박사

화석연료 연소공정에서 발생하는 수은화합물 및 질소산화물 동시저감 연구 = Simultaneous Reduction of Mercury Compounds and NOx from Fossil Fuel Power Plants

이경원 2020년
논문상세정보
' 화석연료 연소공정에서 발생하는 수은화합물 및 질소산화물 동시저감 연구 = Simultaneous Reduction of Mercury Compounds and NOx from Fossil Fuel Power Plants' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • NOx
  • scr
  • 산화수은
  • 원소수은
  • 화석연료연소
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
271 0

0.0%

' 화석연료 연소공정에서 발생하는 수은화합물 및 질소산화물 동시저감 연구 = Simultaneous Reduction of Mercury Compounds and NOx from Fossil Fuel Power Plants' 의 참고문헌

  • 촉매첫걸음
    서곤 전남대학교출판부, chaper1, chapter2 [2008]
  • 집진장치에서의 입자상 물질 및 가스상 수은 제거 특성, 한국과학기술원
    조합형 최호경 박사학위논문, pp.22~32 [2012]
  • 제올라이트 및 메조포어 분자체의 휘발성 유기화합물 흡착과 촉매산화반응에 관한 연구, 한국과학기술원
    백세원 박사학위논문, pp.7~27 [2005]
  • 미기상학적 방법에 의한 지표면과 대기간의 수은 플럭 스 해석
    김민영 단국대학교 대학원 석사학위 논문 [1998]
  • “탄소재의 표면특성과 흡착특성에 관한 연구”
    이수연 서울 과학기술대학교 석사학위논문, pp.6~15 [2003]
  • “연소 배기가스 중 수은화합물의 화학종 분포특성 및 흡착 메커니즘에 관한 연구”
    이성준 공합박사 학위논문 pp.1~6, 74-90 [2003]
  • “알칼리금속으로 피독된 SCR촉매의 비활성화와 재 생에 관한 연구”
    김경호 서울시림대학교 박사학위논문, pp.20~42 [2012]
  • “수처리제 활성탄의 규격기준 개선 연구”
    국립환경과학원(NIER) “수처리제 활성탄의 규격기준 개선 연구”, pp.3~16 [2008]
  • “석탄을 원료로 한 활성탄제조와 흡착특성에 관한 연구”
    최동훈 동아대학교 박사학위논문, pp.10~14 [2001]
  • “배출가스 중 수은 모니터링의 최신기법”
    김정훈 홍지형 공업화학전망, Vol. 19(1), pp.28-40 [2016]
  • “배기가스 질소산화물 제거를 위한 선택적촉 매환원법(SCR) 기술동향”
    권동욱 홍성창 공업화학전망, Vol.19, pp.12~24 [2016]
  • “미나마타협약 이행을 위한 유럽연합(EU)의 「수은에 관한 규칙」 입법안에 대한 고찰”
    김상만 한국법학회_법학연구 17(1), pp.1-23 [2017]
  • “대기배출원의 수은 배출특성에 관한 연구”
    강경희 석사학위논문 pp.11~19 [2000]
  • “대기배출시설에 대한 수은 배출량 조사”
    국립환경과학원(NIER) “대기배출시설에 대한 수은 배출량 조사”, pp.155-158 [2008]
  • “가스조성 에 따른 선택적 환원촉매의 수은 산화특성”
    김광렬 김도증 김주영 오광중 이상섭 전준민 Particle and Aerosol Research, Vol. 8, pp.125-132 [2012]
  • ¡°Present Status and Perspectives in De-NOX SCRCatalysis ,
    [2001]
  • ``Chemical , structural andmechanistic aspects on NOx SCR overCommercial and model oxideCatalysts ''
    [1998]
  • Vanadia/TitaniaCatalysts for selectiveCatalytic reduction ( SCR ) of nitric oxide by ammonia . II . Studies of active sites and formulation ofCatalyticCycle ''
    [1995]
  • Vanadia/TitaniaCatalysts for selectiveCatalytic reduction ( SCR ) of nitric oxide by ammonia . I .Combined temperature programmed in situ FTIR and on-line mass spectroscopy studies ''
    vol . 151 , pp . 226–240 . [1995]
  • Understanding mercury binding on activated carbon
    [2009]
  • Ultra-active Fe/ZSM-5 Catalyst for Selective Catalytic Reduction of Nitric Oxide with Ammonia
    [2005]
  • Trace elements from combustion and gasification of coal – an equilibrium approach
    [1994]
  • Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species
    [2000]
  • The mechanism of the reaction between NOx and NH3 on V2O5 in the presence of oxygen.
    [1977]
  • The Effect of NO2 on the Activity of Fresh and Aged Zeolite Catalysts in the NH3-SCR Reaction
    [2005]
  • The ( V5+=O ) Bond Responsible for the Acceleration of the Nitric Oxide Ammonia Reaction on Vanadium Oxide in Dilute Gas Condition
    [1978]
  • Technical Background Report for the Global Mercury Assessment 2018
    [2018]
  • Survey pf Catalysts for Oxidation of Mercury in Flue Gas
    Vol . 40 , pp.5601-5609 [2006]
  • Survey of Catalysts for Oxidation of Mercury in Flue Gas
    [2006]
  • Study of The Selective Catalytic Reduction of NOx on an Efficient Fe/HBEA Zeolite Catalyst for Heavy Duty Diesel Engines
    [2009]
  • Studies of Surface Reactions of Nitric Oxide by Nitrogen-15 Isotope Labelling : Part 1 . The Reaction between Nitric Oxide and Ammonia over Supported Platinum at 200-250℃
    [1970]
  • Species-specific mercury bioaccumulation in a diverse fishCommunity
    Vol . 34 ( 12 [2015]
  • Sorbents for Mercury Removal from Flue Gas
    [1998]
  • Side reactions in the selectiveCatalytic reduction of NOx with various NO2 fractions
    [2002]
  • SelectiveCatalytic Reduction of NO with NH3 overCr-ZSM-5Catalysts : GeneralCharacterization andCatalysts Screening
    [2013]
  • SelectiveCatalytic Oxidation of Ammonia over NovelCatalysts Supported on Acidic Fe-ZSM5 Supports
    [2012]
  • Role of Moisture in Adsorption , Photocatalytic Oxidation , and Reemission of Elemental Mercury on a SiO2-TiO2 Nanocomposite
    [2006]
  • Report No . FBT-91-20 . Statens Energiverk
    [1990]
  • Removal of gas-phase elemental mercury by iodine-andChlorine-impregnated activatedCarbons
    Vol . 28 , pp.4887-4893 [2004]
  • Removal of Nitrogen Monoxide from Exhaust Gases Through NovelCatalytic Processes ,
    [1991]
  • Relations Between Iron Sites and Performance of Fe/HBEACatalysts Prepared by two Different Methods for NH3-SCR
    [2012]
  • Reaction pathways in the selectiveCatalytic reduction process with NO and NO2 at low temperatures
    [2001]
  • Reaction kinetics of elemental mercury vapor oxidation withCuCl2
    [2018]
  • Principle of adsorption and absorption processes
    [1984]
  • Presented at the 89th Annnual meeting of the Air Waste Management Association
    [1996]
  • Presented at the 2nd Symposium onCombustion and the Nonuban Troposphere
    [1982]
  • PhysicsChemistry-5th edition
    Chapter 4 [1994]
  • Novel catalyst design for multiphase reactions
    [2003]
  • Novel Sorbents for Mercury Removal form Incineration Flue Gas by Organic and Inorganic Adsorbents
    [2000]
  • Nitrogen-15 Investigation of The Mechanism of The Reaction of NO with NH3 on Vanadium Oxide Catalysts
    vol . 86 , pp . 2945~2950 [1982]
  • Nitrogen Oxides Control Technology Fact Book
    Chapter 3 [1992]
  • NO-NH3Coadsorption on vanadia/titaniaCatalysis : determination of the reduction degree of vanadium ''
    [2001]
  • Mercury transformations in Coal Combustion Flue Gases
    Vol . 65-66 , pp.289-310 [2000]
  • Mercury study report ro congress , VolumeⅡ
    [1997]
  • Mercury oxidation over selective catalytic reduction ( SCR ) catalysts
    [2012]
  • Mercury from combustion sources : A Review of the chemical species emitted and their transport in the atmosphere
    Vol . 98 [1997]
  • Mercury chemistry in Simulated Flue Gases Related to Waste Incineration Condition , Eviron
    Vol . 24 , pp.108~111 [1990]
  • Mercury Speciation in Coal Combustion and Gaification Flue Gases
    Vol . 30 , pp.2421-2426 [1996]
  • Mercury Removal ” , Coal Gasification and Its Applications
    [2011]
  • Mercury Removal by APCD
    [2012]
  • Mercury Exposure and Health Effects
    Vol . 45 , pp.353-363 [2012]
  • Mechanism of Poisoning of the V2O5/ TiO2Catalyst for the Reduction of NO by NH3
    [1990]
  • Low-temperature Selective Catalytic Reduction of NOx with NH3 over Metal Oxide and Zeolite Catalysts-A Review
    [2011]
  • Low-Temperature Selective Catalytic Reduction of NOx with NH3 over Mn-Containing Catalysts
  • Kinetic Modeling of H-BEA and Fe-BEA as NH3-SCR Catalysts- Effect of Hydrothermal Treatment
    [2012]
  • Influences of Copper ( II ) Chloride Impregnation on Activatied Carbon for Low-Concentration Elemental Mercury Adsorption from Simulated Coal Combustion Flue Gas , Aerosol and Air Quality Research
    Vol.17 , pp.1637~1648 [2017]
  • In-situ mercury speciation in flue gas by liquid and solid sorption systems
    [1987]
  • Hydrogen processing with zeolite '' , Introduction to Zeolite Science and Practice , van Bekkum , H. , Flanigen , E.M. , Jacobs , P.A. , Jansen , J.C. , Eds.
    Chapter 17 [2001]
  • Gas-Phase transformations of mercury in coal-fired power plants
    63 , pp . 197~213 [2000]
  • Fourier transform -infrared study of the adsorption andCoadsorption of nitric oxide , nitrogen dioxide and ammonia on vanadia-titania and mechanism of selectiveCatalytic reduction ''
    [1990]
  • Factors affecting mercury control in utility flue gas using activated carbon
    Vol . 48 , pp.1166-1174 [1998]
  • Factors Affecting Mercury Control in Utility flue Gas using Activatied Carbon
    Vol.48 , pp.1166~1174 [1998]
  • FTIR Investigation of the Heterogeneous Reaction of HgO with SO2 at ambient temperature
    Vol . 21 , pp.2327-2332 [1987]
  • Elements of Chemical Reaction Enginnering-2nd Edition
    [1994]
  • Elemental mercury vapor adsorption of copper-coated porous carbonaceous materials
    Vol . 163 , pp.270-275 [2012]
  • Effects of nickel coating thickness on electric properties of nickel/carbon hybrid fibers
    [2011]
  • Development of Cl-impregnated activated carbon for entrain-flow capture of elemental mercury
    [2002]
  • Detailed kinetic modeling of the NH3-NO/NO2 SCR reaction over a commercial Cu-zeolite for diesel exhausts after Treatment
    [2012]
  • Control of Toxic Metal Emissions from Combustors Using Sorbents : A Review
    Vol.48 , pp.113~127 [1998]
  • Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts : A review
    [1998]
  • Chemical Reactions of Mercury in Combustion Flue Gases , Water , Air
    [1991]
  • Characteristics of the low temperature SCR of NOx with NH3 over TiO2
    [2009]
  • Catalytic Materials : Relationship Between Structure and Reactivity ,
    [1984]
  • Catalys for NOx Abatement
    [2009]
  • Capture of Mercury in Combustion Systems by in Situ-Generated Titania Particles with UV Irradiation
    [1998]
  • Beyond twelve membered rings '' , in Introduction to zeolite Science and Practice , van Beckkum H. , Flanigen E.M. , Jacobs P.A. , Jansen J.C . Eds.
    Chapter 22 [2001]
  • Adsorption of Mercury Vapor on Particles
    [1986]
  • Adsorption , Surface Area and Porosity
    chapter 2 [1967]
  • Activated Carbon for Water Treatment
    [1988]
  • A review on oxidation of element mercury from coal-fired flue gas with selective catalytic reduction catalysts
    Vol . 5 , pp.3459-3472 [2015]
  • A review of NOx reduction on zeolitc catalysts under diesel exhaust conditions
    [1997]
  • A Chemical Kinetic Mechanism for Atmospheric Inorganic Mercury
    [1994]
  • 9. United Nation Environment Programme, 2002, Global Mercury Assessment
    [2002]
  • 65. Breck, D.W., 1974, Zeolite molecular sieves, structure, chemistry and use, John Wiley & Sons, New York, chapter 7
  • 64. Baerlocher, Ch.; McCusker, L.B. Database of zeolite structure, http:// www.iza- strucrure.org/databases
  • 56. Patrick J.W., 1995, Porosity Carbons, Edward Arnold, pp.38~40
    [1995]
  • 54. Najm I. N., Snoeyink V.L., Lykins Jr.B.W., Adams J.Q., 1991, “Using Powdered Activated Carbon: A Critical Review”, American Water Works Association, Vol. 83, pp.65~76
  • 50. Helfrich D., Harmon T., Feldman P., 1996, Presented at the 89th Annual Meeting of the Air & Waste Management Association, Nashville, TN, 96-ES96.41
  • 3. Carrasco L., Barata C., Garcia E., Tobias A., Bayona J.M., Diez S., 2011, “Patterns of mercury and methylmercury Bio-Accumulation in fish species downstream of a long-term mercury-contaminated site in the lower Ebro River(NE Spain)”, Chemosphere, Vol. 84, pp. 1642-1649
  • 15. Vidic R.D., McLaughlin J.B., 2012, “Uptake of Elemental Mercury Vapors by Activated Carbons”, Journal of the Air & waste Management Association, Vol. 98, pp.37-41
  • 11. Schroeder W.H., Yarwood G., Niki H., 1991, “Transformation processes involving mercury species in the atmosphere – Results from a literature survey”, Water,Air,and Soil Pollution, Vol. 56, pp.653-666
  • 10. United Nation Environment Programme, 2013, Technical Background Report for the Global Mercury Assessment 2013