박사

전기화학적 암모니아 합성 및 암모니아 연료 SOFC 전극용 Barium Strontium Titanate 페로브스카이트 재료 개발에 관한 연구 = Barium Strontium Titanate Perovskite as Electrodes for Electrochemical Ammonia Synthesis and Ammonia-fed SOFC

김환 2019년
논문상세정보
' 전기화학적 암모니아 합성 및 암모니아 연료 SOFC 전극용 Barium Strontium Titanate 페로브스카이트 재료 개발에 관한 연구 = Barium Strontium Titanate Perovskite as Electrodes for Electrochemical Ammonia Synthesis and Ammonia-fed SOFC' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • "Barium Strontium Titanate"
  • electrochemicalammoniasynthesis
  • perovskite
  • sofc
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
203 0

0.0%

' 전기화학적 암모니아 합성 및 암모니아 연료 SOFC 전극용 Barium Strontium Titanate 페로브스카이트 재료 개발에 관한 연구 = Barium Strontium Titanate Perovskite as Electrodes for Electrochemical Ammonia Synthesis and Ammonia-fed SOFC' 의 참고문헌

  • Zhao L, He B, Zhang X, Peng R, Meng G, Liu X. Electrochemical performance of novel cobalt-free oxide Ba0.5Sr0.5Fe0.8Cu0.2O3−δ for solid oxide fuel cell cathode. Journal of Power Sources. 2010;195:1859-61. [59] Appl M. Ammonia: principles and industrial practice: Vch Verlagsgesellschaft Mbh; 1999.
  • Yun DS, Joo JH, Yu JH, Yoon HC, Kim J-N, Yoo C-Y. Electrochemical ammonia synthesis from steam and nitrogen using proton conducting yttrium doped barium zirconate electrolyte with silver, platinum, and lanthanum strontium cobalt ferrite electrocatalyst. Journal of Power Sources. 2015;284:245-51.
  • Yoon H, Zou J, Sammes NM, Chung J. Ru-doped lanthanum strontium titanates for the anode of solid oxide fuel cells. International Journal of Hydrogen Energy. 2015;40:10985-93.
  • Yang J, Muroyama H, Matsui T, Eguchi K. Development of a direct ammonia-fueled molten hydroxide fuel cell. Journal of Power Sources. 2014;245:277-82.
  • Xu G, Liu R, Wang J. Electrochemical synthesis of ammonia using a cell with a Nafion membrane and SmFe0. 7Cu0. 3− x Ni x O3 (x= 0− 0.3) cathode at atmospheric pressure and lower temperature. Science in China Series B: Chemistry. 2009;52:1171-5.
  • Wojcik A, Middleton H, Damopoulos I. Ammonia as a fuel in solid oxide fuel cells. Journal of Power Sources. 2003;118:342-8.
  • Wojcik A, Middleton H, Damopoulos I, Van herle J. Ammonia as a fuel in solid oxide fuel cells. Journal of Power Sources. 2003;118:342-8.
  • Wicke E. JR Anderson, M. Boudart (Eds.): Catalysis, Science and Technology, Bd. 1, 1981; 309 Seiten, Preis: DM 142, Bd. 2, 1981; 282 Seiten, Preis: DM 132, Springer Verlag, Berlin, Heidelberg, New York. Berichte der Bunsengesellschaft f r physikalische Chemie. 1983;87:458-60.
  • Waugh K, Butler D, Hayden B. The mechanism of the poisoning of ammonia synthesis catalysts by oxygenates O 2, CO and H 2 O: an in situ method for active surface determination. Catalysis letters. 1994;24:197-210.
  • Wang W, Cao X, Gao W, Zhang F, Wang H, Ma G. Ammonia synthesis at atmospheric pressure using a reactor with thin solid electrolyte BaCe 0.85 Y 0.15 O 3− α membrane. Journal of Membrane Science. 2010;360:397-403.
  • Wang J-D, Xie Y-H, Zhang Z-F, Liu R-Q, Li Z-J. Protonic conduction in Ca 2+-doped La 2 M 2 O 7 (M= Ce, Zr) with its application to ammonia synthesis electrochemically. Materials Research Bulletin. 2005;40:1294-302.
  • Wang J, Liu R-Q. Property research of SDC and SSC in ammonia synthesis at atmospheric pressure and low temperature. Acta Chim Sin. 2008;66:717-21.
  • Twigg MV. Catalyst Handbook. Manson Publishing: London; 1996.
  • Thalinger R, Gocyla M, Heggen M, Kl tzer B, Penner S. Exsolution of Fe and SrO Nanorods and Nanoparticles from Lanthanum Strontium Ferrite La0.6Sr0.4FeO3−δ Materials by Hydrogen Reduction. The Journal of Physical Chemistry C. 2015;119:22050-6.
  • Strongin D, Somorjai G. On the rate enhancement of ammonia synthesis over iron single crystals by coadsorption of aluminum oxide with potassium. Catalysis letters. 1988;1:61-6.
  • Spencer N, Schoonmaker R, Somorjai G. Iron single crystals as ammonia synthesis catalysts: effect of surface structure on catalyst activity. Journal of Catalysis. 1982;74:129-35.
  • Slodczyk A, Colomban P, Willemin S, Lacroix O, Sala B. Indirect Raman identification of the proton insertion in the high temperature [Ba/Sr][Zr/Ti] O3 modified perovskite protonic conductors. Journal of Raman Spectroscopy. 2009;40:513-21.
  • Skodra A, Stoukides M. Electrocatalytic synthesis of ammonia from steam and nitrogen at atmospheric pressure. Solid State Ionics. 2009;180:1332-6.
  • Ruthenium Nanocatalysts for Ammonia Synthesis: A Review. Chemical Engineering Communications. 2015;202:420-48.
  • Rod TH, Logadottir A, N rskov JK. Ammonia synthesis at low temperatures. The Journal of Chemical Physics. 2000;112:5343-7.
  • Qin Q, Wu G, Chen S, Doherty W, Xie K, Wu Y. Perovskite titanate cathode decorated by in-situ grown iron nanocatalyst with enhanced electrocatalytic activity for high-temperature steam electrolysis. Electrochimica Acta. 2014;127:215-27.
  • Peng CJ, Krupanidhi SB. Structures and electrical properties of barium strontium titanate thin films grown by multi-ion-beam reactive sputtering technique. Journal of Materials Research. 2011;10:708-26.
  • Ovenstone J, Jung J-I, White JS, Edwards DD, Misture ST. Phase stability of BSCF in low oxygen partial pressures. Journal of Solid State Chemistry. 2008;181:576-86.
  • Ouzounidou M, Skodra A, Kokkofitis C, Stoukides M. Catalytic and electrocatalytic synthesis of NH 3 in a H+ conducting cell by using an industrial Fe catalyst. Solid State Ionics. 2007;178:153-9.
  • Murakami T, Nishikiori T, Nohira T, Ito Y. Investigation of anodic reaction of electrolytic ammonia synthesis in molten salts under atmospheric pressure. Journal of The Electrochemical Society. 2005;152:D75-D8.
  • Mccoy MA, Grimes RW, Lee WE. Phase stability and interfacial structures in the SrO–SrTiO3 system. Philosophical Magazine A. 1997;75:833-46.
  • Matsumoto H, Murakami D, Shimura T, Hashimoto S-i, Iwahara H. Mixed electronic-ionic conduction in Ru-doped SrTiO3 at high temperature. Journal of Electroceramics. 2001;7:107-11.
  • Marnellos G, Zisekas S, Stoukides M. Synthesis of ammonia at atmospheric pressure with the use of solid state proton conductors. Journal of Catalysis. 2000;193:80-7.
  • Marnellos G, Stoukides M. Ammonia synthesis at atmospheric pressure. Science. 1998;282:98-100.
  • Marina OA, Canfield NL, Stevenson JW. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics. 2002;149:21-8.
  • Ma Q, Ma J, Zhou S, Yan R, Gao J, Meng G. A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte. Journal of power sources. 2007;164:86-9.
  • Liu R-Q, Xie Y-H, Wang J-D, Li Z-J, Wang B-H. Synthesis of ammonia at atmospheric pressure with Ce 0.8 M 0.2 O 2− δ (M= La, Y, Gd, Sm) and their proton conduction at intermediate temperature. Solid State Ionics. 2006;177:73-6.
  • Liu L, Sun K, Wu X, Li X, Zhang M, Zhang N, et al. Improved performance of ammonia-fueled solid oxide fuel cell with SSZ thin film electrolyte and Ni-SSZ anode functional layer. international journal of hydrogen energy. 2012;37:10857-65.
  • Liu H. Ammonia synthesis catalysts: innovation and practice: World Scientific; 2013.
  • Ling Y, Yu J, Zhang X, Zhao L, Liu X. A cobalt-free Sm 0.5 Sr 0.5 Fe 0.8 Cu 0.2 O 3− δ–Ce 0.8 Sm 0.2 O 2− δ composite cathode for proton-conducting solid oxide fuel cells. Journal of Power Sources. 2011;196:2631-4.
  • Liang Y, Bonnell DA. Atomic structures of reduced SrTiO3(001) surfaces. Surface Science. 1993;285:L510-L6.
  • Li Z, Liu R, Xie Y, Feng S, Wang J. A novel method for preparation of doped Ba 3 (Ca 1.18 Nb 1.82) O 9− δ: application to ammonia synthesis at atmospheric pressure. Solid State Ionics. 2005;176:1063-6.
  • Lan R, Irvine JTS, Tao S. Ammonia and related chemicals as potential indirect hydrogen storage materials. International Journal of Hydrogen Energy. 2012;37:1482-94.
  • Lan R, Alkhazmi KA, Amar IA, Tao S. Synthesis of ammonia directly from wet air using new perovskite oxide La0.8Cs0.2Fe0.8Ni0.2O3-δ as catalyst. Electrochimica Acta. 2014;123:582-7.
  • Lan R, Alkhazmi KA, Amar IA, Tao S. Synthesis of ammonia directly from wet air at intermediate temperature. Applied Catalysis B: Environmental. 2014;152:212-7.
  • Kreuer K. Proton-conducting oxides. Annual Review of Materials Research. 2003;33:333-59.
  • Kosaka F, Noda N, Nakamura T, Otomo J. In situ formation of Ru nanoparticles on La1− xSrxTiO3-based mixed conducting electrodes and their application in electrochemical synthesis of ammonia using a protonconducting solid electrolyte. Journal of Materials Science. 2017;52:2825-35.
  • Kolodiazhnyi T, Petric A. The Applicability of Sr-deficient n-type SrTiO3 for SOFC Anodes. Journal of Electroceramics. 2005;15:5-11.
  • Klinsrisuk S, Irvine JTS. Electrocatalytic ammonia synthesis via a proton conducting oxide cell with BaCe0.5Zr0.3Y0.16Zn0.04O3-δ electrolyte membrane. Catalysis Today. 2017;286:41-50.
  • Kamecki B, Miruszewski T, G rnicka K, Klimczuk T, Karczewski J. Characterization methods of nickel nano-particles obtained by the ex-solution process on the surface of Pr, Ni-doped SrTiO3 perovskite ceramics. SN Applied Sciences. 2019;1:322.
  • Jiang SP, Liu L, Ong KP, Wu P, Li J, Pu J. Electrical conductivity and performance of doped LaCrO3 perovskite oxides for solid oxide fuel cells. Journal of Power Sources. 2008;176:82-9.
  • Iwahara H. Technological challenges in the application of proton conducting ceramics. Solid State Ionics. 1995;77:289-98.
  • Iwahara H, Esaka T, Uchida H, Maeda N. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics. 1981;3:359-63.
  • Irvine JT. The Bourner lecture: Power sources and the new energy economy. Journal of power sources. 2004;136:203-7.
  • Hejze T, Besenhard JO, Kordesch K, Cifrain M, Aronsson RR. Current status of combined systems using alkaline fuel cells and ammonia as a hydrogen carrier. Journal of Power Sources. 2008;176:490-3.
  • Hayashi H, Suzuki M, Inaba H. Thermal expansion of Sr- and Mg-doped LaGaO3. Solid State Ionics. 2000;128:131-9.
  • Hattori H, Ono Y. Solid Acid Catalysis: From Fundamentals to Applications: CRC Press; 2015.
  • Guo Y, Liu B, Yang Q, Chen C, Wang W, Ma G. Preparation via microemulsion method and proton conduction at intermediate-temperature of BaCe 1− xYxO 3− α. Electrochemistry Communications. 2009;11:153-6.
  • Ganley JC. An intermediate-temperature direct ammonia fuel cell with a molten alkaline hydroxide electrolyte. Journal of Power Sources. 2008;178:44-7.
  • Fagg DP, Kharton VV, Frade JR, Ferreira AAL. Stability and mixed ionic–electronic conductivity of (Sr,La)(Ti,Fe)O3−δ perovskites. Solid State Ionics. 2003;156:45-57.
  • Ertl G, Weiss M, Lee S. The role of potassium in the catalytic synthesis of ammonia. Chemical Physics Letters. 1979;60:391-4.
  • Endo K, Katayama Y, Miura T. Pt–Ir and Pt–Cu binary alloys as the electrocatalyst for ammonia oxidation. Electrochimica acta. 2004;49:1635-8.
  • Dekker N, Rietveld G. Highly efficient conversion of ammonia in electricity by solid oxide fuel cells. Journal of fuel cell science and technology. 2006;3:499-502.
  • Dasireddy VDBC, Singh S, Friedrich HB. Activation of n-octane using vanadium oxide supported on alkaline earth hydroxyapatites. Applied Catalysis A: General. 2013;456:105-17.
  • Dahl S, T rnqvist E, Jacobsen CJ. Dissociative adsorption of dinitrogen on a multipromoted iron-based ammonia synthesis catalyst: Linking properties of catalysts and single-crystal surfaces. Journal of Catalysis. 2001;198:97-102.
  • Dahl S, Logadottir A, Jacobsen CJ, N rskov JK. Electronic factors in catalysis: the volcano curve and the effect of promotion in catalytic ammonia synthesis. Applied Catalysis A: General. 2001;222:19-29.
  • Cuffini S, Macagno V, Carbonio R, Melo A, Trollund E, Gautier J. Crystallographic, Magnetic, and Electrical Properties of SrTi 1-x Ru x O 3 Perovskite Solid Solutions. Journal of Solid State Chemistry. 1993;105:161-70.
  • Constable DJ, Dunn PJ, Hayler JD, Humphrey GR, Leazer Jr JL, Linderman RJ, et al. Key green chemistry research areas—a perspective from pharmaceutical manufacturers. Green Chemistry. 2007;9:411-20.
  • Chonggen P, Ying L, Jiang W, Huazhang L. Effects of reaction conditions on performance of Ru catalyst and iron catalyst for ammonia synthesis. Chinese Journal of Chemical Engineering. 2011;19:273-7.
  • Canales-V zquez J, Ruiz-Morales JC, Marrero-L pez D, Pe a-Mart nez J, N ez P, G mez-Romero P. Fe-substituted (La, Sr) TiO 3 as potential electrodes for symmetrical fuel cells (SFCs). Journal of Power Sources. 2007;171:552-7.
  • Cairns E, Simons E, Tevebaugh A. Ammonia–oxygen fuel cell. Nature. 1968;217:780-1.
  • Brooks JE, Yang W, Grove BM, Walton IC, Kothari M, Behrmann LA, et al. Components and methods for use with explosives. Google Patents; 2003.
  • Blennow P, Hansen KK, Reine Wallenberg L, Mogensen M. Effects of Sr/Ti-ratio in SrTiO3-based SOFC anodes investigated by the use of coneshaped electrodes. Electrochimica Acta. 2006;52:1651-61.
  • Barrault J. Principles and practice of heterogeneous catalysis. Applied Catalysis A: General. 1997;165:511.
  • Appl M. Fundamentals of the Synthesis Reaction. Ammonia: Wiley- VCH Verlag GmbH; 2007. p. 9-63.
  • Amar IA, Petit CT, Zhang L, Lan R, Skabara PJ, Tao S. Electrochemical synthesis of ammonia based on doped-ceria-carbonate composite electrolyte and perovskite cathode. Solid State Ionics. 2011;201:94-100.
  • Amar IA, Lan R, Tao S. Synthesis of ammonia directly from wet nitrogen using a redox stable La 0.75 Sr 0.25 Cr 0.5 Fe 0.5 O 3− δ–Ce 0.8 Gd 0.18 Ca 0.02 O 2− δ composite cathode. RSC Advances. 2015;5:38977-83.
  • Amar IA, Lan R, Petit CT, Arrighi V, Tao S. Electrochemical synthesis of ammonia based on a carbonate-oxide composite electrolyte. Solid State Ionics. 2011;182:133-8.
  • Alzate-Restrepo V, Hill JM. Effect of anodic polarization on carbon deposition on Ni/YSZ anodes exposed to methane. Applied Catalysis A: General. 2008;342:49-55.
  • Afif A, Radenahmad N, Cheok Q, Shams S, Kim JH, Azad AK. Ammonia-fed fuel cells: a comprehensive review. Renewable and Sustainable Energy Reviews. 2016;60:822-35.