박사

Growth of Single Crystals in the (Na1/2Bi1/2)TiO3-SrTiO3 System by Solid State Crystal Growth and their Characterization

레야판 2020년
논문상세정보
' Growth of Single Crystals in the (Na1/2Bi1/2)TiO3-SrTiO3 System by Solid State Crystal Growth and their Characterization' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 기술과 연합작용
  • Sodium Bismuth Titanate
  • piezoelectricceramics
  • single-crystal
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
761 0

0.0%

' Growth of Single Crystals in the (Na1/2Bi1/2)TiO3-SrTiO3 System by Solid State Crystal Growth and their Characterization' 의 참고문헌

  • piezoelectric properties of MnO2-doped ( K0.5Na0.5 ) NbO3 ? 0.05LiNbO3Crystal grown by flux-Bridgman method
    603 ( 0 ) ( [2014]
  • microstructure and electrical properties of 0.4 ( Bi0.5K0.5 ) TiO3-0.6BiFeO3 lead-free piezoelectric ceramics
    68 ( 1 ) ( [2016]
  • in : D.T.J . Hurle , J.B. Mullin ( Eds . ) Crystal Growth : An Introduction.
    Vol . Vol . 1 inpp . 263 ? 327 [1973]
  • in : Crystal Growth for Beginners : Fundamentals of Nucleation , Crystal Growth and Epitaxy
    pp . 181-351 . [2003]
  • in : Condensation and Evaporation : Nucleation and Growth Kinetics
    pp . 77-106 . [1963]
  • electromechanical coupling properties of Mn-doped Na0.5Bi0.5TiO3 ? BaTiO3 lead-free single crystal .
    103 ( [2011]
  • [9]C.W. Ahn, G.Choi, I.W. Kim, J.-S. Lee, K. Wang, Y. Hwang, W. Jo, NPG Asia Mater 9, e346 (2017).
    9 , e346 [2017]
  • [99] K.-S. Moon, D. Rout, H.-Y. Lee, S.-J.L. Kang, J. Eur.Ceram. Soc. 31 (10), 1915 (2011).
    31 ( 10 ) , 1915 [2011]
  • [98] W. Jo, N.-M. Hwang, D.-Y. Kim, J. KoreanCeram. Soc. 43 (11), 728 (2006).
    43 ( 11 ) , 728 [2006]
  • [97] K.Choi, N.M. Hwang, D.-Y. Kim, J. Am.Ceram. Soc. 85 (9), 2313 (2002).
    85 ( 9 ) , 2313 [2002]
  • [96] C. Rottman, M. Wortis, Phys. Rep. 103 (1?4), 59 (1984).
  • [95] C. Rottman, M. Wortis, Physical Review B 29 (1), 328 (1984).
  • [94] H. Moon, B.-K. Kim, S.-J. L. Kang, Acta Mater. 49 (7), 1293 (2001).
    49 ( 7 ) , 1293 [2001]
  • [93] K.-S. Moon, S.-J.L. Kang, J. Am.Ceram. Soc. 91 (10), 3191 (2008).
    91 ( 10 ) , 3191 [2008]
  • [92] S.H. Jung, S.J.L. Kang, Scr. Mater. 82, 49 (2014).
    82 , 49 [2014]
  • [91] K.L. Merkle, L.J. Thompson, Mater. Lett. 48 (3?4), 188 (2001).
    48 ( 3 ? 4 ) , 188 [2001]
  • [90] D.-K. Lee, H. Vu, J.G. Fisher, Journal of Electroceramics 34 (2-3), 150 (2014).
    34 ( 2-3 ) , 150 [2014]
  • [90] A.A. Bokov, Z.-G. Ye, Phys. Rev. B 66 (2002) 064103.
    66 ( [2002]
  • [8] M. Acosta, L.A. Schmitt, L. Molina-Luna, M.C. Scherrer, M. Brilz, K.G. Webber, M. Deluca, H.-J. Kleebe, J. Rodel, W. Donner, J. Am.Ceram. Soc. 98 (11), 3405 (2015).
    98 ( 11 ) , 3405 [2015]
  • [89] S.-J.L. Kang, M.-G. Lee, S.-M. An, J. Am.Ceram. Soc. 92 (7), 1464 (2009).
    92 ( 7 ) , 1464 [2009]
  • [88] H. van Beijeren, Phys. Rev. Lett. 38 (18), 993 (1977).
  • [87] H.J.W. Zandvliet, O. Gurlu, B. Poelsema, Physical Review B 64 (7), 073402 (2001).
  • [86] S.-Y.Choi, S.-J.L. Kang, Acta Mater. 52 (10), 2937 (2004).
    52 ( 10 ) , 2937 [2004]
  • [86] R. Pirc, R. Blinc, Phys. Rev. B 60 (1999) 13470.
  • [85] Z.Y.Cheng, R.S. Katiyar, X. Yao, A. Guo, Phys. Rev. B 55 (1997) 8165.
    55 ( [1997]
  • [85] I.V. Markov, Chapter 1 Crystal-Ambient Phase Equilibrium, in: Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy, World Scientific, Singapore, 2003, p. 1.
  • [84] S.D. Peteves, R. Abbaschian, Metallurgical Transactions A 22 (6), 1271 (1991).
    22 ( 6 ) , 1271 [1991]
  • [84] M.A. Akbas, P.K. Davies, J. Am.Ceram. Soc. 80 (1997) 2933.
    80 ( [1997]
  • [83] V. Westphal, W. Kleemann, M. Glinchuk, Phys. Rev. Lett. 68 (1992) 847.
    68 ( [1992]
  • [83] S.D. Peteves, R. Abbaschian, Metallurgical Transactions A 22 (6), 1259 (1991).
    22 ( 6 ) , 1259 [1991]
  • [82] D. Vietland, S.J. Jang, L.E.Cross, J. Appl. Phys. 68 (1990) 2916.
    68 ( [1990]
  • [81] L.E. Cross, Ferroelectrics 76 (1987) 241.
  • [81] I.V. Markov, Chapter 2 Nucleation, in: Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy, World Scientific, Singapore, 2003, p. 77.
  • [80] G.A. Smolenski, A.I. Agranovskaya, Sov. Phys. Tech. Phys. 3 (1958) 1380.
  • [7] S.-Y.Choi, S.-J. Jeong, D.-S. Lee, M.-S. Kim, J.-S. Lee, J.H.Cho, B.I. Kim, Y. Ikuhara,Chem. Mater. 24 (17), 3363 (2012).
    24 ( 17 ) , 3363 [2012]
  • [79] W. Jo, J. Rodel, App. Phys. Lett. 99 (2011) 042901.
    99 ( [2011]
  • [79] K.W. Lay, J. Am.Ceram. Soc. 51 (7), 373 (1968).
    51 ( 7 ) , 373 [1968]
  • [78] W. Jo, D.-Y. Kim, N.-M. Hwang, J. Am.Ceram. Soc. 89 (8), 2369 (2006).
    89 ( 8 ) , 2369 [2006]
  • [77] M.U. Farooq, J.G. Fisher, J.H. Kim, D. Kim, E.C. Shin, Y.H. Kim, J.H. Kim, S.H. Moon, J.S. Lee, X.J. Lin, D. Zhang, Reactive sintering of lead-free piezoelectric (K0.5Na0.5)NbO3 ceramics, J. Ceram. Process. Res. 17 (4) (2016) 304-312.
  • [76] K.-S. Oh, J.-Y. Jun, D.-Y. Kim, N.M. Hwang, J. Am.Ceram. Soc. 83 (12), 3117 (2000).
    83 ( 12 ) , 3117 [2000]
  • [75] B.-K. Yoon, B.-A. Lee, S.-J.L. Kang, Acta Mater. 53 (17), 4677 (2005).
    53 ( 17 ) , 4677 [2005]
  • [74] S.-Y.Chung, D.Y. Yoon, S.-J.L. Kang, Acta Mater. 50 (13), 3361 (2002).
    50 ( 13 ) , 3361 [2002]
  • [73] J.G. Fisher, S.-J.L. Kang, Trans. Mat. Res. Soc. Japan 35 (3), 455 (2010).
    35 ( 3 ) , 455 [2010]
  • [72] Y.I. Jung, D.Y. Yoon, S.J.L. Kang, J. Mater. Res. 24 (9), 2949 (2009).
    24 ( 9 ) , 2949 ( [2009]
  • [71] J. Wang, Y. Yu, L. Zhang, AppliedCatalysis B: Environmental 136, 112 (2013).
    136 , 112 [2013]
  • [70] Y. Teng, F. Teng, Electrochim. Acta 244, 1 (2017).
    244 , 1 [2017]
  • [70] M. Wortis, Equilibrium Crystal Shapes and Interfacial Phase Transitions, in: R. Vanselow, R. Howe (Eds.) Chemistry and Physics of Solid Surfaces VII, Springer Berlin Heidelberg, Berlin, Heidelberg, 1988, pp. 367-405.
  • [6] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics, Nature 432 (7013) (2004) 84-87.
    432 ( 7013 ) (84-87 . [2004]
  • [6] W. Bai, D.Chen, P. Zheng, J. Zhang, F. Wen, B. Shen, J. Zhai, Z. Ji, J. AlloysCompd. 709, 646 (2017).
    709 , 646 [2017]
  • [69] J. Wang, W. Jiang, D. Liu, Z. Wei, Y. Zhu, AppliedCatalysis B: Environmental 176, 306 (2015).
    176 , 306 [2015]
  • [68] Y. Shi, L. Luo, Y. Zhang, Y.Chen, S. Wang, L. Li, Y. Long, F. Jiang,Ceram. Int. 43 (10), 7627 (2017).
    43 ( 10 ) , 7627 [2017]
  • [68] C. Rottman, M. Wortis, Equilibrium crystal shapes for lattice models with nearest-and next-nearest-neighbor interactions, Phys. Rev. B 29 (1) (1984) 328-339.
  • [67] A. Ito, H. Masumoto, T. Goto, Mater. Trans. 47 (11), 2808 (2006).
    47 ( 11 ) , 2808 [2006]
  • [66] R.E. Tanner, Y. Liang, E.I. Altman, Surf. Sci. 506 (3), 251 (2002).
    506 ( 3 ) , 251 [2002]
  • [66] M. Wortis, Equilibrium Crystal Shapes and Interfacial Phase Transitions, in: R. Vanselow, R. Howe (Eds.) Chemistry and Physics of Solid Surfaces VII, Springer Berlin Heidelberg, Berlin, Heidelberg, 1988, pp. 367-405.
  • [65] Z. Ai, G. Lu, S. Lee, J. AlloysCompd. 613, 260 (2014).
    613 , 260 [2014]
  • [65] C. Rottman, M. Wortis, Equilibrium crystal shapes for lattice models with nearest-and next-nearest-neighbor interactions, Phys. Rev. B 29 (1) (1984) 328-339.
  • [64] L.T. Hudson, R.L. Kurtz, S.W. Robey, D. Temple, R.L. Stockbauer, Physical Review B 47 (16), 10832 (1993).
    47 ( 16 ) , 10832 ( [1993]
  • [63] E.Cao, Y. Qin, T.Cui, L. Sun, W. Hao, Y. Zhang,Ceram. Int. 43 (10), 7922 (2017).
    43 ( 10 ) , 7922 [2017]
  • [62] P.A.W. van der Heide, Q.D. Jiang, Y.S. Kim, J.W. Rabalais, Surf. Sci. 473 (1), 59 (2001).
    473 ( 1 ) , 59 ( [2001]
  • [61] J. Bao, X. Zhang, B. Fan, J. Zhang, M. Zhou, W. Yang, X. Hu, H. Wang, B. Pan, Y. Xie, AngewandteChemie International Edition 54 (25), 7399 (2015).
    54 ( 25 ) , 7399 [2015]
  • [60] S. Song, S. Huang, R. Zhang, Z.Chen, T. Wen, S. Wang, T. Hayat, A. Alsaedi, X. Wang,Chem. Eng. J. (Lausanne) 325, 576 (2017).
    325 , 576 [2017]
  • [5] Q. Li, S. Gao, L. Ning, H. Fan, Z. Liu, Z. Li,Ceram. Int. 43 (7), 5367 (2017).
    43 ( 7 ) , 5367 [2017]
  • [59] T. Yang, L. Du,C. Zhai, Z. Li, Q. Zhao, Y. Luo, D. Xing, M. Zhang, J. AlloysCompd. 718, 396 (2017).
    718 , 396 [2017]
  • [58] R.D. Shannon, ActaCrystall. A 32 (5), 751 (1976).
    32 ( 5 ) , 751 [1976]
  • [57] S.-J.L. Kang, S.-Y. Ko, S.-Y. Moon, J.Ceram. Soc. Jpn. 124 (4), 259 (2016).
    124 ( 4 ) , 259 [2016]
  • [56] S.J.L. Kang, M.G. Lee, S.M. An, J. Am.Ceram. Soc. 92 (7), 1464 (2009).
    92 ( 7 ) , 1464 [2009]
  • [55] J. Koruza, V. Rojas, L. Molina-Luna, U. Kunz, M. Duerrschnabel, H.-J. Kleebe, M. Acosta, J. Eur.Ceram. Soc. 36 (4), 1009 (2016).
    36 ( 4 ) , 1009 ( [2016]
  • [54] H. Sun, J.G. Fisher, S.-H. Moon, H. Tran Tran, J.-S. Lee, H.-S. Han, H.-P. Kim, W. Jo, Materials Science and Engineering: B 223, 109 (2017).
    223 , 109 [2017]
  • [53] J.-H. Park, S.-J.L. Kang, AIP Advances 6 (1), 015310 (2016).
    6 ( 1 ) , 015310 [2016]
  • [52] D.K. Lee, H. Vu, J.G. Fisher, J Electroceram 34 (2-3), 150 (2015).
    34 ( 2-3 ) , 150 [2015]
  • [51] D. Lee, H. Vu, H. Sun, T.L. Pham, D.T. Nguyen, J.-S. Lee, J.G. Fisher,Ceram. Int. 42 (16), 18894 (2016).
    42 ( 16 ) , 18894 [2016]
  • [50] M.U. Farooq, S.Y. Ko, J.G. Fisher, Adv. Appl.Ceram. 115 (2), 81 (2016).
    115 ( 2 ) , 81 [2016]
  • [4] W. Jo, R. Dittmer, M. Acosta, J. Zang,C. Groh, E. Sapper, K. Wang, J. Rodel, J. Electroceram. 29 (1), 71 (2012).
    29 ( 1 ) , 71 ( [2012]
  • [49] M.U. Farooq, J.G. Fisher,Ceram. Int. 40 (2), 3199 (2014).
    40 ( 2 ) , 3199 [2014]
  • [47] S.-J.L. Kang, J.-H. Park, S.-Y. Ko, H.-Y. Lee, J. Am.Ceram. Soc. 98 (2), 347 (2015).
    98 ( 2 ) , 347 [2015]
  • [46] K.-S. Moon, D. Rout, H.-Y. Lee, S.-J.L. Kang, J.Cryst. Growth 317 (1), 28 (2011).
    317 ( 1 ) , 28 [2011]
  • [45] I.V. Markov, Chapter 1 Crystal-Ambient Phase Equilibrium, in: Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy, World Scientific, Singapore, (2003) p.1.
  • [44] J. Yang, Q. Yang, Y. Li, Y. Liu, J. Eur.Ceram. Soc. 36 (3), 541 (2016).
    36 ( 3 ) , 541 [2016]
  • [44] I.V. Markov, Chapter 2 Nucleation, in: Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy, World Scientific, Singapore, (2003).
  • [43] M. Woll, M. Burianek, D. Klimm, S. Gorfman, M. Muhlberg, Journal ofCrystal Growth 401, 351 (2014).
    351 [2014]
  • [42] S.R. Kanuru, K. Baskar, R. Dhanasekaran, B. Kumar, Journal ofCrystal Growth 441, 64 (2016).
    441 , 64 [2016]
  • [41] S. Sheets, A. Soukhojak, N. Ohashi, Y.Chiang, J. Appl. Phys 90 (10), 5287 (2001).
    90 ( 10 ) , 5287 [2001]
  • [40] J.-H. Park, H.-Y. Lee, S.-J.L. Kang, Appl. Phys. Lett. 104 (22), 222910 (2014).
    104 ( 22 ) , 222910 [2014]
  • [3] M. Villafuerte-Castrejon, E. Moran, A. Reyes-Montero, R. Vivar-Ocampo, J.-A. Pena-Jimenez, S.-O. Rea-Lopez, L. Pardo, Materials 9 (1), 21 (2016).
  • [39] M. Wojdyr, Fityk: a general-purpose peak fitting program, J. Appl. Crystall. 43 (5) (2010) 1126-1128.
  • [39] J.-H.Cho, J.-S. Park, S.-W. Kim, Y.-H. Jeong, J.-S. Yun, W.-I. Park, Y.-W. Hong, J.-H. Paik, J. Eur.Ceram. Soc. 37 (10), 3313 (2017).
    37 ( 10 ) , 3313 [2017]
  • [38] M. Acosta, W. Jo, J. Rodel, J. Am.Ceram. Soc. 97 (6), 1937 (2014).
    97 ( 6 ) , [1937]
  • [37] Y. Watanabe, Y. Hiruma, H. Nagata, T. Takenaka,Ceram. Int. 34 (4), 761 (2008).
    34 ( 4 ) , 761 [2008]
  • [36] J.R. Gomah-Pettry, A.N. Salak, P. Marchet, V.M. Ferreira, J.P. Mercurio, physica status solidi (b) 241 (8), 1949 (2004).
    241 ( 8 ) , [1949]
  • [35] S. Sayyed, S.A. Acharya, P. Kautkar, V. Sathe, RSC Adv. 5 (63), 50644 (2015).
    5 ( 63 ) , 50644 ( [2015]
  • [34] D. Rout, K.-S. Moon, S.-J.L. Kang, I.W. Kim, J. Appl. Phys. 108 (8), 084102 (2010).
    108 ( 8 ) , 084102 ( [2010]
  • [33] Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, T. Takenaka, Appl. Phys. Lett. 92 (26), 262904 (2008).
    92 ( 26 ) , 262904 [2008]
  • [32] R.Cheng, Z. Xu, R.Chu, J. Hao, J. Du, G. Li, J. Eur.Ceram. Soc. 36 (3), 489 (2016).
    36 ( 3 ) , 489 ( [2016]
  • [31] A. Hussain, J.U. Rahman, A. Zaman, R.A. Malik, J.S. Kim, T.K. Song, W.J. Kim, M.H. Kim, Mater.Chem. Phys. 143 (3), 1282 (2014).
    143 ( 3 ) , 1282 [2014]
  • [30] P.K. Panda, Journal of Materials Science 44 (19), 5049 (2009).
    44 ( 19 ) , 5049 [2009]
  • [29] Y. Hiruma, H. Nagata, T. Takenaka, Jpn J Appl Phy 48 (9S1), 09KC08 (2009).
    48 ( 9S1 ) , 09KC08 [2009]
  • [28] Y. Hiruma, H. Nagata, T. Takenaka, Jpn J Appl Phy 45 (9B), 7409 (2006).
    45 ( 9B ) , 7409 [2006]
  • [28] E. Zolotoyabko, BasicConcepts of X-Ray Diffraction, ISBN: 978-3-527-33561-9 (2014).
    ISBN : 978-3-527-33561-9 [2014]
  • [27]C.W. Tai, S.H.Choy, H.L.W.Chan, J. Am.Ceram. Soc. 91 (10), 3335 (2008).
    91 ( 10 ) , 3335 [2008]
  • [26] X. Tan,C. Ma, J. Frederick, S. Beckman, K.G. Webber, J. Am.Ceram. Soc. 94 (12), 4091 (2011).
    94 ( 12 ) , 4091 [2011]
  • [25] Y. Hiruma, H. Nagata, T. Takenaka, J. Appl. Phys. 104 (12), 124106 (2008).
  • [24] J. Suchanicz, K. Roleder, A. Kania, J. Ha?aderek, Ferroelectrics 77 (1), 107 (1988).
  • [23] K. Roleder, J. Suchanicz, A. Kania, Ferroelectrics 89 (1?5 ), (1989).
  • [22] Y.-Q. Lu, Y.-X. Li, Journal of Advanced Dielectrics 01 (03), 269 (2011).
    01 ( 03 ) , 269 ( [2011]
  • [21] G.O. Jones, P.A. Thomas, ActaCrystallographica Section B 58 (2), 168 (2002).
    58 ( 2 ) , 168 ( [2002]
  • [20] G. Smolenskii, V. Isupov, A. Agranovskaya, N. Krainik, Soviet Physics-Solid State 2 (11), 2651 (1961).
  • [1] A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications. Second Edition, John Wiley & Sons, Chichester, 2005.
  • [19] T. Shao, H. Du, H. Ma, S. Qu, J. Wang, J. Wang, X. Wei, Z. Xu, Journal of MaterialsChemistry A 5 (2), 554 (2017).
    5 ( 2 ) , 554 [2017]
  • [18]C.Cui, Y. Pu, Z. Gao, J. Wan, Y. Guo,C. Hui, Y. Wang, Y.Cui, J. AlloysCompd. 711, 319 (2017).
    711 , 319 [2017]
  • [17] J. Li, Y. Bai, S. Qin, J. Fu, R. Zuo, L. Qiao, Appl. Phys. Lett. 109 (16), 162902 (2016).
    109 ( 16 ) , 162902 [2016]
  • [15] K. Praveena, K.B.R. Varma, J. Mater. Sci.: Mater. Electron. 25 (12), 5403 (2014).
    25 ( 12 ) , 5403 [2014]
  • [14] K. Praveena, K.B.R. Varma, J. Mater. Sci.: Mater. Electron. 25 (1), 111 (2014).
    25 ( 1 ) , 111 [2014]
  • [13] W. Jo, J.-B. Ollagnier, J.-L. Park, E.-M. Anton, O.J. Kwon, C. Park, H.-H. Seo, J.-S. Lee, E. Erdem, R.-A. Eichel, J. Rodel, CuO as a sintering additive for (Bi1/2Na1/2)TiO3?BaTiO3?(K0.5Na0.5)NbO3 lead-free piezoceramics, J. Eur. Ceram. Soc. 31 (12) (2011) 2107-2117.
  • [13] T. Zheng, J. Wu, X.Cheng, X. Wang, B. Zhang, D. Xiao, J. Zhu, X. Wang, X. Lou, Journal of MaterialsChemistryC 2 (41), 8796 (2014).
    2 ( 41 ) , 8796 [2014]
  • [12]C.Chen, X. Zhao, Y. Wang, H. Zhang, H. Deng, X. Li, X. Jiang, X. Jiang, H. Luo, Appl. Phys. Lett. 108 (2), 022903 (2016).
    108 ( 2 ) , 022903 [2016]
  • [11] R.Z. Zuo, H. Qi, J. Fu, J.F. Li, M. Shi, Y.D. Xu, Appl. Phys. Lett. 108 (23), 5 (2016).
    108 ( 23 ) , 5 [2016]
  • [10] W. Bai, D.Chen, P. Zheng, J. Xi, Y. Zhou, B. Shen, J. Zhai, Z. Ji, J. Eur.Ceram. Soc. 37 (7), 2591 (2017).
    37 ( 7 ) , 2591 [2017]
  • [106] Y.S. Sung, J.M. Kim, J.H.Cho, T.K. Song, M.H. Kim, H.H.Chong, T.G. Park, D. Do, S.S. Kim, Appl. Phys. Lett. 96 (2), 022901 (2010).
    96 ( 2 ) , 022901 ( [2010]
  • [105] Y.S. Sung, J.M. Kim, J.H.Cho, T.K. Song, M.H. Kim, T.G. Park, Appl. Phys. Lett. 98 (1), 012902 (2011).
    98 ( 1 ) , 012902 ( [2011]
  • [104] J.G. Fisher, S.-J.L. Kang, J. Eur.Ceram. Soc. 29 (12), 2581 (2009).
    29 ( 12 ) , 2581 [2009]
  • [103] S.-Y. Ko, S.-J.L. Kang, J. Eur.Ceram. Soc. 36 (5), 1159 (2016).
    36 ( 5 ) , 1159 [2016]
  • [100] U.C. Oh, Y.S.Chung, D.Y. Kim, D.N. Yoon, J. Am.Ceram. Soc. 71 (10), 854 (1988).
    71 ( 10 ) , 854 [1988]
  • X-ray study of phase transitions in ferroelectric Na0.5Bi0.5TiO3 .
    40 ( 1 ) ( [1982]
  • Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation
    54 ( 25 ) : p. 7399-7404 [2015]
  • Transferring lead-free piezoelectric ceramics into application
    35 ( 6 ) ( [2015]
  • Towards Lead-Free Piezoceramics : Facing a Synthesis Challenge
    9 ( 1 ) ( [2016]
  • Top-Seeded Solution Growth and Properties of K1 ? xNaxNbO3 Crystals
    15 ( 3 ) ( [2015]
  • TiO3-SrTiO3 single crystals by solid state crystal growth
    42 ( 16 ) ( [2016]
  • Ti1-xZrx ) O3 single crystals by solid state single crystal growth
    34 ( 2-3 ) ( [2015]
  • The tetragonal phase of Na0.5Bi0.5TiO3 ? a new variant of the perovskite structure
    56 ( 3 ) ( [2000]
  • The equilibrium crystal shape of strontium titanate : Impact of donor doping .
    127 ( [2017]
  • The effect of volume fraction on particle coarsening : theoretical considerations
    20 , ( 1 ) , 61-71. http : //dx.doi.org/10.1016/0001-6160 ( 72 ) 90114-9 [1972]
  • The effect of sintering temperature and time on the growth of single crystals of 0.75 ( Na0.5Bi0.5 ) TiO3 ? 0.25 SrTiO3 by solid state crystal growth
    40 ( 2 ) ( [2018]
  • The Growth of Crystals and the Equilibrium Structure of Their Surfaces
    A 243 ( 1951 ) 299-358 .
  • The Effect of Niobium Doping on the Electrical Properties of 0.4 ( Bi0.5K0.5 ) TiO3-0.6BiFeO3 Lead-Free Piezoelectric Ceramics
    8 ( 12 ) ( [2015]
  • Temperatureand frequencydependent properties of the 0.75 ( Na1/2Bi1/2 ) TiO3-0.25SrTiO3 lead-free incipient piezoceramic.
    97 ( 6 ) ( [2014]
  • Temperatureand Frequency-Dependent Properties of the 0.75Bi1/2Na1/2TiO3-0.25SrTiO3 Lead-Free Incipient Piezoceramic .
    97 ( 6 ) ( [2014]
  • Temperature-Dependent Properties of ( Bi1/2Na1/2 ) TiO3 ? ( Bi1/2K1/2 ) TiO3 ? SrTiO3 Lead-Free Piezoceramics
    95 ( 7 ) ( [2012]
  • Temperature dependence of the step free energy
    64 ( 7 ) ( [2001]
  • TEM Observations of Singular Grain Boundaries and their Roughening Transition in TiO2-Excess BaTiO3 .
    94 ( 3 ) ( [2003]
  • T. Granzow , D. Damjanovic
    92 ( 6 ) , 1153 [2009]
  • Surface steps and surface morphology : understanding macroscopic phenomena from atomic observations299 ? 300
    [1994]
  • Surface steps and surface morphology : understanding macroscopic phenomena from atomic observations
    300 ( [1994]
  • Study of relaxor behavior in a lead-free ( Na0.5Bi0.5 ) TiO3-SrTiO3-BaTiO3 ternary solid solution system
    42 ( 11 ) ( [2016]
  • Structure and properties of Fe-modified Na0.5Bi0.5TiO3 at ambient and elevated temperature
    85 ( [2012]
  • Structure and electrical properties of ( Na0.5Bi0.5 ) 1 ? xBaxTiO3 piezoelectric ceramics
    28 ( 4 ) : p. 843-849 . [2008]
  • Structure and dielectric properties of Na0.5Bi0.5TiO3-CaTiO3 solid solutions
    119 ( [2016]
  • Structural and dielectric anomalies near the MPB region of Na0.5Bi0.5TiO3-SrTiO3 solid solution
    5 ( 63 ) ( [2015]
  • Strategies and practices for suppressing abnormal grain growth during liquid phase sintering
    102 ( 2 ) ( [2019]
  • Statistical mechanics of equilibrium crystal shapes : Interfacial phase diagrams and phase transitions
    103 ( 1 ? 4 ) ( [1984]
  • SrTiO3 lead-free piezoelectric singleCrystals by the solid stateCrystal growth method and theirCharacterization
    40 ( 2 ) ( [2014]
  • Solid-stateConversion of ( Na1/2Bi1/2 ) TiO3-BaTiO3( K1/2Na1/2 ) NbO3 singleCrystals and their piezoelectric properties
    104 ( 22 ) ( [2014]
  • Solid-stateConversion of ( 94-x ) ( Na1/2Bi1/2 ) TiO3-6BaTiO3-x ( K1/2Na1/2 ) NbO3 singleCrystals and their enhancedConverse piezoelectric properties
    6 ( 1 ) ( [2016]
  • Solid-state-growth of lead-free piezoelectric ( Na1/2Bi1/2 ) TiO3-CaTiO3 singleCrystals and theirCharacterization .
    223 : p. 109-119 [2017]
  • Solid-state-growth of lead-free piezoelectric ( Na1/2Bi1/2 ) TiO3-CaTiO3 singleCrystals and theirCharacterization ,
    B 223 ( 2017 ) 109-119 .
  • Solid-StateConversion of SingleCrystals : The Principle and the State-of-the-Art
    98 ( 2 ) ( [2015]
  • Solid state growth of Na1/2Bi1/2TiO3 ? BaTiO3 singleCrystals and their enhanced piezoelectric properties
    317 ( 1 ) ( [2011]
  • Sodium ion transport in polymorphic scandium NASICON analog Na3Sc2 ( PO4 ) 3 with new dielectric spectroscopy approach forCurrent-constriction effects ,
    289 ( [2016]
  • Sintering of Lead-Free Piezoelectric Sodium Potassium NiobateCeramics
    8 ( 12 ) ( [2015]
  • Sintering kinetics by structural transition at grain boundaries in barium titanate ,
    52 ( 10 ) ( [2004]
  • SingleCrystal growth of LaCuOS by the flux method
    311 ( 1 ) : p. 114-117 . [2008]
  • SingleCrystal growth of BaZrO3 from the melt at 2700 ¡ÆC using optical floating zone technique and growth prospects from BaB2O4 flux at 1350 ¡ÆC
    21 ( 3 ) : p. 502-512 . [2019]
  • Shifting the phase boundary : Potassium sodium niobate derivates
    43 ( 8 ) ( [2018]
  • Self-heat generation in piezoelectric stack actuators used in fuel injectors ,
    18 ( 4 ) ( [2009]
  • S. Vernay , D. Rytz
    91 ( 5 ) , 1503 ( [2008]
  • S. J. L. ,Coarsening of polyhedral grains in a liquid matrix .
    24 , ( 9 ) , 2949-2959 . 10.1557/jmr.2009.0356 [2009]
  • S. J. L. ,Coarsening Behaviour of Round-EdgedCubic Grains in the Na1/2Bi1/2TiO3-BaTiO3 System .
    91 , ( 10 ) , 3191-3196 . 10.1111/j.1551-2916.2008.02620.x [2008]
  • S. J. L. , Solid-stateConversion of ( Na1/2Bi1/2 ) TiO3-BaTiO3( K1/2Na1/2 ) NbO3 singleCrystals and their piezoelectric properties
    104 , ( 22 ) , 222910. doi : http : //dx.doi.org/10.1063/1.4881615 [2014]
  • S. J. L. , Solid state growth of Na1/2Bi1/2TiO3 ? BaTiO3 singleCrystals and their enhanced piezoelectric properties
    317 , ( 1 ) , 28-31 . 10.1016/j.jcrysgro.2011.01.023 [2011]
  • S. J. L. , Sintering kinetics by structural transition at grain boundaries in barium titanate .
    52 , ( 10 ) , 2937-2943. http : //dx.doi.org/10.1016/j.actamat.2004.02.039 [2004]
  • S. J. L. , Nonlinear driving force-velocity relationship for the migration of faceted boundaries
    60 , ( 11 ) , 4531-4539 . 10.1016/j.actamat.2012.05.006 [2012]
  • S. J. L. , Mechanism of abnormal grain growth in ultrafine-grained nickel
    61 , ( 15 ) , 5685-5693. http : //dx.doi.org/10.1016/j.actamat.2013.06.010 [2013]
  • S. J. L. , Growth behaviour of rounded ( Ti , W )C and faceted WC grains in aCo matrix during liquid phase sintering .
    53 , ( 17 ) , 4677-4685. http : //dx.doi.org/10.1016/j.actamat.2005.06.021 [2005]
  • S. J. L. , Grain boundary faceting and abnormal grain growth in BaTiO3
    48 , ( 7 ) , 1575-1580 . [2000]
  • S. J. L. , Boundary structural transition and grain growth behaviour in BaTiO3 with Nd2O3 doping and oxygen partial pressureChange
    59 , ( 5 ) , 1964-1973 . 10.1016/j.actamat.2010.11.062 [2011]
  • S. J. L. , An explanation for the formation of polyhedral abnormal grains in single-phase systems .
    82 , 49-52 . 10.1016/j.scriptamat.2014.03.018 [2014]
  • Roughening of a stepped GaN grain boundary with increasing driving force for migration
    120 ( 1 ) ( [2017]
  • Revised effective ionic radii and systematic studies of interatomic distances in halides andChalcogenides
  • Reliability aspects of microsensors and micromechatronic actuators for automotive applications
    43 ( 7 ) ( [2003]
  • Relaxor singleCrystals in the ( Bi1/2Na1/2 ) 1-xBaxZryTi1-yO3 system exhibiting high electrostrictive strain .
    90 ( 10 ) ( [2001]
  • Relaxor behavior and electrical properties of high dielectricConstant materials
    [2009]
  • Raman spectroscopic study of Na1/2Bi1/2TiO3-x BaTiO3 singleCrystals as a function of temperature andComposition
    109 ( 11 ) ( [2011]
  • R. Dhanasekaran
    90 ( 10 ) , 102901 [2007]
  • Proustite single-crystal growth by the Bridgman ? Stockbarger method using ACRT .
    235 : p. 457-464 . [2002]
  • PiezoelectricCeramics , in : Electroceramics : Materials , Properties , Applications
    Chapter 6Second Edition [2005]
  • PiezoelectricCeramics
    [1971]
  • Piezoelectric properties and phase transition temperatures of the solid solution of ( 1-x ) ( Bi0.5Na0.5 ) TiO3 ? xSrTiO3
    30 ( 8 ) ( [2010]
  • Phase transitions and soft modes in sodium bismuth titanate ,
    63 ( [2011]
  • Phase transitions and phase diagram of the ferroelectric perovskite ( Na0.5Bi0.5 ) 1-xBaxTiO3 by anelastic and dielectric measurements
    81 ( 14 ) ( [2010]
  • Phase transition temperatures and electrical properties of divalent ions ( Ca2+ , Sr2+ and Ba2+ ) substituted ( Bi1/2Na1/2 ) TiO3 ceramics
    34 ( 4 ) ( [2008]
  • Phase transition , ferroelectric behaviors and domain structures of ( Na1/2Bi1/2 ) 1 ? xTiPbxO3 thin films
    54 ( 6 ) ( [2006]
  • Phase diagrams and electrical properties of ( Bi1/2Na1/2 ) TiO3-based solid solutions
    104 , ( 12 ) , 124106. doi : http : //dx.doi.org/10.1063/1.3043588 [2008]
  • Phase coexistence and Mn-doping effect in lead-free ferroelectric ( Na1/2Bi1/2 ) TiO3 crystals
    96 ( 6 ) ( [2010]
  • Perspective on the Development of Lead-free Piezoceramics
    92 ( 6 ) ( [2009]
  • Peculiarities of phase transitions in sodium-bismuth titanate .
    25 ( 1 ) ( [1980]
  • Particle growth in model supported metal catalysts ? I . Theory
    24 ( 12 ) ( [1976]
  • Particle growth in model supported metal catalysts ? I
    24 , ( 12 [1976]
  • Origin of the large strain response in ( K0.5Na0.5 ) NbO3-modified ( Bi0.5Na0.5 ) TiO3 ? BaTiO3 lead-free piezoceramics
    105 ( 9 ) ( [2009]
  • Optical properties of epitaxial Na0.5Bi0.5TiO3 lead-free piezoelectric thin films : Ellipsometric and theoretical studies
    421 ( 2017 ) 367-372 .
  • Optical properties of an epitaxial Na0.5Bi0.5TiO3 thin film grown by laser ablation : Experimental approach and density functional theory calculations
    107 ( 10 ) ( [2010]
  • On the phase identity and its thermal evolution of lead free ( Bi1/2Na1/2 ) TiO3-6 mol % BaTiO3
    110 ( 7 ) ( [2011]
  • Nonstoichiometry and the Long-Range Cation Ordering in Crystals of ( Na1/2Bi1/2 ) TiO3
    77 ( 10 ) ( [1994]
  • Nonlinear driving force-velocity relationship for the migration of faceted boundaries
    60 ( 11 ) ( [2012]
  • New ferroelectrics of complex composition .
    2 , 2651-2654 . [1961]
  • Nanoscale insight into lead-free BNT-BT-xKNN
    22 ( [2012]
  • Na0.5Bi0.5 ) TiO3-SrTiO3 single crystals by solid state crystal growth
    42 ( 16 ) : p. 18894-18901 . [2016]
  • Monoclinic crystal structure of polycrystalline Na0.5Bi0.5TiO3
    98 ( 15 ) ( [2011]
  • Mixed control of boundary migration and the principle of microstructural evolution
    124 ( 4 ) ( [2016]
  • Migration Kinetics of Oxygen Vacancies in Mn-Modified BiFeO3 Thin Films
    3 ( 7 ) ( [2011]
  • Microstructural Evolution During Sintering with Control of the Interface Structure .
    92 ( 7 ) ( [2009]
  • Microscopy and microanalysis : the official journal of Microscopy Society of America , Microbeam Analysis Society
    11 ( 6 ) , 572 [2005]
  • Mechanism of abnormal grain growth in ultrafine-grained nickel
    61 ( 15 ) ( [2013]
  • Luo , H. , Giant strain and electric-field-induced phase transition in lead-free ( Na0.5Bi0.5 ) TiO3-BaTiO3- ( K0.5Na0.5
    Lett . 2016 , 108 , ( 2 )
  • Lineshapes in IR and Raman Spectroscopy : A Primer
    30 ( 11 ) ( [2015]
  • LiTaO3 Single Crystal Growth by the Vertical Bridgman Technique
    53 ( 9 ) : p. 1800044 . [2018]
  • Lead-free high-strain single-crystal piezoelectrics in the alkaline ? bismuth ? titanate perovskite family
    73 ( 25 ) ( [1998]
  • Lay, S. Pressurization systems do not work & present a risk to life safety., 2014. Case Studies in Fire Safety, 1, pp. 13-17.
  • Large electrostrain near the phase transition temperature of ( Bi0.5Na0.5 ) TiO3 ? SrTiO3 ferroelectric ceramics
    92 ( 26 ) ( [2008]
  • Large electric field induced strain in a new lead-free ternary Na0.5Bi0.5TiO3-SrTiO3-BaTiO3 solid solution
    184 ( [2016]
  • Large Electric Field-Induced Strain and Antiferroelectric Behavior in ( 1-x ) ( Na0.5Bi0.5 ) TiO3-xBaTiO3 Ceramics
    23 ( 2 ) ( [2011]
  • Kinetic roughening of a ¥Ò5 tilt grain boundary in SrTiO3 .
    57 ( 17 ) ( [2009]
  • Kinetic roughening of a ZnO grain boundary ,
    96 ( 19 ) ( [2010]
  • K0.5Bi0.5TiO3 ( NBT-KBT ) system : A structural and electrical study
    157 , ( 2 ) , 499-506 . 10.1002/pssa.2211570234 [1996]
  • J. Holc , M. Kosec , S. Vernay , D. Rytz
    303 ( 2 ) , 487 [2007]
  • J. G. , Growth of ( Na0.5Bi0.5 ) TiO3-SrTiO3 single crystals by solid state crystal growth
    42 , ( 16 ) , 18894-18901. http : //dx.doi.org/10.1016/j.ceramint.2016.09.038 [2016]
  • J. G. , Growth of ( Na0.5Bi0.5 ) TiO3-Ba ( Ti1-xZrx ) O3 single crystals by solid state single crystal growth
    34 , ( 2-3 ) , 150-157 . 10.1007/s10832-014-9964-7 [2015]
  • J. , Kinetic roughening of a ZnO grain boundary .
    96 , ( 19 ) , 191906. doi : http : //dx.doi.org/10.1063/1.3428369 [2010]
  • Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3 .
    58 ( 2 ) ( [2002]
  • Investigation of dielectric and electrical properties of Mn doped sodium potassium niobate ceramic system using impedance spectroscopy
    110 ( 10 ) ( [2011]
  • Interface Structure-Dependent Grain growth Behaviour in Polycrystals . In Microstructural Design of Advanced Engineering Materials , Molodov , D. A.
    [2013]
  • Interface Structure-Dependent Grain growth Behavior in Polycrystals , in : D.A . Molodov ( Ed . ) Microstructural Design of Advanced Engineering Materials
    [2013]
  • Interface Structure-Dependent Grain Growth Behavior in Polycrystals
    [2013]
  • Influence of Sintering Atmosphere on Abnormal Grain Growth Behaviour in Potassium Sodium Niobate Ceramics Sintered at Low Temperature
    48 ( 6 ) ( [2011]
  • In Solid State Chemistry and its Applications Second Edition
    pp . 87-124 . [2014]
  • In Crystal Growth for Beginners : Fundamentals of Nucleation , Crystal Growth and Epitaxy , 2nd Edition ed
    pp 181-351 [2003]
  • Improved solid-state conversion and piezoelectric properties of 90Na1/2Bi1/2TiO3-5BaTiO3-5K1/2Na1/2NbO3 single crystals
    37 ( 1 ) ( [2017]
  • Impedance Spectroscopy of ( Bi1/2Na1/2 ) TiO3 ? BaTiO3 Ceramics Modified with ( K0.5Na0.5 ) NbO3
    97 ( 5 ) ( [2014]
  • Identifying phase transition behavior in Bi1/2Na1/2TiO3-BaTiO3 single crystals by piezoresponse force microscopy
    121 ( 17 ) ( [2017]
  • High-temperature X-ray diffraction and Raman scattering studies of Ba-doped ( Na0.5Bi0.5 ) TiO3 Pb-free piezoceramics
    13 ( 9 ) ( [2013]
  • High-pressure Raman study of a relaxor ferroelectric : The Na0.5Bi0.5TiO3 perovskite ,
    63 ( 17 ) ( [2001]
  • High spatial resolution structure of ( K , Na ) NbO3 lead-free ferroelectric domains
    22 ( 19 ) ( [2012]
  • Hierarchical domains in Na1/2Bi1/2TiO3 single crystals : Ferroelectric phase transformations within the geometrical restrictions of a ferroelastic inheritance
    96 ( 22 ) ( [2010]
  • HY , L. , Solid-State Single CrystalGrowth ( SSCG ) Method : A Cost-effective Way of Growing Piezoelectric Single Crystals . In : Piezoelectric Single Crystals and their Applications . In Piezoelectric Single Crystals and Their Application , Trolier-McKinstry , S. ; Cross , L. E.
    pp 160-177 [2004]
  • HY , L. , Solid-State Single CrystalGrowth ( SSCG ) Method : A Cost-effective Way of Growing Piezoelectric Single Crystals . In : Piezoelectric Single Crystals and their Applications , in Piezoelectric Single Crystals and Their Application , S. Trolier-McKinstry
    [2004]
  • Growth of single crystals of BaFe12O19 by solid state crystal growth
    416 ( Supplement C ) (384-390 [2016]
  • Growth of potassium sodium niobate single crystals by solid state crystal growth
    303 ( 2 ) : p. 487-492 [2007]
  • Growth of dense single crystals of potassium sodium niobate by a combination of solid-state crystal growth and hot pressing .
    91 ( 5 ) : p. 1503-1507 [2008]
  • Growth mechanism and enhanced electrical properties of K0.5Na0.5NbO3-based lead-free piezoelectric single crystals grown by a solid-state crystal growth method
    36 ( 3 ) ( [2016]
  • Growth kinetics of solid-liquid Ga interfaces : Part II .
    22 ( 6 ) ( [1991]
  • Growth kinetics of solid-liquid Ga interfaces : Part I
    22 ( 6 ) ( [1991]
  • Growth behaviour of potassium sodium niobate single crystals grown by solid-state crystal growth using K4CuNb8O23 as a sintering aid .
    28 ( 8 ) ( [2008]
  • Growth behavior of rounded ( Ti , W ) C and faceted WC grains in a Co matrix during liquid phase sintering ,
    53 ( 17 ) ( [2005]
  • Growth and Evaporation of Liquids and Dislocation-Free Crystals . In Condensation and Evaporation : Nucleation and Growth Kinetics
    [1963]
  • Growth and Characterization of Single Crystals of Potassium Sodium Niobate by Solid State Crystal Growth
    in : M. Lallart ( Edpp . 87-108 . [2011]
  • Grain boundary faceting and abnormal grain growth in BaTiO3
    48 ( 7 ) ( [2000]
  • Grain Shape and Grain Growth in a Liquid Matrix . In Sintering : Densification , Grain Growth & Microstructure
    pp 205-226 [2005]
  • Giant strain and electric-field-induced phase transition in lead-free ( Na0.5Bi0.5 ) TiO3-BaTiO3- ( K0.5Na0.5 ) NbO3 single crystal
    108 ( 2 ) ( [2016]
  • Giant electric-field-induced strains in lead-free ceramics for actuator applications ? status and perspective
    29 ( 1 ) ( [2012]
  • G. Pezzotti , Raman tensor analysis of ( Na0.5K0.5 ) NbO3-LiSbO3 lead-free ceramics and its application to study grain/domain orientation
    43 ( [2012]
  • G. Cordoyiannis , B . Mali ? , Z. Kutnjak
    106 ( 20 ) , 202905 ( [2015]
  • Formation of Morphotropic Phase Boundary and Electrical Properties of ( Bi1/2Na1/2 ) TiO3 ? Ba ( Al1/2Nb1/2 ) O3 Solid Solution Ceramics
    48 , ( 9S1 ) , 09KC08 . [2009]
  • Exactly Solvable Model for the Roughening Transition of a Crystal Surface
    38 ( 18 ) ( [1977]
  • Equilibrium crystal shapes for lattice models with nearest-and next-nearest-neighbor interactions
    29 , ( 1 ) , 328-339 . [1984]
  • Enhanced Grain Growth in Lead-Free ( 1 ? x ) ( Na0.5Bi0.5 ) TiO3 ? xAgNbO3 Solid Solution Ceramics
    464 ( 1 ) ( [2014]
  • Electrical characterization of polycrystalline sodium ¥â¡È-alumina : Revisited and resolved ,
    264 ( [2014]
  • Electric-field-induced local distortion and large electrostrictive effects in lead-free NBT-based relaxor ferroelectrics
    38 ( 14 ) ( [2018]
  • Electric-field-induced and spontaneous relaxor-ferroelectric phase transitions in ( Na1/2Bi1/2 ) 1 ? xBaxTiO3
    112 ( 12 ) ( [2012]
  • Electric field and temperature-induced phase transition in Mn-doped Na1/2Bi1/2TiO3-5.0 at. % BaTiO3 single crystals investigated by micro-Raman scattering
    104 ( 14 ) ( [2014]
  • Effects of donor concentration and oxygen partial pressure on interface morphology and grain growth behaviour in SrTiO3
    50 , ( 13 ) , 3361-3371 . [2002]
  • Effects of donor concentration and oxygen partial pressure on interface morphology and grain growth behavior in SrTiO3
    50 ( 13 ) ( [2002]
  • Effect of TiO2 addition on grain shape and grain coarsening behaviour in 95Na1/2Bi1/2TiO3 ? 5BaTiO3
    31 , ( 10 ) , 1915-1920 . 10.1016/j.jeurceramsoc.2011.04.002 [2011]
  • Effect of TiO2 addition on grain shape and grain coarsening behavior in 95Na1/2Bi1/2TiO3 ? 5BaTiO3
    31 ( 10 ) ( [2011]
  • Effect of SrTiO3 content on the growth of ( 100-x ) ( K0.5Na0.5 ) NbO3-xSrTiO3 lead-free piezoelectric single crystals grown by the solid-state crystal growth method
    115 ( 2 ) : p. 81-88 . [2016]
  • Effect of Nb Doping on the Dielectric and Strain Properties of Lead ? free 0.94 ( Bi1/2Na1/2 ) TiO3 ? 0.06BaTiO3 Ceramics
    53 ( 2 ) ( [2016]
  • Effect of Na2CO3 Addition on Grain Growth Behavior and Solid-state Single Crystal Growth in the Na0.5Bi0.5TiO3-BaTiO3 System
    25 ( 2 ) ( [2018]
  • Effect of La doping on the electrical behaviors of BNT-BT based ceramics
    520 ( 1 ) ( [2017]
  • Effect of Interface Structure on the Microstructural Evolution of Ceramics
    89 , ( 8 ) , 2369-2380 . 10.1111/j.1551-2916.2006.01160.x [2006]
  • Effect of Interface Structure on Microstructural Evolution in Polycrystals
    35 ( 3 ) ( [2010]
  • Effect of Grain Shape on Abnormal Grain Growth in Liquid-Phase-Sintered Nb1 ? xTixC ? Co Alloys
    85 ( 9 ) ( [2002]
  • Effect of Crystal Shape on the Grain Growth during Liquid Phase Sintering of Ceramics
    43 ( 11 ) ( [2006]
  • Effect of Composition on the Growth of Single Crystals of ( 1 ? x ) ( Na1/2Bi1/2 ) TiO3-xSrTiO3 by Solid State Crystal Growth
    12 ( 15 ) ( [2019]
  • Domain structure-dielectric property relationship in lead-free ( 1 ? x ) ( Bi1/2Na1/2 ) TiO3-xBaTiO3 ceramics
    108 , ( 10 ) , 104105. doi : http : //dx.doi.org/10.1063/1.3514093 [2010]
  • Dielectric relaxation in relaxor ferroelectrics
    2 ( 2 ) ( [2012]
  • Dielectric and Raman scattering studies of phase transitions in the ( 100 ? x ) Na0.5Bi0.5TiO3 ? xSrTiO3 system
    108 ( 8 ) ( [2010]
  • Dependence of the microstructure and the electrical properties of lanthanum-substituted ( Na1/2Bi1/2 ) TiO3 on cation vacancies
    85 ( 12 ) ( [2002]
  • D. Y. , Abnormal growth of faceted ( WC ) grains in a ( Co ) liquid matrix .
    27 , ( 9 ) , 2809-2819 . [1996]
  • D. Y. , Abnormal grain growth in bulk Cu ? The dependence on initial grain size and annealing temperature
    32 , ( 8 ) , 1911-1926 . 10.1007/s11661-001-0004-2 [2001]
  • D. Growth and Evaporation of Liquids and Dislocation-Free Crystals , in : Condensation and Evaporation : Nucleation and Growth Kinetics
    [1963]
  • Crystal orientation dependent optical transmittance and band gap of Na0.5Bi0.5TiO3 ? BaTiO3 single crystals
    Physica B : Condensed Matter 483 ( [2016]
  • Crystal growth and electric properties of lead-free NBT-BT at compositions near the morphotropic phase boundary ,
    208 ( 5 ) ( [2011]
  • Criticality : Concept to Enhance the Piezoelectric and Electrocaloric Properties of Ferroelectrics
    26 ( 40 ) ( [2016]
  • Controlling mixed conductivity in Na1/2Bi1/2TiO3 using A-site non-stoichiometry and Nb-donor doping ,
    4 ( 24 ) ( [2016]
  • Comprehensive handbook of chemical bond energies
    [2007]
  • Composition-Driven Phase Boundary and Piezoelectricity in Potassium ? Sodium Niobate-Based Ceramics
    7 ( 36 ) ( [2015]
  • Collective Effects in Grain Boundary Migration
    88 ( 22 ) ( [2002]
  • Coarsening of polyhedral grains in a liquid matrix .
    24 ( 9 ) ( [2009]
  • Coarsening Behavior of Round-Edged Cubic Grains in the Na1/2Bi1/2TiO3-BaTiO3 System
    91 ( 10 ) ( [2008]
  • Cation arrangement in the complex perovskites and vibrational spectra
    29 ( 5 ) ( [1998]
  • Boundary structural transition and grain growth behavior in BaTiO3 with Nd2O3 doping and oxygen partial pressure change
    59 ( 5 ) ( [2011]
  • Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators
    8 ( 12 ) ( [2015]
  • Bi1/2Na1/2 ) TiO3-BaTiO3System for Lead-Free Piezoelectric Ceramics
    30 , ( 9B ) , 2236-2239 . [1991]
  • BaTiO3 system for lead-free piezoelectric ceramics
    30 ( 9B ) : p. 2236-2239 . [1991]
  • Atomic-scale observation of grain boundary motion
    48 ( 3 ? 4 ) ( [2001]
  • Atomic processes of grain-boundary migration and phase transformation in zinc oxide nanocrystallites .
    79 ( 7 ) ( [1999]
  • Atmosphere controlled conductivity and Maxwell-Wagner relaxation in Bi0.5K0.5TiO3-BiFeO3 ceramics
    115 ( 4 ) ( [2014]
  • An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds : the ( Na1- xKx ) 0.5Bi0.5TiO3 ( 0 ¡Ì x ¡Ì 1 ) solid solution
    12 ( 14 ) ( [2000]
  • An explanation for the formation of polyhedral abnormal grains in single-phase systems
    82 ( [2014]
  • Abnormal growth of faceted ( WC ) grains in a ( Co ) liquid matrix
    27 ( 9 ) ( [1996]
  • Abnormal grain growth in bulk Cu ? The dependence on initial grain size and annealing temperature
    32 ( 8 ) ( [2001]
  • A. v. A. , Roughening of a stepped GaN grain boundary with increasing driving force for migration
    120 , ( 1 ) , 16002 . [2017]
  • A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3
    13 ( 1 ) ( [2014]
  • A Superior Description of AC Behavior in Polycrystalline Solid Electrolytes with Current-Constriction Effects
    53 ( 2 ) ( [2016]
  • 72. Wortis, M., Equilibrium Crystal Shapes and Interfacial Phase Transitions. In Chemistry and Physics of Solid Surfaces VII, Vanselow, R.; Howe, R., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 1988; pp 367-405.
  • 61. Merkle, K. L.; Thompson, L. J., Atomic-scale observation of grain boundary motion. Mater. Lett. 2001, 48, (3?4), 188-193. http://dx.doi.org/10.1016/S0167-577X(00)00301-3
  • 47. Markov, I. V., Chapter 1 Crystal-Ambient Phase Equilibrium, in: Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy, World Scientific, Singapore. 2003, p.1.
  • 46. Markov, I. V., Chapter 2 Nucleation, in: Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy, World Scientific, Singapore. 2003.
  • 4. Jaffe, B., W.R. Cook, and H. Jaffe, Piezoelectric ceramics. 1971, London: Academic Press.
    [1971]
  • 29. Sun, H.; Fisher, J. G.; Moon, S. H.; Tran Tran, H.; Lee, J. S.; Han, H. S.; Kim, H. P.; Jo, W., Solid-state-growth of lead-free piezoelectric (Na1/2Bi1/2)TiO3-CaTiO3 single crystals and their characterization. Materials Science and Engineering: B 2017, 223, 109-119. https://doi.org/10.1016/j.mseb.2017.06.009
  • 20. Zhang, H.; Deng, H.; Chen, C.; Li, L.; Lin, D.; Li, X.; Zhao, X.; Luo, H.; Yan, J., Chemical nature of giant strain in Mn-doped 0.94(Na0.5Bi0.5)TiO3?0.06BaTiO3 lead-free ferroelectric single crystals. Scr. Mater. 2014, 75, 50-53. http://dx.doi.org/10.1016/j.scriptamat.2013.11.017
  • 18. Single Crystal Growth of YBa2Cu3Ox by Flux Method. J. Korean Ceram. Soc, 1990. 27(1): p. 27-0.
  • 12. Ranjan, R., et al., Phases in the (1 ?x)Na0.5Bi0.5TiO3?(x)CaTiO3system. Journal of Physics: Condensed Matter, 2010. 22(7): p. 075901.
    22 ( 7 ) : p. 075901 . [2010]
  • 1. Moulson, A.J. and J.M. Herbert, Electroceramics: Materials, Properties, Applications. Second Edition. 2005, Chichester: John Wiley & Sons.