박사

Optical spectroscopic investigation on two-dimensional van der waals materials : centimeter-scale few-layered transition metal dichalcogenides

Jung, Eilho 2020년
논문상세정보
' Optical spectroscopic investigation on two-dimensional van der waals materials : centimeter-scale few-layered transition metal dichalcogenides' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Binding energy
  • Exciton
  • Optical spectroscopy
  • Optical transition
  • Transition Metal dichalcogenides
  • Two-zone CVD
  • band gap
  • ftir
  • tmds
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
164 0

0.0%

' Optical spectroscopic investigation on two-dimensional van der waals materials : centimeter-scale few-layered transition metal dichalcogenides' 의 참고문헌

  • ¡°van der Waals Metallic Transition Metal Dichalcogenides
    vol . 118 , no . 13 , pp . 6297-6336 ,
  • ¡°van der Waals Layered Materials : Opportunities andChallenges
    vol . 11 , no . 12 , pp . 11803- 11830 ,
  • ¡°Ultrasensitive photodetectors based on monolayer MoS2
    vol . 8 , no . 7 , pp . 497-501
  • ¡°Ultrapure multilayer graphene in bromine-intercalated graphite
    vol . 84 , no . 4 , [2011]
  • ¡°Uber die Dissociationswarme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte
    vol . 4U , no . 1 , pp . 96 ? 116 [1889]
  • ¡°Transmission spectra of some transition metal dichalcogenides . II . Group VIA : trigonal prismaticCoordination ,
    vol . 5 , no . 24 , pp . 3540-3551 [1972]
  • ¡°Thickness and strain effects on electronic structures of transition metal dichalcogenides : 2H-MX2 semiconductors ( M=Mo , W ; X=S , Se , Te )
    vol . 85 , no . 3 , [2012]
  • ¡°Thermally drivenCrossover from indirect toward direct bandgap in 2D semiconductors : MoSe2 versus MoS2 ,
    vol . 12 , no . 11 , pp . 5576-80 ,
  • ¡°TheChemistry of two-dimensional layered transition metal dichalcogenide nanosheets
    vol . 5 , no . 4 , pp . 263-75
  • ¡°The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory ,
    vol . 99 , no . 26 [2011]
  • ¡°The band structures of some transition metal dichalcogenides . III . Group VIA : trigonal prism materials
    vol . 5 , no . 7 , pp . 759-778 [1972]
  • ¡°Temperature dependence of band gap in MoSe2 grown by molecular beam epitaxy
    vol . 12 , no . 1 , pp . 492 ,
  • ¡°Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics
    vol . 47 , no . 16 , pp . 6342-6369
  • ¡°Structural and quantum-state phase transitions in van der Waals layered materials
    vol . 13 , no . 10 , pp . 931-937 [2017]
  • ¡°Spin and pseudospins in layered transition metal dichalcogenides
    vol . 10 , no . 5 , pp . 343-350 [2014]
  • ¡°Raman signatures of inversion symmetry breaking and structural phase transition in type-II Weyl semimetal MoTe2 ,
    vol . 7 , no . 1 , pp . 13552 , [2016]
  • ¡°Phase stability and Raman vibration of the molybdenum ditelluride ( MoTe2 ) monolayer
    vol . 17 , no . 22 , pp . 14866-71 ,
  • ¡°Optical signature of symmetry variations and spinvalleyCoupling in atomically thin tungsten dichalcogenides
    vol . 3 , pp . 1608 , [2013]
  • ¡°Optical properties of zinc oxide thin films doped with aluminum and lithium ,
    vol . 518 , no . 16 , pp . 4603-4606 [2010]
  • ¡°Optical properties of the perfectlyCompensated semimetal WTe2
    vol . 92 , no . 16 , [2015]
  • ¡°Optical properties and band gap of singleand few-layer MoTe2Crystals
    vol . 14 , no . 11 , pp . 6231-6 ,
  • ¡°MoS2 nanosheet phototransistors with thicknessmodulated optical energy gap ,
    vol . 12 , no . 7 , pp . 3695-700 ,
  • ¡°MoS2 nanoribbons : high stability and unusual electronic and magnetic properties ,
    vol . 130 , no . 49 , pp . 16739-44 ,
  • ¡°Mechanical and Electronic Properties of MoS2 Nanoribbons and Their Defects ,
    vol . 115 , no . 10 , pp . 3934-3941 [2011]
  • ¡°Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2 ,
    vol . 203 , pp . 16-20 [2015]
  • ¡°Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers
    vol . 4 , pp . 2053 [2013]
  • ¡°Layer type tungsten dichalcogenideCompounds : their preparation , structure , properties and uses
    vol . 20 , no . 11 , pp . 3801-3815 [1985]
  • ¡°Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2 , 2H-MoSe2 and 2H-MoTe2
    vol . 12 , no . 5 , pp . 881-890 [1979]
  • ¡°Indirect-to-direct band gapCrossover in fewlayer MoTe2 ,
    vol . 15 , no . 4 , pp . 2336-42 ,
  • ¡°Exciton states in monolayer MoSe2 : impact on interband transitions
    vol . 2 , no . 4 , [2015]
  • ¡°Exciton mapping at subwavelength scales in twodimensional materials
    vol . 114 , no . 10 , pp . 107601 ,
  • ¡°Exciton and phonon effects in the absorption spectra of germanium and silicon ,
    vol . 8 , pp . 388-392 [1959]
  • ¡°Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides
    vol . 44 , no . 9 , pp . 2643-63 ,
  • ¡°Electronic structure of two-dimensionalCrystals fromab initiotheory
    vol . 79 , no . 11 , pp . 115409 [2009]
  • ¡°Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 ( M Mo , W ; X S , Se , Te ) from ab-initio theory : new direct band gap semiconductors
    vol . 85 , no . 6 [2012]
  • ¡°Electronic structure and scanningtunneling-microscopy image of molybdenum dichalcogenide surfaces
    vol . 51 , no . 23 , pp . 17085-17095
  • ¡°Electronic Processes in NonCrystalline Materials
    vol . 25 , no . 12 , pp . 55-55 [1972]
  • ¡°Electronic Band Structures of Molybdenum and Tungsten Dichalcogenides by the GW Approach
    vol . 116 , no . 14 , pp . 7664-7671 [2012]
  • ¡°Effects of the lithium intercalation on the optical band edge of WS2
    vol . 110 , no . 1-2 , pp . 29-34 [1998]
  • ¡°Direct Imaging of Band Profile in Single Layer MoS2 on Graphite : Quasiparticle Energy Gap , Metallic Edge States , and Edge Band Bending
    vol . 14 , no . 5 , pp . 2443-2447 [2014]
  • ¡°Determination of band alignment in the single-layer MoS2/WSe2 heterojunction
    vol . 6 , pp . 7666 ,
  • ¡°Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides
    vol . 108 , no . 19 , pp . 196802 ,
  • ¡°Conductivity of Superconducting Films for Photon Energies between 0.3 and 40K Tc
    vol . 108 , no . 2 , pp . 243-256 , [1957]
  • ¡°Conduction in non-crystalline systems V.Conductivity , optical absorption and photoconductivity in amorphous semiconductors
    vol . 22 , no . 179 , pp . 0903- 0922 [1970]
  • ¡°Comparative study of optical analysis methods for thin films
    vol . 20 , no . 2 , pp . 237-243 , [2020]
  • ¡°Classical Electrodynamics 3rd Edition
    [1975]
  • ¡°Band structure of MoS2 , MoSe2 , and ¥á ? MoTe2 : Angle-resolved photoelectron spectroscopy andab initiocalculations ,
    vol . 64 , no . 23 , pp . 235305 , [2001]
  • ¡°Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy :Charge transferCorrection term for the electron affinity rule
    vol . 85 , no . 5 , pp . 2732-2753 [1999]
  • ¡°Band gap energy and exciton peak ofCubicCdS/GaAs epilayers
    vol . 92 , no . 2 , pp . 1162-1164 [2002]
  • ¡°Atomically thin MoS2 : a new direct-gap semiconductor ,
    vol . 105 , no . 13 , pp . 136805 ,
  • ¡°2D materials and van der Waals heterostructures
    vol . 353 , no . 6298 , pp . aac9439 ,
  • ¡°2D materials : to graphene and beyond
    vol . 3 , no . 1 , pp . 20- 30
  • layer locking effects in optical orientation of exciton spin in bilayer WSe2 ,
    vol . 10 , no . 2 , pp . 130-134 , [2014]
  • and M. H. Xie , Molecular-beam epitaxy of monolayer and bilayer WSe2 : a scanning tunneling microscopy/spectroscopy study and deduction
    , ¡± 2D Materials , vol . 2
  • and F. Baumberger , Fermi Arcs and Their Topological Character in the Candidate Type-II
    Physical Review X , vol . 6 ,
  • and A. Kaminski , Spectroscopic evidence for a type II Weyl
    ¡± Nat Mater , vol . 15 , no . 11 [1155]
  • [97] J. Frenkel, ¡°On the Transformation of light into Heat in Solids. I,¡± Physical Review, vol. 37, no. 1, pp. 17-44, 1931.
  • [96] G. H. Wannier, ¡°The Structure of Electronic Excitation Levels in Insulating Crystals,¡± Physical Review, vol. 52, no. 3, pp. 191-197, 1937.
  • [92] Beer, ¡°Bestimmung der Absorption des rothen Lichts in farbigen Flussigkeiten,¡± Annalen der Physik und Chemie, vol. 162, no. 5, pp. 78- 88, 1852.
  • [90] G. D. Scholes, and G. Rumbles, ¡°Excitons in nanoscale systems,¡± Nat Mater, vol. 5, no. 9, pp. 683-96, Sep, 2006.
  • [89] A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, ¡°Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,¡± Phys Rev Lett, vol. 113, no. 7, pp. 076802, Aug 15, 2014.
  • [81] H. Liu, L. Jiao, F. Yang, Y. Cai, X. Wu, W. Ho, C. Gao, J. Jia, N. Wang, H. Fan, W. Yao, and M. Xie, ¡°Dense network of one-dimensional midgap metallic modes in monolayer MoSe2 and their spatial undulations,¡± Phys Rev Lett, vol. 113, no. 6, pp. 066105, Aug 8, 2014.
  • [76] A. R. Botello-Mendez, F. Lopez-Urias, M. Terrones, and H. Terrones, ¡°Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons,¡± Nanotechnology, vol. 20, no. 32, pp. 325703, Aug 12, 2009.
  • [74] C. Ataca, and S. Ciraci, ¡°Functionalization of Single-Layer MoS2 Honeycomb Structures,¡± The Journal of Physical Chemistry C, vol. 115, no. 27, pp. 13303-13311, 2011.
  • [67] V. V. Ivanovskaya, A. Zobelli, A. Gloter, N. Brun, V. Serin, and C. Colliex, ¡°Ab initiostudy of bilateral doping within the MoS2-NbS2 system,¡± Physical Review B, vol. 78, no. 13, pp. 134104, 2008.
  • [66] L. F. Mattheiss, ¡°Band Structures of Transition-Metal-Dichalcogenide Layer Compounds,¡± Physical Review B, vol. 8, no. 8, pp. 3719-3740, 1973.
  • [64] A. H. Reshak, and S. Auluck, ¡°Calculated optical properties of 2H?MoS2 intercalated with lithium,¡± Physical Review B, vol. 68, no. 12, pp. 125101, 2003.
  • [63] A. H. Reshak, and S. Auluck, ¡°Electronic and optical properties of 2H? WSe2 intercalated with copper,¡± Physical Review B, vol. 68, no. 19, pp. 195107, 2003.
  • [62] A. H. Reshak, and S. Auluck, ¡°Band structure and optical response of 2H ?MoX2 compounds (X=S, Se, and Te),¡± Physical Review B, vol. 71, no. 15, pp. 155114, 2005.
  • [5] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, ¡°Large-scale pattern growth of graphene films for stretchable transparent electrodes,¡± Nature, vol. 457, no. 7230, pp. 706-10, Feb 5, 2009.
  • [57] A. Ramasubramaniam, ¡°Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides,¡± Physical Review B, vol. 86, no. 11, 2012.
  • [49] L. J. v. d. Pauw, ¡°A Method of Measuring the Resistivity and Hall Coefficient on Lamellae of Arbitrary Shape,¡± Philips technical review, vol. 20, pp. 220-224, 1958.
  • [47] S. Arrhenius, ¡°Uber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Sauren,¡± Zeitschrift fur Physikalische Chemie, vol. 4U, no. 1, pp. 226-248, 1889.
  • [45] B. E. Brown, ¡°The crystal structures of WTe2 and high-temperature MoTe2,¡± Acta Crystallographica, vol. 20, no. 2, pp. 268-274, 1966.
  • [42] P. F. Henning, C. C. Homes, S. Maslov, G. L. Carr, D. N. Basov, B. Nikoli?, and M. Strongin, ¡°Infrared Studies of the Onset of Conductivity in Ultrathin Pb Films,¡± Physical Review Letters, vol. 83, no. 23, pp. 4880- 4883, 1999.
  • [40] A. C. Galca, G. Socol, and V. Craciun, ¡°Optical properties of amorphouslike indium zinc oxide and indium gallium zinc oxide thin films,¡± Thin Solid Films, vol. 520, no. 14, pp. 4722-4725, 2012.
  • [3] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, ¡°Large-area synthesis of high-quality and uniform graphene films on copper foils,¡± Science, vol. 324, no. 5932, pp. 1312-4, Jun 5, 2009.
  • [37] G. E. Jellison, and F. A. Modine, ¡°Parameterization of the optical functions of amorphous materials in the interband region,¡± Applied Physics Letters, vol. 69, no. 3, pp. 371-373, 1996.
  • [35] G. R. Fowles, and D. W. Lynch, ¡°Introduction to Modern Optics,¡± American Journal of Physics, vol. 36, no. 8, pp. 770-771, 1968.
  • [34] O. S. Heavens, and S. F. Singer, ¡°Optical Properties of Thin Solid Films,¡± Physics Today, vol. 9, no. 3, pp. 24-26, 1956
  • [32] Y. Qi, P. G. Naumov, M. N. Ali, C. R. Rajamathi, W. Schnelle, O. Barkalov, M. Hanfland, S. C. Wu, C. Shekhar, Y. Sun, V. Suss, M. Schmidt, U. Schwarz, E. Pippel, P. Werner, R. Hillebrand, T. Forster, E. Kampert, S. Parkin, R. J. Cava, C. Felser, B. Yan, and S. A. Medvedev, ¡°Superconductivity in Weyl semimetal candidate MoTe2,¡± Nat Commun, vol. 7, pp. 11038, Mar 14, 2016.
  • [31] I. Belopolski, D. S. Sanchez, Y. Ishida, X. Pan, P. Yu, S. Y. Xu, G. Chang, T. R. Chang, H. Zheng, N. Alidoust, G. Bian, M. Neupane, S. M. Huang, C. C. Lee, Y. Song, H. Bu, G. Wang, S. Li, G. Eda, H. T. Jeng, T. Kondo, H. Lin, Z. Liu, F. Song, S. Shin, and M. Z. Hasan, ¡°Discovery of a new type of topological Weyl fermion semimetal state in MoxW1-xTe2,¡± Nat Commun, vol. 7, pp. 13643, Dec 5, 2016.
  • [2] S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, ¡°Progress, challenges, and opportunities in two-dimensional materials beyond graphene,¡± ACS Nano, vol. 7, no. 4, pp. 2898-926, Apr 23, 2013.
  • [27] D. H. Keum, S. Cho, J. H. Kim, D.-H. Choe, H.-J. Sung, M. Kan, H. Kang, J.-Y. Hwang, S. W. Kim, H. Yang, K. J. Chang, and Y. H. Lee, ¡°Bandgap opening in few-layered monoclinic MoTe2,¡± Nature Physics, vol. 11, no. 6, pp. 482-486, 2015.
  • [22] W. G. Dawson, and D. W. Bullett, ¡°Electronic structure and crystallography of MoTe2 and WTe2,¡± Journal of Physics C: Solid State Physics, vol. 20, no. 36, pp. 6159-6174, 1987.
  • [1] A. K. Geim, and K. S. Novoselov, ¡°The rise of graphene,¡± Nat Mater, vol. 6, no. 3, pp. 183-91, Mar, 2007.
  • [18] A. K. Geim, and I. V. Grigorieva, ¡°Van der Waals heterostructures,¡± Nature, vol. 499, no. 7459, pp. 419-25, Jul 25, 2013.
  • [10] J. C. Park, S. J. Yun, H. Kim, J. H. Park, S. H. Chae, S. J. An, J. G. Kim, S. M. Kim, K. K. Kim, and Y. H. Lee, ¡°Phase-Engineered Synthesis of Centimeter-Scale 1T'- and 2H-Molybdenum Ditelluride Thin Films,¡± ACS Nano, vol. 9, no. 6, pp. 6548-54, Jun 23, 2015.
  • [109] M. Fox, "Optical properties of solids," Oxford Master Series in Physic (2 nd Edition), Oxford University Press (Oxford, 2001), 1970, p. 97.
  • [104] A. R. Klots, A. K. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, ¡°Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,¡± Sci Rep, vol. 4, pp. 6608, Oct 16, 2014.
  • [103] N. Saigal, V. Sugunakar, and S. Ghosh, ¡°Exciton binding energy in bulk MoS2: A reassessment,¡± Applied Physics Letters, vol. 108, no. 13, 2016.
  • [101] T. Cheiwchanchamnangij, and W. R. L. Lambrecht, ¡°Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2,¡± Physical Review B, vol. 85, no. 20, 2012.
  • [100] M. D. Sturge, ¡°Optical Absorption of Gallium Arsenide between 0.6 and 2.75 eV,¡± Physical Review, vol. 127, no. 3, pp. 768-773, 1962.
  • W. Ruan , S. K. Mo , Z. Hussain , Z. X. Shen , F. Wang , S. G. Louie , and M.
    bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor
  • V. Giacometti , and A. Kis , ¡°Single-layer MoS2 transistors ,
    vol . 6 , no . 3 , pp . 147- 50 ,
  • The transition metal dichalcogenides discussion and interpretation of the observed optical , electrical and structural properties
    vol . 18 , no . 73 , pp . 193-335 [1969]
  • T. F. Heinz , ¡°Observation of Excitonic Rydberg States in Monolayer MoS2 and WS2
    ¡± Nano Lett , vol . 15 , no . 5 ,
  • S.-W.Cheong , B . A. Bernevig , and A. N. Pasupathy ,
    ¡± npj Quantum Materials , vol . 3
  • R. Datta , S. K. Pati , andC. N. Rao , ¡°MoS2 and WS2 analogues of graphene
    vol . 49 , no . 24 , pp . 4059-62 ,
  • Optical Properties and Electronic Structure of Amorphous Germanium
    vol . 15 , no . 2 , pp . 627-637 , [1966]
  • Optical Investigation of Monolayer and Bulk Tungsten Diselenide ( WSe2 ) in High Magnetic
    , vol . 15 , no . 7 , pp . 4387-92
  • N. Haldolaarachchige , M. Hirschberger , N. P. Ong , and R. J. Cava , ¡°Large , non-saturating magnetoresistance in WTe2
    vol . 514 , no . 7521 , pp . 205-8 ,
  • M. S. Dresselhaus , ¡°Large-Area Synthesis of
    Am Chem Soc , vol . 137 , no . 37 , [1189]
  • M. Bhaskaran , and K. Kalantar-zadeh , ¡°Two-Dimensional Molybdenum Trioxide and Dichalcogenides
    vol . 23 , no . 32 , pp . 3952-3970 [2013]
  • K. L. Shepard , and J. Hone , ¡°Boron nitride substrates for high-quality graphene electronics
    vol . 5 , no . 10 , pp . 722-6 ,
  • Interlayer excitons in a bulk van der Waals semiconductor
    , vol . 8 , no . 1 , pp . 639
  • Graphene-Like Two-Dimensional Materials
    vol . 113 , no . 5 , pp . 3766-3798 [2013]
  • Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides
    vol . 86 , no . 4 , pp . 463-467 [1982]
  • Cho , R. M. Wallace , S. C. Lee , J. H. He ,
    , 3rd , X. Zhang , E. Yablonovitch , and A. Javey
  • Band Offsets and Heterostructures of Two-dimensional Semiconductors
    vol . 102 , no . 1 , [2013]
  • B. Kuzmenko , and A. F. Morpurgo , Monoand bilayer WS2 light-emitting transistors ,
    vol . 14 , no . 4 , pp . 2019-25 [2014]
  • , S. K. Mo , I. Vobornik , J.
    Parkin , C. Felser , B. H. Yan