박사

MACHINE LEARNING-BASED SYSTEM MODELING FOR SPECTRUM SENSING & SEMANTIC SEGMENTATION = 기계학습 알고리즘을 이용한 스펙트럼 검출 및 영항분할 시스템 설계

Jun Hee Kim 2020년
논문상세정보
' MACHINE LEARNING-BASED SYSTEM MODELING FOR SPECTRUM SENSING & SEMANTIC SEGMENTATION = 기계학습 알고리즘을 이용한 스펙트럼 검출 및 영항분할 시스템 설계' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Deep learning
  • semantic segmentation
  • spectrum detection
  • wireless cognitive radio networks
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,297 0

0.0%

' MACHINE LEARNING-BASED SYSTEM MODELING FOR SPECTRUM SENSING & SEMANTIC SEGMENTATION = 기계학습 알고리즘을 이용한 스펙트럼 검출 및 영항분할 시스템 설계' 의 참고문헌

  • 「Transferring deepConvolutional neural networks for the sceneClassification of high-resolution remote sensing imagery」
    vol . 7 , no . 11 , pp . 14,680-14,707 [2015]
  • ¡°Internet of Things in Industries : A Survey
    vol . 10 , no . 4 , pp . 2233-2243 ,
  • ``Cutting last wires for mobileCommunication by microwave power transfer ''
    vol . 53 , no . 6 , pp . 86-93 ,
  • ``Cooperative spectrum sensing inCognitive radio networks with noncoherent transmission ''
    vol . 61 , no . 6 , pp . 2476-2489
  • ``Cooperative spectrum sensing inCognitive radio networks : A survey
    vol . 4 , no . 1 , pp . 40-62 [2011]
  • ``Classification with an edge : Improving semantic image segmentation with boundary detection ''
    vol . 135 , pp . 158-172 [2018]
  • [96] Inria Aerial Image Labeling Benchmark Leader Board. [Online]. Available: https://project.inria.fr/aerialimagelabeling/ leaderboard/
  • [88] I. Goodfellow et al., "Generative adversarial nets", Proc. Adv. Neural Inf. Process. Syst., pp. 2672-2680, 2014.
  • [84] Z. Lin, K. Ji, X. Leng, G. Kuang, "Squeeze and excitation rank faster R-CNN for ship detection in SAR images", IEEE Geosci. Remote Sens. Lett., vol. 16, no. 5, pp. 751-755, May 2019
  • [71] M. Abadi et al., "TensorFlow: A System for Large-Scale Machine Learning," in OSDI, 2016, vol. 16, pp. 265-283.
  • [70] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, 2014.
  • [6] J. H. Kim and J. P. Choi, “Sensing Coverage-based Cooperative Spectrum Detection in Cognitive Radio Networks,” IEEE Sensors Journal, vol. 19, no. 13, pp. 5325-5332, July 1, 2019.
  • [66] A. Nowaczynski. (2017). Deep learning for satellite imagery via image segmentation. Available: https://blog.deepsense.ai/deep-learning-for-satellite-imagery-via-image-segmentation/
  • [65] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Proc. Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA, May 2015, pp. 1–14
  • [58] G.-S. Xia et al., "AID: A benchmark data set for performance evaluation of aerial scene classification", IEEE Trans. Geosci. Remote Sens., vol. 55, no. 7, pp. 3965-3981, Jul. 2017.
  • [45] D. Chaudhuri, N. K. Kushwaha, A. Samal, R. C. Agarwal, "Automatic building detection from high-resolution satellite images based on morphology and internal gray variance", IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 5, pp. 1767-1779, May 2016.
  • [40] S. Theodoridis, Machine Learning: A Bayesian and Optimization Perspective, San Diego, CA, USA:Academic, 2015.
  • [3] Shin, H. C., Tenenholtz, N. A., Rogers, J. K., Schwarz, C. G., Senjem, M. L., Gunter, J. L., ... & Michalski, M. (2018, September). Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In International Workshop on Simulation and Synthesis in Medical Imaging (pp. 1-11). Springer, Cham.
  • [38] J. Hershey and P. Olsen, "Approximating the Kullback Leibler Divergence Between Gaussian Mixture Models," in Proc. IEEE Int. Conf. on Acous., Speech and Sig. Processing, Apr. 2007, vol.4, pp. 317 - 320.
  • [28] G. C. Deepak, and K. Navaie. "A low-latency zone-based cooperative spectrum sensing." IEEE Sensors J., vol. 16, no. 15, pp. 6028-6042, Jun. 2016.
  • [26] P. Sofotasios et al., "Energy detection based spectrum sensing over κ−μ and κ−μ extreme fading channels ", IEEE Trans. Veh. Technol., vol. 62, no. 3, pp. 1031-1040, Mar. 2013.
  • [25] A. Ebrahimzadeh, M. Najimi, S. M. H. Andargoli, A. Fallahi, "Sensor selection and optimal energy detection threshold for efficient cooperative spectrum sensing", IEEE Trans. Veh. Technol., vol. 64, no. 4, pp. 1565- 1577, Apr. 2015.
  • [17] M. Cordts et al., "The cityscapes dataset for semantic urban scene understanding", Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2016.
  • Visualizing data using t-SNE
    vol . 9 , no . 11 , pp . 2579- 2605 [2008]
  • Vehicle detection in satellite images by hybrid deepConvolutional neural networks ''
    vol . 11 , no . 10 , pp . 1797-1801 ,
  • U-Net : Convolutional Networks for Biomedical Image Segmentation
    pp . 234-241 [2015]
  • To AND or to OR : On energy-efficient distributed spectrum sensing withCombinedCensoring and sleeping '' ,
    vol . 14 , no . 8 , pp . 4508- 4521 ,
  • The role of site features , user attributes , and information verification behaviors on the perceived credibility of web-based information
    vol . 9 , no . 2 , pp . 319–342 [2007]
  • The intrusion detection method based on game theory in wireless sensor network
    pp . 326–331 . [2008]
  • TargetClassification using the deepConvolutional networks for SAR images ''
    vol . 54 , no . 8 , pp . 4806-4817 ,
  • Survey on spectrum utilization in Europe : Measurements analyses and observations ''
    pp . 1-5 , 2010-Jun
  • Statistical exponential families : A digest with flashCards ''
    [2009]
  • Squeeze-and-excitation networks
    Available : https : //arxiv.org/abs/1709.01507 .
  • Spectrum survey in Singapore : Occupancy measurements and analysis ''
    pp . 1-7 , 2008-May
  • Spectrum sensing of OFDM signals over multipath fadingChannels and practicalConsiderations forCognitive radios ''
    vol . 16 , no . 8 , pp . 2349-2360
  • Spectrum sensing inCognitive radio networks : TheCooperation-processing tradeoff
    vol . 7 , no . 9 , pp . 1049–1060 ,
  • Spectrum sensing in opportunity-heterogeneousCognitive sensor networks : How toCooperate ? ``
    vol . 13 , no . 11 , pp . 4247-4255 ,
  • Spectral-spatialClassification of hyperspectral data based on deep belief network ''
    vol . 8 , no . 6 , pp . 2381-2392 ,
  • Sobel edge detection algorithm
    vol . 2 , no . 2 , pp . 1578-1583 [2013]
  • SceneClassification based on multiscaleConvolutional neural network ''
    vol . 56 , no . 12 , pp . 7109-7121 ,
  • SOBEL heuristic kernel for aerial semantic segmentation . '' 2018 25th IEEE InternationalConference on Image Processing ( ICIP
    [2018]
  • RoadCentreline extraction from high-resolution imagery based on multiscale structural features and support vector machines ''
    vol . 30 , no . 8 , pp . 1977-1987 [2009]
  • Road structure refinedCnn for road extraction in aerial image
    vol . 14 , no . 5 , pp . 709–713 [2017]
  • Road detection from high-resolution satellite images using artificial neural networks
    vol . 9 , no . 1 , pp . 32– 40 [2007]
  • RiFCN : Recurrent network in fullyConvolutional network for semantic segmentation of high resolution remote sensing images
    [2018]
  • Residual dense network for image super-resolution ''
    pp . 2472-2481
  • Recurrent neural networks toCorrect satellite imageClassification maps
    vol . 55 , no . 9 , pp . 4962–4971 [2017]
  • Pyramid scene parsing network
    [2017]
  • Power of deep learning forChannel estimation and signal detection in OFDM systems
    vol . 7 , no . 1 , pp . 114–117 ,
  • Playing for data : Ground truth fromComputer games ''
    pp . 102-118 [2016]
  • Optimum sensor selection based on energyConstraints inCooperative spectrum sensing forCognitive radio sensor networks ''
    vol . 16 , no . 6 , pp . 1829-1841
  • Openstreetmap : User-generated street maps
    vol . 7 , no . 4 , pp . 12–18 [2008]
  • On BuildingClassification from Remote Sensor Imagery Using Deep Neural Networks and the Relation BetweenClassification and Reconstruction Accuracy Using Border Localization as Proxy .
    [2019]
  • Objects Segmentation From High-Resolution Aerial Images Using U-Net With Pyramid Pooling Layers.
    vol . 16 , no . 1 , pp . 115–119 , [2019]
  • Object-space road extraction in rural areas using stereoscopic aerial images
    vol . 9 , no . 4 , pp . 654–658 [2012]
  • Object recognition and feature extraction from imagery : The feature analyst® approach
    vol . 36 , no . 4 , p. C42 [2006]
  • Network Throughput Optimization for Random Access Narrowband Cognitive Radio Internet of Things ( NBCR-IoT )
    vol . 5 , no . 3 , pp . 1436–1448 , [2018]
  • Multiview deep learning for land-useClassification ''
    vol . 12 , no . 12 , pp . 2448-2452 ,
  • Multi-class classification of analog and digital signals in cognitive radios using support vector machines
    pp . 986 –990 . [2010]
  • Machine learning techniques forCooperative spectrum sensing inCognitive radio networks , 'IEEE J. Sel . Areas inCommun.
    vol . 31 , no . 11 , pp . 2209-2221 [2013]
  • Machine learning techniques for spectrum sensing when primary user has multiple transmit powers
  • Machine learning for aerial image labeling
    [2013]
  • MIMO-OFDM Wireless Communications with MATLAB
    [2010]
  • Learning to adapt structured output space for semantic segmentation ''
    pp . 7472-7481
  • Learning multiscale deep features for high-resolution satellite image sceneClassification ''
    vol . 56 , no . 1 , pp . 117-126 ,
  • Learning deep ship detector in SAR images from scratch
    vol . 57 , no . 6 , pp . 4021–4039 [2019]
  • LandCover mapping at very high resolution with rotation equivariantCNNs : Towards small yet accurate models ''
    DOI : https : //doi.org/10.1016/j.isprsjprs.2018.01.021 , [ Online ] .
  • J. W. Merchant , D. O. Ohlen , `` Measuring phenological variability from satellite imagery '' , J. Veg
    vol . 5 , pp . 703-714 [1994]
  • Gradient-Based Learning Applied to Document Recognition
    vol . 86 , no . 11 , pp . 2278–2324 , [1998]
  • Global-Local Attention Network for Aerial SceneClassification
    [2019]
  • Generalizing to unseen domains via adversarial data augmentation
    [2018]
  • FusionNet : A deep fully residualConvolutional neural network for image segmentation inConnectomics ''
    [2016]
  • Fundamentals of machine learning for predictive data analytics : algorithms , worked examples , and case studies
    [2015]
  • FullyConvolutional networks for semantic segmentation ''
    vol . 39 , no . 4 , pp . 640-651
  • Efficient saliency-based object detection in remote sensing images using deep belief networks ''
    vol . 13 , no . 2 , pp . 137-141 ,
  • Efficient placement and dispatch of sensors in a wireless sensor network ''
    vol . 7 , no . 2 , pp . 262-274 ,
  • Dual-Resolution U-Net : Building Extraction from Aerial Images
    [2018]
  • Domain-adversarial training of neural networks
    vol . 17 , pp . 59:1-59:35 [2016]
  • Distributed and directional spectrum occupancy measurements in the 2.4 GHz ISM band ''
  • Dense semantic labeling of subdecimeter resolution images withConvolutional neural networks ''
    vol . 55 , no . 2 , pp . 881-893 ,
  • Deep learning-basedClassification methods for remote sensing images in urban built-up areas ''
    vol . 7 , pp . 36274-36284 [2019]
  • Deep learning in remote sensing : A review ''
    vol . 5 , no . 4 , pp . 8-36 [2017]
  • Deep learning in agriculture : A survey
    147 (70-90 . [2018]
  • DOTA : A largescale dataset for object detection in aerial images
    pp . 3794-3983 . [2018]
  • Convolutional neural networks for large-scale remotesensing image classification
    vol . 55 , no . 2 , pp . 645–657 [2017]
  • Can semantic labeling methods generalize to any city ? The Inria aerial image labeling benchmark
    pp . 3226– 3229 [2017]
  • Building-A-Nets : Robust Building Extraction From High-Resolution Remote Sensing Images With Adversarial Networks
    vol . 11 , no . 11 , pp . 3680-3687 ,
  • Building detection in very high resolution multispectral data with deep learning features
    pp . 1873–1876 . [2015]
  • Beyond RGB : Very high resolution urban remote sensing with multimodal deep networks
    [2017]
  • Batch Normalization : Accelerating Deep Network Training by Reducing Internal Covariate Shift
    pp . 448–456 . [2015]
  • Automatic road extraction from high resolution satellite image using adaptive global thresholding and morphological operations
    vol . 41 , no . 3 , pp . 631–640 [2013]
  • Automatic building detection in aerial images using a hierarchical feature based image segmentation
    pp . 472–475 [2010]
  • Automated extraction of road network from medium-and high-resolution images
    vol . 16 , no . 2 , pp . 239–248 [2006]
  • Accurate centerline detection and line width estimation of thick lines using the radon transform ,
    vol . 16 , no . 2 , pp . 310–316 [2007]
  • A survey on spectrum management inCognitive radio networks
    vol . 46 , no . 4 ,
  • A survey on radio resource allocation in cognitive radio sensor networks
    vol . 17 , no . 2 , pp . 888–917 , 2nd Quart [2015]
  • A survey on machine-learning techniques in cognitive radios
    vol . 15 , no . 3 , pp . 1136–1159 , 3rd Quart. [2013]
  • A Quantitative Analysis of Spectral Occupancy Measurements forCognitive Radio ''
    pp . 3016-3020