박사

Developing target DNA enrichment method using CRISPR system and other applications

이지원 2020년
' Developing target DNA enrichment method using CRISPR system and other applications' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • CRISPR system
  • Next generation sequencing
  • PCR (Polymerase Chain Reactions)
  • Recombinase Polymerase amplification (RPA)
  • target amplification
  • targetenrichment
  • 재조합효소-중합효소 증폭법 (Recombinase Polymerase amplification (RPA))
  • 중합효소 연쇄 반응 (PCR (Polymerase Chain Reactions))
  • 차세대시퀀싱
  • 크리스퍼 (Clustered regularly interspaced short palindromic repeats) 시스템
  • 타겟 선별
  • 타겟 증폭
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
120 0

0.0%

' Developing target DNA enrichment method using CRISPR system and other applications' 의 참고문헌

  • next-generation sequencing of cancer genes in formalin-fixed , paraffin-embedded and fine-needle aspiration tumor specimens .
    15 , 234-247 , doi:10.1016/j.jmoldx.2012.11.006 [2013]
  • microDuMIP : target-enrichment technique for microarray-based duplex molecular inversion probes
    43 , e28 , doi:10.1093/nar/gku1188 [2015]
  • finished microbial genome assemblies from long-read SMRT sequencing data
    10 , 563-569 , doi:10.1038/nmeth.2474 [2013]
  • Z. Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC
    8 , 15315 , doi:10.1038/ncomms15315 [2017]
  • W. Rapid and sensitive detection of canine distemper virus by real-time reverse transcription recombinase polymerase amplification
    13 , 241 , doi:10.1186/s12917-017-1180-7 [2017]
  • V. Improved double-stranded DNA sequencing using the linear polymerase chain reaction
    17 , 8889-8889 [1989]
  • Trends in Next-Generation Sequencing and a New Era for Whole Genome Sequencing
    20 , S76-83 , doi:10.5213/inj.1632742.371 [2016]
  • Tn5 transposase and tagmentation procedures for massively scaled sequencing projects
    24 , 2033-2040 , doi:10.1101/gr.177881.114 [2014]
  • The Sequence Alignment/Map format and SAMtools
    25 , 2078-2079 , doi:10.1093/bioinformatics/btp352 [2009]
  • The Genome Analysis Toolkit : a MapReduce framework for analyzing next-generation DNA sequencing data
    20 , 1297-1303 , doi:10.1101/gr.107524.110 [2010]
  • Targeted capture and massively parallel sequencing of 12 human exomes
    461 , 272 , doi:10.1038/nature08250 [2009]
  • Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein
    8 , 16026 , doi:10.1038/ncomms16026 [2017]
  • Targeted AID-mediated mutagenesis ( TAM ) enables efficient genomic diversification in mammalian cells
    13 , 1029-1035 , doi:10.1038/nmeth.4027 [2016]
  • Target-enrichment strategies for next-generation sequencing
    7 , 111-118 , doi:10.1038/nmeth.1419 [2010]
  • Single molecule molecular inversion probes for targeted , high-accuracy detection of low-frequency variation .
    23 , 843-854 , doi:10.1101/gr.147686.112 [2013]
  • Simultaneous digital quantification and fluorescence-based sizeCharacterization of massively parallel sequencing libraries
    55 , 61-67 , doi:10.2144/000114063 [2013]
  • Selective nanopore sequencing of human BRCA1 byCas9-assisted targeting ofChromosome segments (CATCH )
    [2018]
  • S. Development of a rapid diagnostic assay for the detection of tomatoChlorotic dwarf viroid based on isothermal reverse144 transcription-recombinase polymerase amplification
    236 , 62-67 , doi:10.1016/j.jviromet.2016.06.013 [2016]
  • S. AdapterRemoval : easyCleaning of next-generation sequencing reads .
    5 , 337 , doi:10.1186/1756-0500-5-337 [2012]
  • Reverse transcription recombinase polymerase amplification with lateral flow dipsticks for detection of influenza A virus and subtyping of H1 and H3
    42 , 25-31 , doi:10.1016/j.mcp.2018.10.004 [2018]
  • Reducing mitochondrial reads in ATAC-seq usingCRISPR/Cas9
    7 , 2451 , doi:10.1038/s41598-017-02547-w [2017]
  • Recombinase polymerase amplification assay for rapid detection of Rift Valley fever virus
    54 , 308-312 , doi:10.1016/j.jcv.2012.05.006 [2012]
  • Rapid Detection of Mycobacterium tuberculosis by Recombinase Polymerase Amplification
    9 , e103091 , doi:10.1371/journal.pone.0103091 [2014]
  • RNA-Guided Human Genome Engineering viaCas9
    339 , 823-826 , doi:10.1126/science.1232033 [2013]
  • R. Fast and accurate short read alignment with Burrows-Wheeler transform
    25 , 1754-1760 , doi:10.1093/bioinformatics/btp324 [2009]
  • ProgrammingCells by multiplex genome engineering and accelerated evolution
    460 , 894 , doi:10.1038/nature08187 ( [2009]
  • Programmable RNA Tracking in LiveCells withCRISPR/Cas9
    165 , 488-496 , doi:10.1016/j.cell.2016.02.054 [2016]
  • P. H. Multiplex PCR : Critical Parameters and Step-by-Step Protocol .
    23 , 504-511 , doi:10.2144/97233rr01 ( [1997]
  • Nucleic acid detection with CRISPR-Cas13a/C2c2
    [2017]
  • Naked eye detection of the Mycobacterium tuberculosis complex by recombinase polymerase amplification—SYBR green I assays
    0 , e22655 , doi:10.1002/jcla.22655 [2018]
  • N. A. DNA Detection Using Recombination Proteins .
    4 , e204 , doi:10.1371/journal.pbio.0040204 ( [2006]
  • Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow
    34 , 528-530 , doi:10.1038/nbt.3526 [2016]
  • Multiplexed genotyping with sequence-tagged molecular inversion probes
    21 , 673-678 , doi:10.1038/nbt821 [2003]
  • Multiplexed and portable nucleic acid detection platform with Cas13 , Cas12a , and Csm6
    doi:10.1126/science.aaq0179 [2018]
  • Multiplexed Recombinase Polymerase Amplification Assay To Detect Intestinal Protozoa
    [2016]
  • Multiplex Genome Engineering Using CRISPR/Cas Systems
    339 , 819 , doi:10.1126/science.1231143 [2013]
  • MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island
    33 , 296-300 , doi:10.1038/nbt.3103 ( [2015]
  • Microdroplet-based PCR enrichment for large-scale targeted sequencing .
    27 , 1025-1031 , doi:10.1038/nbt.1583 ( [2009]
  • Mapping the genomic landscape of CRISPR-Cas9 cleavage
    14 , 600-606 , doi:10.1038/nmeth.4284 [2017]
  • M. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis
    13 , 99 , doi:10.1186/1475-2875-13-99 [2014]
  • M. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens .
    181 , 1715-1723 , doi:10.1007/s00604-014-1198-5 [2014]
  • M. Field Demonstration of a Multiplexed Point-of-Care Diagnostic Platform for Plant Pathogens .
    88 , 8074-8081 , doi:10.1021/acs.analchem.6b01551 [2016]
  • M. A recombinase polymerase amplification assay for the diagnosis of atypical pneumonia
    [2018]
  • Low-cost genotyping method based on allele-specific recombinase polymerase amplification and colorimetric microarray detection
    184 , 1453-1462 , doi:10.1007/s00604-017-2144-0 [2017]
  • K. W. NIH Image to ImageJ : 25 years of image analysis
    9 , 671-675 , doi:10.1038/nmeth.2089 [2012]
  • K. J. Multiplex-ready PCR : a new method for multiplexed SSR and SNP genotyping
    9 , 80 , doi:10.1186/1471-2164-9-80 ( [2008]
  • J. S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
    24 , 1012-1019 , doi:10.1101/gr.171322.113 [2014]
  • J. S. Cas-OFFinder : a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases .
    30 , 1473- 1475 , doi:10.1093/bioinformatics/btu048 ( [2014]
  • J. L. Examining Sources of Error in PCR by Single-Molecule Sequencing
    12 , e0169774-e0169774 , doi:10.1371/journal.pone.0169774 [2017]
  • J. L. CRISPR-mediated isolation of specific megabase segments of genomic DNA
    45 , e165-e165 , doi:10.1093/nar/gkx749 [2017]
  • J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA .
    34 , 339-344 , doi:10.1038/nbt.3481 ( [2016]
  • Integrated digital error suppression for improved detection of circulating tumor DNA
    34 , 547 , doi:10.1038/nbt.3520 [2016]
  • In Vitro CRISPR/Cas9 System for Efficient Targeted DNA Editing
    6 , e01714-01715 , doi:10.1128/mBio.01714-15 [2015]
  • H. Identification of physical interactions between genomic regions by enChIP-Seq .
    22 , 506-520 , doi:10.1111/gtc.12492 [2017]
  • H. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation ( enChIP ) using CRISPR
    [2013]
  • Genome-scale transcriptional activation by an engineered CRISPRCas9 complex
    517 , 583-588 , doi:10.1038/nature14136 [2015]
  • Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA
    24 , 1020-1027 , doi:10.1101/gr.171264.113 [2014]
  • GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases .
    33 , 187-197 , doi:10.1038/nbt.3117 ( [2015]
  • G. M. CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria
    547 , 345-349 , doi:10.1038/nature23017 [2017]
  • Field-deployable viral diagnostics using CRISPR-Cas13
    360 , 444-448 , doi:10.1126/science.aas8836 [2018]
  • F. Development and applications of CRISPR-Cas9 for genome engineering
    157 , 1262-1278 , doi:10.1016/j.cell.2014.05.010 [2014]
  • Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci
    44 , e75 , doi:10.1093/nar/gkv1533 [2016]
  • Exome-wide DNA capture and next generation sequencing in domestic and wild species
    12 , 347 , doi:10.1186/1471-2164-12-347 [2011]
  • Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase
    287430- 287430 , doi:10.1155/2014/287430 [2014]
  • Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
    155 , 1479-1491 , doi:10.1016/j.cell.2013.12.001 [2013]
  • Direct selection of human genomic loci by microarray hybridization
    4 , 903-905 , doi:10.1038/nmeth1111 [2007]
  • Digenome-seq : genome-wide profiling of CRISPR-Cas9 off-target effects in human cells
    12 , 237-243 , 231 p following 243 , doi:10.1038/nmeth.3284 [2015]
  • Development of a rapid recombinase polymerase amplification assay for detection of Brucella in blood samples
    [2016]
  • Depletion of Abundant Sequences by Hybridization ( DASH ) : using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications
    17 , 41 , doi:10.1186/s13059-016-0904-5 ( [2016]
  • D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
    424 , doi:10.1038/nature17946 [2016]
  • D. R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification
    32 , 577- 582 , doi:10.1038/nbt.2909 [2014]
  • Comparison of commercially available target enrichment methods for nextgeneration sequencing .
    24 , 73-86 , doi:10.7171/jbt.13-2402-002 ( [2013]
  • Comparison of Three Targeted Enrichment Strategies on the SOLiD Sequencing Platform
    6 , e18595 , doi:10.1371/journal.pone.0018595 [2011]
  • Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA .
    15 , 2759- 2766 , doi:10.1039/c5lc00291e [2015]
  • CRISPR–Cas9-targeted fragmentation and selective sequencing enable massively parallel microsatellite analysis
    8 , 14291 , doi:10.1038/ncomms14291 [2017]
  • CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
    154 , 442-451 , doi:10.1016/j.cell.2013.06.044 [2013]
  • CIRCLE-seq : a highly sensitive in vitro screen for genome-wide CRISPRCas9 nuclease off-targets .
    14 , 607-614 , doi:10.1038/nmeth.4278 [2017]
  • C. K. Electrochemical detection of Francisella tularensis genomic DNA using solid-phase recombinase polymerase amplification
    54 , 674-678 , doi:10.1016/j.bios.2013.11.035 ( [2014]
  • Blocked recombinase polymerase amplification for mutation analysis of PIK3CA gene
    [2018]
  • B. Heat-induced deamination of cytosine residues in deoxyribonucleic acid
    13 , 3405-3410 , doi:10.1021/bi00713a035 [1974]
  • Assessing the clinical utility of cancer genomic and proteomic data across tumor types
    32 , 644-652 , doi:10.1038/nbt.2940 [2014]
  • Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries
    12 , R18 , doi:10.1186/gb-2011-12-2-r18 [2011]
  • Addressing challenges in the production and analysis of illumina sequencing data
    12 , 382 , doi:10.1186/1471-2164-12-382 ( [2011]
  • A. S. Degenerate adaptor sequences for detecting PCR duplicates in reduced representation sequencing data improve genotype calling accuracy .
    15 , 329- 336 , doi:10.1111/1755-0998.12314 [2015]
  • A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
    507 , 62-67 , doi:10.1038/nature13011 ( [2014]
  • A reference bacterial genome dataset generated on the MinION™ portable single-molecule nanopore sequencer
    3 , 22 , doi:10.1186/2047-217x-3-22 ( [2014]
  • A new approach for diagnosis of bovine coronavirus using a reverse transcription recombinase polymerase amplification assay
    193 , 337-340 , doi:10.1016/j.jviromet.2013.06.027 [2013]
  • A framework for variation discovery and genotyping using nextgeneration DNA sequencing data
    43 , 491-498 , doi:10.1038/ng.806 [2011]
  • A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity
    337 , 816 , doi:10.1126/science.1225829 [2012]
  • A Portable Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid Detection of Foot-and-Mouth Disease Virus
    8 , e71642 , doi:10.1371/journal.pone.0071642 [2013]
  • 80 Wee, E. J. H. & Trau, M. Simple Isothermal Strategy for Multiplexed, Rapid, Sensitive, and Accurate miRNA Detection. ACS Sensors 1, 670-675, doi:10.1021/acssensors.6b00105 (2016).