, pp. 1255-1262, 2017.
  • [69] R. Arandjelovic and A. Zisserman, ¡°All about VLAD,¡± Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1578-1585, 2013.
  • [66] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky, ¡°Neural codes for image retrieval,¡± European conf. on Computer Vision, pp. 584-599, 2014.
  • [60] E. Oyallon and S. Mallat, ¡°Deep roto-translation scattering for object classification,¡± IEEE Conf. on Computer Vision and Pattern Recognition, pp. 2865-2873, 2015.
  • [57] A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller, and W. Burgard, ¡°Multimodal deep learning for robust RGB-D object recognition,¡± IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 681-687, 2015.
  • [56] N. Dalal and B. Triggs, ¡°Histograms of oriented gradients for human detection,¡± IEEE Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. 886-893, 2005.
  • [55] R. Y. Wong and E. L. Hall, ¡°Scene matching with invariant moments,¡± Computer Graphics and Image Processing, vol. 8, no. 1, pp. 16-24, 1978.
  • [53] D. Schlegel and G. Grisetti, ¡°Visual localization and loop closing using decision trees and binary features,¡± IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 4616-4623, 2016.
  • [4] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, ¡°Robust MonteCarlo localization for mobile robots,¡± Artificial intelligence, vol. 128, no. 1-2, pp. 99-141, 2001.
    vol . 128 , no . 1-2 , pp . 99-141 [2001]
  • [47] A. I. Mourikis and S. I. Roumeliotis, ¡°A multi-state constraint Kalman filter for vision-aided inertial navigation,¡± IEEE Int. Conf. on Robotics and Automation, pp. 3565-3572, 2007.
  • [46] J. K. Suhr, ¡°Kanade-Lucas-Tomasi (KLT) feature tracker,¡± Computer Vision, pp. 9-18, 2009.
  • [45] K. G. Derpanis, ¡°The harris corner detector,¡± York University, 2004.
  • [43] R. Mur-Artal and J. D. Tardos, ¡°Visual-inertial monocular SLAM with map reuse,¡± IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 796-803, 2017.
  • [41] D. Galvez-Lopez and J. D. Tardos, ¡°Bags of binary words for fast place recognition in image sequences,¡± IEEE Trans. on Robotics, vol. 28, no. 5, pp. 1188-1197, 2012.
  • [40] E. Rosten and T. Drummond, ¡°Machine learning for high-speed corner detection,¡± European conf. on computer vision, pp. 430-443, 2006.
  • [3] D. Fox, W. Burgard, and S. Thrun, ¡°Active markov localization for mobile robots,¡± Robotics and Autonomous Systems, vol. 25, no. 3-4, pp. 195-207, 1998.
  • [39] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, ¡°DTAM: Dense tracking and mapping in real-time,¡± Int. conf. on computer vision, pp. 2320-2327, 2011.
  • [36] M. J. Milford, G. F. Wyeth, and D. Prasser, ¡°RatSLAM: a hippocampal model for simultaneous localization and mapping,¡± IEEE Int. Conf. on Robotics and Automation, vol. 1, pp. 403-408, 2004.
  • [34] H. Choset and K. Nagatani, ¡°Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization,¡± IEEE Trans. on robotics and automation, vol. 17, no. 2, pp. 125-137, 2001.
  • [32] P. L. Houtekamer and H. L. Mitchell, ¡°Data assimilation using an ensemble Kalman filter technique,¡± Monthly Weather Review, vol. 126, no. 3, pp. 796- 811, 1998.
  • [30] Y. Chen and G. Medioni, ¡°Object modelling by registration of multiple range images,¡± Image and vision computing, vol. 10, no. 3, pp. 145-155, 1992.
  • [2] S. Rusinkiewicz and M. Levoy, ¡°Efficient variants of the ICP algorithm,¡± Int. Conf. on 3D Digital Imaging and Modeling, vol. 1, pp. 145-152, 2001.
  • [29] E. Eade, P. Fong, and M. E. Munich, ¡°Monocular graph SLAM with complexity reduction,¡± IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3017-3024, 2010.
  • [28] N. Sunderhauf and P. Protzel, ¡°Switchable constraints for robust pose graph SLAM,¡± IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1879- 1884, 2012.
  • [27] S. Thrun and M. Montemerlo, ¡°The graph SLAM algorithm with applications to large-scale mapping of urban structures,¡± The International Journal of Robotics Research, vol. 25, no. 5, pp. 403-429, 2006.
  • [22] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, ¡°CNN features off-the-shelf: an astounding baseline for recognition,¡± Proc. of the IEEE conf. on computer vision and pattern recognition workshops, pp. 806-813, 2014.
  • [1] P. J. Besl and N. D. McKay, ¡°A method for registration of 3-D shapes,¡± IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239- 256, 1992.
  • [17] M. J. Milford and G. F. Wyeth, ¡°SeqSLAM: Visual route-based navigation for sunny summer days and stormy winter nights,¡± IEEE Int. Conf. on Robotics and Automation, pp. 1643-1649, 2012.
  • [12] D. G. Lowe, ¡°Distinctive Image Features from Scale-Invariant Keypoints,¡± Int. Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.
  • Very Deep Convolutional Networks for Large-scale Image Recognition
    [2014]
  • Rethinking the Inception Architecture forComputer Vision
    pp . 2818-2826 [2016]
  • Recurrent neural network based language model.
    vol . 2 , pp . 1045-1048 [2010]
  • N. D. Molton , and O. Stasse , ¡°MonoSLAM : Realtime single camera SLAM
    vol . 29 , no . 6 , pp . 1052-1067 [2007]
  • MobileNets : Efficient Convolutional Neural Networks for Mobile Vision Applications
    [2017]
  • ImagenetClassification with deepConvolutional neural networks
    pp . 1097-1105 [2012]
  • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations.
    pp . 609-616 [2009]
  • A. J. Davison , and A. W. Fitzgibbon , Kinectfusion : Real-time dense surface mapping and tracking ,
    vol . 11 , no . 2011 , pp . 127-136 , [2011]