박사

Ⅰ. Synthesis of Pyrazinoindole-Based Lewis-Acid/Base Assembly, and Development of C-H Activation Reaction Using 2H-Azirine Ⅱ. Synthesis of Quinolizin-4-ones through C-H Activation III. Regioselective B-H Activation of o-Carborane = Ⅰ. 2H-아지린을 이용한 루이스 산/염기 어셈블리의 합성과 탄소-수소 결합 활성화 반응의 개발 Ⅱ. 탄소-수소 결합 활성화 반응을 통한 퀴놀리진-4- 온의 합성 Ⅲ. 오쏘-카보레인의 위치선택적인 붕소-수소 결합 활성화 반응의 개발

논문상세정보
' Ⅰ. Synthesis of Pyrazinoindole-Based Lewis-Acid/Base Assembly, and Development of C-H Activation Reaction Using 2H-Azirine Ⅱ. Synthesis of Quinolizin-4-ones through C-H Activation III. Regioselective B-H Activation of o-Carborane = Ⅰ. 2H-아지린을 이용한 루이스 산/염기 어셈블리의 합성과 탄소-수소 결합 활성화 반응의 개발 Ⅱ. 탄소-수소 결합 활성화 반응을 통한 퀴놀리진-4- 온의 합성 Ⅲ. 오쏘-카보레인의 위치선택적인 붕소-수소 결합 활성화 반응의 개발' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 2H-Azirine
  • Acyl methylation
  • B?H Activation
  • C?H Activation
  • Carbene
  • Decarboxylation
  • Lewis acid/base assembly
  • Nitrene
  • Pyrazinoindole
  • Quinolizine-4-one
  • Rhodium
  • Sensor
  • iridium
  • o-Carborane
  • regioselective
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
307 0

0.0%

' Ⅰ. Synthesis of Pyrazinoindole-Based Lewis-Acid/Base Assembly, and Development of C-H Activation Reaction Using 2H-Azirine Ⅱ. Synthesis of Quinolizin-4-ones through C-H Activation III. Regioselective B-H Activation of o-Carborane = Ⅰ. 2H-아지린을 이용한 루이스 산/염기 어셈블리의 합성과 탄소-수소 결합 활성화 반응의 개발 Ⅱ. 탄소-수소 결합 활성화 반응을 통한 퀴놀리진-4- 온의 합성 Ⅲ. 오쏘-카보레인의 위치선택적인 붕소-수소 결합 활성화 반응의 개발' 의 참고문헌

  • of 9-Iodo-m-carborane and 2-Iodo-p-carborane at a Boron Atom . Organometallics 2008 , 27 , 5937 . ( b )
    )Julius , R. L.
  • by Heavy-Atom Tunneling . J . Am . Chem . Soc . 2013 , 135 , 10246
    L. ; Lemos ,
  • a ) Janowicz , A. H. ; Bergman , R.Chem . Soc . 1982 , 104 , 352 . ( b ) Murai , S. ; Kakiuchi , F. ;
    M + R-H .fwdarw . M; Tanaka , Y.
  • a ) Armstrong , A. F. ; Valliant , J. F. The Bioinorganic and Medicinal Chemistry of Carboranes :, F. ; Kassiou , M. ; Rendina , L. M. Boron in Drug Discovery
    Active Compounds . Chem
  • [9] (a) Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P. Recent Advances in Organic Thermally Activated Delayed Fluorescence Materials. Chem. Soc. Rev. 2017, 46, 915. (b) Wex, B.; Kaafarani, B. R. Perspective on Carbazole-Based Organic Compounds as Emitters and Hosts in TADF Applications. J. Mater. Chem. C 2017, 5, 8622. (c) Yang, X.; Zhou, G.; Wong, W.-Y. Functionalization of Phosphorescent Emitters and Their Host Materials by Main-Group Elements for Phosphorescent Organic Light-Emitting Devices. Chem. Soc. Rev. 2015, 44, 8484. (d) Schmidt, A. W.; Reddy, K. R.; Knolker, H.-J. Occurrence, Biogenesis, and Synthesis of Biologically Active Carbazole Alkaloids. Chem. Rev. 2012, 112, 3193. (e) Lin, Y.; Li, Y.; Zhan, X. Small Molecule Semiconductors for High-Efficiency Organic Photovoltaics. Chem. Soc. Rev. 2012, 41, 4245. (f) Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu-Plesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M. Toward a Rational Design of Poly (2, 7-Carbazole) Derivatives for Solar Cells. J. Am. Chem. Soc. 2008, 130, 732.
  • [9] (a) Ryu, T.; Baek, Y.; Lee, P. H. Synthesis of Pyrazines from Rhodium-Catalyzed Reaction of 2H-Azirines with N-Sulfonyl 1,2,3-Triazoles. J. Org. Chem. 2015, 80, 2376. (b) Baek, Y.; Maeng, C.; Kim, H.; Lee, P. H. Regioselective Synthesis of Indolopyrazines through a Sequential RhodiumCatalyzed Formal [3 + 3] Cycloaddition and Aromatization Reaction of Diazoindolinimines with Azirines. J. Org. Chem. 2018, 83, 2349.
  • [9] (a) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; Mckervey, M. A. Modern Organic Synthesis with メ-Diazocarbonyl Compounds. Chem. Rev. 2015, 115, 9981. (b) Zhu, S.; Perman, J. A.; Zhang, X. P. Acceptor/Acceptor?Substituted Diazo Reagents for Carbene Transfers: Cobalt? Catalyzed Asymmetric Z?Cyclopropanation of Alkenes with メ?Nitrodiazoacetates. Angew. Chem. Int. Ed. 2008, 47, 8460. (c) Davies, H. M. L.; Romines, K. R. Direct Synthesis of Furans by 3 + 2 Cycloadditions between Rhodium (II) Acetate Stabilized Carbenoids and Acetylenes. Tetrahedron 1988, 44, 3343. (d) Barluenga, J. Valde▲s, C. Tosylhydrazones: New Uses for Classic Reagents in Palladium?Catalyzed Cross?Coupling and Metal?Free Reactions. Angew. Chem. Int. Ed. 2011, 50, 7486. (e) Shao, Z. Zhang, H. N-Tosylhydrazones: Versatile Reagents for Metal-Catalyzed and MetalFree Cross-Coupling Reactions. Chem. Soc. Rev. 2012, 41, 560. (f) Xiao, Q.; Zhang, Y. Wang, J. Diazo Compounds and N-Tosylhydrazones: Novel Cross-Coupling Partners in Transition-MetalCatalyzed Reactions. Acc. Chem. Res. 2013, 46, 236. (g) Liu, Z. Wang, J. Cross-Coupling Reactions Involving Metal Carbene: From C?C/C?C Bond Formation to C?H Bond Functionalization. J. Org. Chem. 2013, 78, 10024. (h) Xia, Y. Zhang, Y. Wang, J. Catalytic Cascade Reactions Involving Metal Carbene Migratory Insertion. ACS Catal. 2013, 3, 2586.
  • [8] (a) Davies, H. M. L.; Hedley, S. J. Intermolecular Reactions of Electron-Rich Heterocycles with Copper and Rhodium Carbenoids. Chem. Soc. Rev. 2007, 36, 1109. (b) Marinozzi, M.; Pertusati, F.; Serpi, M. ル5 -Phosphorus-Containing メ-Diazo Compounds: A Valuable Tool for Accessing Phosphorus-Functionalized Molecules. Chem. Rev. 2016, 116, 13991. (c) Sharma, S.; Han, S. H.; Han, S.; Ji, W.; Oh, J.; Lee, S.-Y.; Oh, J. S.; Jung, Y. H.; Kim, I. S. Rh(III)-Catalyzed Direct Coupling of Azobenzenes with メ-Diazo Esters: Facile Synthesis of Cinnolin-3(2H)-ones. Org. Lett. 2015, 17, 2852. (d) Choi, M.; Park, J.; Mishra, N. K.; Lee, S.-Y.; Kim, J. H.; Jeong, K. M.; Lee, J.; Jung, Y. H.; Kim, I. S. Rh (III)-Catalyzed C?H Alkylation of 2-Arylbenzothiazoles with メ-Diazo Esters. Tetrahedron Lett. 2015, 56, 4678.
  • [7] (a) Jude, H.; Disteldorf, H.; Fischer, S.; Wedge, T.; Hawkridge, A. M.; Arif, A. M.; Hawthorne, M. F.; Muddiman, D. C.; Stang, P. J. Coordination-Driven Self-Assemblies with a Carborane Backbone. J. Am. Chem. Soc. 2005, 127, 12131. (b) Dash, B. P.; Satapathy, R.; Gaillard, E. R.; Maguire, J. A.; Hosmane, N. S. Synthesis and Properties of Carborane-Appended C3-Symmetrical Extended ヰ Systems. J. Am. Chem. Soc. 2010, 132, 6578. (c) Wee, K. R.; Cho, Y. J.; Jeong, S.; Kwon, S.; Lee, J. D.; Suh, I. H.; Kang, S. O. Carborane-Based Optoelectronically Active Organic Molecules: Wide Band Gap Host Materials for Blue Phosphorescence. J. Am. Chem. Soc. 2012, 134, 17982. (d) Koshino, M.; Tanaka, T.; Solin, N.; Suenaga, K.; Isobe, H.; Nakamura, E. Imaging of Single Organic Molecules in Motion. Science, 2007, 316, 853. (e) Naito, H.; Morisaki, Y.; Chujo, Y. o?Carborane? Based Anthracene: A Variety of Emission Behaviors. Angew. Chem., Int. Ed. 2015, 54, 5084. (f) Brusselle, D.; Bauduin, P.; Girard, L.; Zaulet, A.; Vinas, C.; Teixidor, F.; Ly, I.; Diat, O. Lyotropic Lamellar Phase Formed from Monolayered ヨ?Shaped Carborane?Cage Amphiphiles. Angew. Chem., Int. Ed. 2013, 52, 12114. (g) Guo, J.; Liu, D.; Zhang, J.; Zhang, J.; Miao, Q.; Xie, Z. o-Carborane Functionalized Pentacenes: Synthesis, Molecular Packing and Ambipolar Organic Thin-Film Transistors. Chem. Commun. 2015, 51, 12004. (h) Farha, O. K.; Spokoyny, A. M.; Mulfort, K. L.; Hawthorne, M. F.; Mirkin, C. A.; Hupp, J. T. Synthesis and Hydrogen Sorption Properties of Carborane Based Metal?Organic Framework Materials. J. Am. Chem. Soc. 2007, 129, 12680. (i) Schwartz, J. J.; Mendoza, A. M.; Wattanatorn, N.; Zhao, Y.; Nguyen, V. T.; Spokoyny, A. M.; Mirkin, C. A.; Ba?e, T.; Weiss, P. S. Surface Dipole Control of Liquid Crystal Alignment. J. Am. Chem. Soc. 2016, 138, 5957. (j) McArthur, S. G.; Geng, L.; Guo, J.; Lavallo, V. Cation Reduction and Comproportionation as Novel Strategies to Produce High Voltage, Halide Free, Carborane Based Electrolytes for Rechargeable Mg Batteries. Inorg. Chem. Front. 2015, 2, 1101. (k) Kirlikovali, K. O.; Axtell, J. C.; Gonzalez, A.; Phung, A. C.; Khan, S. I.; Spokoyny, A. M. Luminescent Metal Complexes Featuring Photophysically Innocent Boron Cluster Ligands. Chem. Sci. 2016, 7, 5132. (l) Clingerman, D. J.; Morris, W.; Mondloch, J. E.; Kennedy, R. D.; Sarjeant, A. A.; Stern, C.; Hupp, J. T.; Farha, O. K.; Mirkin, C. A. Stabilization of a Highly Porous Metal?Organic Framework Utilizing a Carborane-Based Linker. Chem. Commun. 2015, 51, 6521.
  • [6] Sambiagio, C.; Schonbauer, D.; Blieck, R.; Dao-Huy, T.; Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.; WencelDelord, J.; Besset, T.; Maes, B. U. W.; Schnurch, M. A Comprehensive Overview of Directing Groups Applied in Metal-Catalysed C?H Functionalisation Chemistry. Chem. Soc. Rev. 2018, 47, 6603.
  • [5] (a) Stengel, T.; Padwa, A. Transition Metal Catalyzed Ring Opening Reactions of 2-Phenyl-3- vinyl Substituted 2H-Azirines. Tetrahedron Lett. 2004, 45, 5991. (b) Chiba, S.; Hattori, G.; Narasaka, 28K. Rh(II)-catalyzed Isomerization of 2-Aryl-2H-azirines to 2,3-Disubstituted Indoles. Chem. Lett. 2007, 36, 52.
  • [5] (a) Dyker, G. Transition Metal Catalyzed Coupling Reactions under C?H Activation. Angew. Chem. Int. Ed. 1999, 38, 1698. (b) Bergman, R. G. Organometallic Chemistry: C?H Activation. Nature 2007, 446, 391. (c) Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. Palladium (II)?Catalyzed C-H Activation/C-C Cross?Coupling Reactions: Versatility and Practicality. Angew. Chem. Int. Ed. 2009, 48, 5094. (d) Lyons, T. W.; Sanford, M. S. Palladium-Catalyzed Ligand-Directed C?H Functionalization Reactions. Chem. Rev. 2010, 110, 1147. (e) Yeung, C. S.; Dong, V. M. Catalytic Dehydrogenative Cross-Coupling: Forming Carbon?Carbon Bonds by Oxidizing Two 88Carbon?Hydrogen Bonds. Chem. Rev. 2011, 111, 1215. (f) Sun, C. L.; Li, B. J.; Shi, Z. J. Direct C?H Transformation via Iron Catalysis. Chem. Rev. 2011, 111, 1293. (g) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Towards Mild Metal-Catalyzed C?H bond Activation. Chem. Soc. Rev. 2011, 40, 4740. (h) Ackermann, L. Carboxylate-Assisted Transition-Metal-Catalyzed C?H Bond Functionalizations: Mechanism and Scope. Chem. Rev. 2011, 111, 1315. (i) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Ruthenium (II)-Catalyzed C?H Bond Activation and Functionalization. Chem. Rev. 2012, 112, 5879. (j) Hartwig, J. F. Borylation and Silylation of C?H Bonds: A Platform for Diverse C?H Bond Functionalizations. Acc. Chem. Res. 2012, 45, 864. (k) De Sarkar, S.; Liu, W.; Kozhushkov, S. I.; Ackermann, L. Weakly Coordinating Directing Groups for Ruthenium (II)? Catalyzed C-H Activation. Adv. Synth. Catal. 2014, 356, 1461. (l) Daugulis, O.; Roane, J.; Tran, L. D. Bidentate, Monoanionic Auxiliary-Directed Functionalization of Carbon?Hydrogen Bonds. Acc. Chem. Res. 2015, 48, 1053. (m) Wu, Y.; Wang, J.; Mao, F.; Kwong, F. Y. Palladium?Catalyzed Cross? Dehydrogenative Functionalization of C(sp2 )?H Bonds. Chem. Asian J. 2014, 9, 26. (n) Kleiman, J. P.; Dubeck, M. The Preparation of Cyclopentadienyl [o-(Phenylazo)Phenyl]Nickel. J. Am. Chem. Soc. 1963, 85, 1544.
  • [4] (a) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu Z.; Zhang, Y. Transition Metal-Catalyzed C?H Bond Functionalizations by the Use of Diverse Directing Groups. Org. Chem. Front. 2015, 2, 1107. (b) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Rhodium-Catalyzed C?C Bond Formation via Heteroatom-Directed C?H Bond Activation. Chem. Rev. 2010, 110, 624.
  • [3] (a) Wade, K. The Structural Significance of the Number of Skeletal Bonding Electron-Pairs in Carboranes, the Higher Boranes and Borane Anions, and Various Transition-Metal Carbonyl Cluster Compounds. J. Chem. Soc. D 1971, 792. (b) Mingos, D. M. P. A General Theory for Cluster and Ring Compounds of the Main Group and Transition Elements. Nature Phys. Sci. 1972, 99, 236.
  • [3] (a) Royer, J. Asymmetric Synthesis of Nitrogen Heterocycles; Wiley-VCH Verlag: Weinheim, 2009. (b) Wu, X.-F. Transition Metal-Catalyzed Heterocycle Synthesis via C-H Activation; John Wiley & Sons: Weinheim, 2015.
  • [2] Spokoyny, A. M. New Ligand Platforms Featuring Boron-Rich Clusters as Organomimetic Substituents. Pure Appl. Chem. 2013, 85, 903.
  • [2] Komatsu, H.; Iwasawa, N.; Citterio, D.; Suzuki, Y.; Kubota, T.; Tokuno, K.; Kitamura, Y.; Oka, K.; Suzuki, K. Design and Synthesis of Highly Sensitive and Selective Fluorescein-Derived Magnesium Fluorescent Probes and Application to Intracellular 3D Mg2+ Imaging. J. Am. Chem. Soc, 2004, 126, 16353.
  • [1] Jemmis, E. D. Overlap Control and Stability of Polyhedral Molecules. closo-Carboranes. J. Am. Chem. Soc. 1982, 104, 7017.
  • [1] (a) Gellert, M.; Mizuuchi, K.; O¨Dea, M. H.; Itoh, T.; Tomizawa, J.-I. Nalidixic Acid Resistance: A Second Genetic Character Involved in DNA Gyrase Activity. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 4772. (b) Sugino, A.; Peebles, C. L.; Kreuzer, K. N.; Cozzarelli, N. R. Mechanism of Action of Nalidixic Acid: Purification of Escherichia coli nalA Gene Product and Its Relationship to DNA Gyrase and a Novel Nicking-Closing Enzyme. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 4767. (c) Kato, J.-I.; Nishimura, Y.; Imamura, R.; Niki, H.; Hiraga, S.; Suzuki, H. New Topoisomerase Essential for Chromosome Segregation in E. Coli. E. coli. Cell 1990, 63, 393. (d) Brighty, K. E.; Gootz, T. D. Chemistry and Mechanism of Action of the Quinolone Antibacterials. In The Quinolones, 3rd ed.; Andriole, V. T., Ed.; Academic: New York, 2000; pp 33-97. (e) Wiles, J. A.; Hashimoto, A.; Thanassi, J. A.; Cheng, J.; Incarvito, C. D.; Deshpande, M.; Pucci, M. J.; Bradbury, B. J. Isothiazolopyridones: Synthesis, Structure, and Biological Activity of a New Class of Antibacterial Agents. J. Med. Chem. 2006, 49, 39.
  • [12] (a) Sheng, G.; Huang, K.; Chi, Z.; Ding, H.; Xing, Y.; Lu, P.; Wang, Y. Preparation of 3- Diazoindolin-2-imines via Cascade Reaction between Indoles and Sulfonylazides and Their Extensions to 2,3-Diaminoindoles and Imidazo[4,5-b]indoles. Org. Lett. 2014, 16, 5096. (b) Du, Z.; Xing, Y.; Lu, P.; Wang, Y. Copper-Catalyzed Cascade Double C3-Indolations of 3-Diazoindolin-2- imines with Indoles: Convenient Access to 3, 3-Diaryl-2-iminoindoles. Org. Lett. 2015, 17, 1192.
  • [ 10 ] ( a ) Hung , T. Q. ; Hoang , D. H. ; Thang ,Lochbrunner , S. ; Flechsig , G.-H. ; Langer , P. Palladium Catalyzed Synthesis and Physical Properties of Indolo [
    Biomol . Chem .
  • Yu , W. ? B . ; Cui , P. ? F . ; GaoChem . Rev . 2017 , 350 , 300 . ( b
    ?H Functionalization of Icosahedral
  • Y. Organoborane-Containing Polyacetylene Derivatives : Synthesis , Characterization , and Fluoride-Sensing Properties
    4 , 55179 . [2014]
  • Transition Metal-Catalyzed C ? H Bond Functionalizations by the Use of Diverse Directing groups
    2 , 1107 . [2015]
  • Tjarks , W. ; Barnum , B . A. ; Rong , F. ? G .
    I. M. ; Wilson
  • T. M. V. D. ; Gonsalves , A. M. R. Exploiting 2-Halo-2H-Azirine Chemistry
    1 , 275 . [2004]
  • T. A Photochemical One-Pot Three-Component Synthesis of Tetrasubstituted Imidazoles
    16 , 5430 . [2014]
  • Synthesis and Anti-HIV Integrase Evaluation of 4-Oxo-4H-quinolizine-3-carboxylic Acid Derivatives
    14 , 868 . [2009]
  • Shi ,.Commun . 2014 , 50 , 6483 . Shi , J. ; Zhou
    Q. ; Xu , H. E., J. ; Liu
  • S. L. An Improved Method for the Palladium-Catalyzed Amination of Aryl Iodides .
    66 , 2560 . [2001]
  • S. B. Synthesis of 3-Amino-1-carboxy-o-carborane and an Improved , General Method for the Synthesis of All ThreeC-Amino-C-carboxycarboranes
    38 , 2936 . [1999]
  • Perera ,C.Alper , H. Metal-Catalyzed Reactions of Allylazirines . Organometallics 1982 , 1 , 322 . (C )
    M. Exploiting the Chemistry
  • Palacios , F. ; de Retana , A. M. O. ; de Marigorta , E. M. ; de los Santos , J.
    Transition Metal Catalyzed Ring Opening Reactionsin Organic Chemistry .
  • Mechanism of Rhodium-Catalyzed C ? H Functionalization : Advances in Theoretical Investigation
    50 , 2799 [2017]
  • Li ,. 2009 , 11 , 2643 . Jana , S. ;
    B. K. ; Zheng
  • J. M. Molecular machinery : Synthesis of a ^Nanodragster ̄
    11 , 5602 . [2009]
  • Int . Ed . 2017 , 56 , 13117 . ( b )
    Zheng , G. ;
  • F. P. Cyanide Anion Binding by a Triarylborane at the Outer Rim, 49 , 714 . ( b ) Chiu , C.-W. ; Gabbai , F.
    . 2008 ,
  • Ethyl-2-acyl-2-diazoacetates . Synthesis of Novel Photochromic Oxazines . Tetrahedron Lett . 2009 , 50 , 6509 . Wang , Y.-F. ; Toh
    . ; Chiba ,
  • D. C. The Cycloaddition of -1,1,2,5,5,5-Hexafluoro3-trifluoromethyl-1,3-pentadiene with Pyridine Derivatives .
    72 , 49 . [1995]
  • Carboranyl Hybrid Compounds : A New Class of Versatile Ligands for Organometallic Chemistry . Acc .
    ( c ) Sivaev
  • C.-M. Expedient Synthesis of Highly Substituted Pyrroles via Tandem Rearrangement of メ-Diazo Oxime Ethers
    134 , 4104 . [2012]
  • C. Are Methyl Groups Electron-Donating or Electron-Withdrawing in Boron Clusters ? Permethylation of oCarborane
    127 , 10158 . [2005]
  • Bond Dissociation Energies of Organic Molecules
    36 , 4 , 255 . [2003]
  • B. Synthesis of Functionalised 4HQuinolizin-4-ones via Tandem Horner ? Wadsworth ? Emmons Olefination/Cyclisation
    11 , 3337 . [2013]
  • B ? H and C ( sp2 ) ? H Activation . Chem . Comm . 2017 , 53 , 4818 . ( b ) Quan , Y.
    ? Carboranes By
  • ;Chang , S. Transition Metal-CatalyzedC ? H Amination : Scope , Mechanism , and, J. ; Shin , K. ; Lee , D. ;
    ,-Catalyzed Mild C ?
  • 5 ] ( a ) Nakamura , H. ; Aoyagi , K.. 1998 , 120 , 1167 . ( b
    Novel Reactions of o-Carborane : ?Gabel , D. ;
  • . Am .Chem . Soc . 2014 , 136
    , D. L. ;
  • . 2017 , 23 , 11147 . Park , J. ;Chang , S.ComparativeCatalytic Activity
    MIII ] Complexes :
  • . Guptill , D. M. ; Davies , H. M.
    SiteSelective, 2-Trichloroethyl Aryldiazoacetates