박사

Prognostic gene panel of pancreatic adenocarcinoma : prognostic model and validation

김지은 2020년
논문상세정보
' Prognostic gene panel of pancreatic adenocarcinoma : prognostic model and validation' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 의료과학 약
  • gene expression panel, signature, prognostic model, pancreatic adenocarcinoma, pancreatic cancer
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
3,950 0

0.0%

' Prognostic gene panel of pancreatic adenocarcinoma : prognostic model and validation' 의 참고문헌

  • is up-regulated by p53 and mediates DNA damage-dependent transcriptional repression .
    26 , 1533-45 . [2012]
  • al. , 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage
    2016 , 375 ,
  • Tumor microenvironment of pancreatic cancer : immune landscape is dictated by molecular and histopathological features
    121 , 5-14 [2019]
  • The lasso method for variable selection in theCox model
    16 , 385-95 [1997]
  • Targeting the cancer epigenome for therapy
    17 , 630-41 . [2016]
  • Targeting cancer metabolism : a therapeutic window opens
    10 , 671-84 . [2011]
  • Targeting a tumor-specific laminin domain critical for human carcinogenesis
    68 , 2885-94 . [2008]
  • Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy
    17 , 500-3 . [2011]
  • Stromal biology and therapy in pancreatic cancer : ready for clinical translation ?
    68 , 159-171 . [2019]
  • Stratification of Pancreatic Ductal Adenocarcinomas Based on Tumor and Microenvironment Features
    155 , 1999-2013 e3 . [2018]
  • Role ofCell surface metalloprotease MT1-MMP in epithelialCell migration over laminin-5 .
    148 , 615-24 . [2000]
  • Rhinovirus-induced modulation of gene expression in bronchial epithelialCells from subjects with asthma .
    3 , 69-80 . [2010]
  • Restoration of LRIG1 suppresses bladderCancerCell growth by directly targeting EGFR activity
    32 , 101 . [2013]
  • Prognostic Fifteen-Gene Signature for Early Stage Pancreatic Ductal Adenocarcinoma
    10 , e0133562 . [2015]
  • Pharmacological modulation of lung cancer cells for potassium ion depletion .
    25 , 2609-16 . [2005]
  • Pancreatic Cancer Heterogeneity Can Be Explained Beyond the Genome
    9 , 246 [2019]
  • NetworkAnalyst 3.0 : a visual analytics platform for comprehensive gene expression profiling and meta-analysis .
    47 , W234- W241 . [2019]
  • Mechanisms of resistance to EGFR tyrosine kinase inhibitors
    5 , 390-401 . [2015]
  • Loss of LRIG1 locus increases risk of early and late relapse of stage I/II breast cancer
    74 , 2928-35 . [2014]
  • Loss of E2F7 confers resistance to poly-ADP-ribose polymerase ( PARP ) inhibitors in BRCA2-deficient cells
    46 , 8898-8907 . [2018]
  • LRIG1 acts as a critical regulator of melanoma cell invasion , migration , and vasculogenic mimicry upon hypoxia by regulating EGFR/ERK-triggered epithelial-mesenchymal transition
    39 . [2019]
  • LRIG-1 provides a novel prognostic predictor in squamous cell carcinoma of the skin : immunohistochemical analysis for 38 cases
    31 , 423- 30 . [2005]
  • KRAS : feeding pancreatic cancer proliferation
    39 , 91-100 . [2014]
  • KRAS : The Critical Driver and Therapeutic Target for Pancreatic Cancer
    8 [2018]
  • International Agency for Research on Cancer. , WHO classification of tumors of endocrine organs
    p 355 pages . [2017]
  • Integrative analyses reveal novel strategies in HPV11 , -16 and -45 early infection
    2 , 515 . [2012]
  • Induction of the human gene for p44 , a hepatitis-C-associated microtubular aggregate protein , by interferon-alpha/beta
    224 , 877-83 . [1994]
  • Implementing personalized cancer care
    11 , 432-8 . [2014]
  • Impact of adjuvant radiotherapy on survival after pancreatic cancer resection : an appraisal of data from the national cancer data base
    20 , 3634-42 . [2013]
  • Hallmarks of cancer : the next generation
    144 , 646-74 . [2011]
  • HER2 and lung cancer .
    13 , 1219-28 . [2013]
  • Genomic analyses identify molecular subtypes of pancreatic cancer
    531 , 47-52 [2016]
  • Expression of laminin-5- gamma-2 chain in intraductal papillary-mucinous and invasive ductal tumors of the pancreas .
    14 , 404-9 . [2001]
  • Exploration , normalization , and summaries of high density oligonucleotide array probe level data .
    4 , 249-64 . [2003]
  • Epidermal growth factor receptor in pancreatic cancer
    3 , 1513-26 . [2011]
  • Emerging roles of E2Fs in cancer : an exit from cell cycle control .
    9 , 785-97 . [2009]
  • Development of a hypoxia gene expression classifier with predictive impact for hypoxic modification of radiotherapy in head and neck cancer .
    71 , 5923-31 . [2011]
  • Deficient HER3 expression in poorly-differentiated colorectal cancer cells enhances gefitinib sensitivity .
    45 , 1583-93 . [2014]
  • Dantzic , D.D . ; Simpson , F. ; et al. , RacGAP1 Is a Novel Downstream Effector of E2F7- Dependent Resistance
    Overall Survival in Squamous
  • DNA methylation profiling in the clinic : applications and challenges
    13 , 679-92 . [2012]
  • Controversies and challenges regarding the impact of radiation therapy on survival
    24 , 38-46 [2013]
  • Christein , J.D . ; Heslin , M.J. ; et al. , RNA sequencing of pancreatic adenocarcinoma tumors yields novel expression
    survival and reveals a
  • Antiproliferative activity of the human IFN-alpha-inducible protein IFI44 .
    27 , 675-80 . [2007]
  • Analysis of gene expression data using BRB-ArrayTools .
    3 , 11-7 . [2007]
  • Acquisition of cisplatin-resistance in malignant mesothelioma cells abrogates Na+ , K+,2Cl ( - ) -cotransport activity and cisplatin-induced early membrane blebbing .
    22 , 45-56 . [2008]
  • Aberrant promoter methylation and silencing of laminin-5-encoding genes in breast carcinoma
    9 , 6389-94 . [2003]
  • A paradigm for class prediction using gene expression profiles
    9 , 505-11 . [2002]
  • 7. Gerlinger, M.; Rowan, A.J.; Horswell, S.; Math, M.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; et al., Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012, 366, 883-892.
  • 69. Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; HuertaCepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al., STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019, 47, D607-D613.
  • 64. Winter, C.; Kristiansen, G.; Kersting, S.; Roy, J.; Aust, D.; Knosel, T.; Rummele, P.; Jahnke, B.; Hentrich, V.; Ruckert, F.; et al., Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes. PLoS Comput Biol 2012, 8, e1002511.
  • 63. Yang, S.; He, P.; Wang, J.; Schetter, A.; Tang, W.; Funamizu, N.; Yanaga, K.; Uwagawa, T.; Satoskar, A.R.; Gaedcke, J.; et al., A Novel MIF Signaling Pathway Drives the Malignant Character of Pancreatic Cancer by Targeting NR3C2. Cancer Research 2016, 76, 3838-50.
  • 57. Endo-Munoz, L.; Dahler, A.; Teakle, N.; Rickwood, D.; Hazar-Rethinam, M.; Abdul-Jabbar, I.; Sommerville, S.; Dickinson, I.; Kaur, P.; PaquetFifield, S.; et al., E2F7 can regulate proliferation, differentiation, and apoptotic responses in human keratinocytes: implications for cutaneous squamous cell carcinoma formation. Cancer Research 2009, 69, 1800-8.
  • 56. Marinkovich, M.P., Tumor microenvironment: laminin 332 in squamouscell carcinoma. Nat Rev Cancer 2007, 7, 370-80.
  • 55. Moschetta, M.; Basile, A.; Ferrucci, A.; Frassanito, M.A.; Rao, L.; Ria, R.; Solimando, A.G.; Giuliani, N.; Boccarelli, A.; Fumarola, F.; et al., Novel targeting of phospho-cMET overcomes drug resistance and induces antitumor activity in multiple myeloma. Clin Cancer Res 2013, 19, 4371- 82.
  • 54. Hage, C.; Rausch, V.; Giese, N.; Giese, T.; Schonsiegel, F.; Labsch, S.; Nwaeburu, C.; Mattern, J.; Gladkich, J.; Herr, I., The novel c-Met inhibitor cabozantinib overcomes gemcitabine resistance and stem cell signaling in pancreatic cancer. Cell Death Dis 2013, 4, e627.
  • 53. Ozasa, H.; Oguri, T.; Maeno, K.; Takakuwa, O.; Kunii, E.; Yagi, Y.; Uemura, T.; Kasai, D.; Miyazaki, M.; Niimi, A., Significance of c-MET overexpression in cytotoxic anticancer drug-resistant small-cell lung cancer cells. Cancer Sci 2014, 105, 1032-9.
  • 52. Engelman, J.A.; Zejnullahu, K.; Mitsudomi, T.; Song, Y.; Hyland, C.; Park, J.O.; Lindeman, N.; Gale, C.M.; Zhao, X.; Christensen, J.; et al., MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007, 316, 1039-43.
  • 5. Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al., Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013, 369, 1691-703.
  • 47. Mu, X.L.; Li, L.Y.; Zhang, X.T.; Wang, M.Z.; Feng, R.E.; Cui, Q.C.; Zhou, H.S.; Guo, B.Q., Gefitinib-sensitive mutations of the epidermal growth factor receptor tyrosine kinase domain in chinese patients with non-small cell lung cancer. Clin Cancer Res 2005, 11, 4289-94.
  • 46. Critchley-Thorne, R.J.; Simons, D.L.; Yan, N.; Miyahira, A.K.; Dirbas, F.M.; Johnson, D.L.; Swetter, S.M.; Carlson, R.W.; Fisher, G.A.; Koong, A.; et al., Impaired interferon signaling is a common immune defect in human cancer. Proc Natl Acad Sci U S A 2009, 106, 9010-5.
  • 4. Conroy, T.; Desseigne, F.; Ychou, M.; Bouche, O.; Guimbaud, R.; Becouarn, Y.; Adenis, A.; Raoul, J.L.; Gourgou-Bourgade, S.; de la Fouchardiere, C.; et al., FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 2011, 364, 1817-25.
  • 37. Garzon-Muvdi, T.; Schiapparelli, P.; ap Rhys, C.; Guerrero-Cazares, H.; Smith, C.; Kim, D.H.; Kone, L.; Farber, H.; Lee, D.Y.; An, S.S.; et al., Regulation of brain tumor dispersal by NKCC1 through a novel role in focal adhesion regulation. PLoS Biol 2012, 10, e1001320.
  • 3. van Roessel, S.; Kasumova, G.G.; Verheij, J.; Najarian, R.M.; Maggino, L.; de Pastena, M.; Malleo, G.; Marchegiani, G.; Salvia, R.; Ng, S.C.; et al., International Validation of the Eighth Edition of the American Joint Committee on Cancer (AJCC) TNM Staging System in Patients With Resected Pancreatic Cancer. JAMA Surg 2018, 153, e183617.
  • 20. Moore, M.J.; Goldstein, D.; Hamm, J.; Figer, A.; Hecht, J.R.; Gallinger, S.; Au, H.J.; Murawa, P.; Walde, D.; Wolff, R.A.; et al., Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology 2007, 25, 1960-6.
  • 2. Kindler, H.L., A Glimmer of Hope for Pancreatic Cancer. N Engl J Med 2018, 379, 2463-2464.
  • 15. The Cancer Genome Atlas Research Network, Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell 2017, 32, 185-203 e13.
  • 13. Moffitt, R.A.; Marayati, R.; Flate, E.L.; Volmar, K.E.; Loeza, S.G.; Hoadley, K.A.; Rashid, N.U.; Williams, L.A.; Eaton, S.C.; Chung, A.H.; et al., Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet 2015, 47, 1168- 78.
  • 12. Haider, S.; Wang, J.; Nagano, A.; Desai, A.; Arumugam, P.; Dumartin, L.; Fitzgibbon, J.; Hagemann, T.; Marshall, J.F.; Kocher, H.M.; et al., A multigene signature predicts outcome in patients with pancreatic ductal adenocarcinoma. Genome Med 2014, 6, 105.
  • 1. Siegel, R.L.; Miller, K.D.; Jemal, A., Cancer statistics, 2019. CA Cancer J Clin 2019, 69, 7-34.
    69 , 7-34 .