박사

Role of bacterial peptidoglycan in regulation of bone mass

김지선 2019년
논문상세정보
' Role of bacterial peptidoglycan in regulation of bone mass' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 외과의 다방면
  • Bacterial peptidoglycan, NOD1, NOD2, Osetoblast, Osteoclast
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
2,227 0

0.0%

' Role of bacterial peptidoglycan in regulation of bone mass' 의 참고문헌

  • Zhang, W., et al., Effects of insulin and insulin-like growth factor 1 on osteoblast proliferation and differentiation: differential signalling via Akt and ERK. Cell Biochem Funct, 2012. 30(4): p. 297-302.
  • Zhang, J., et al., Loss of Bone and Wnt10b Expression in Male Type 1 Diabetic Mice Is Blocked by the Probiotic Lactobacillus reuteri. Endocrinology, 2015. 156(9): p. 3169-82.
  • Yuan, H., et al., Pivotal role of NOD2 in inflammatory processes affecting atherosclerosis and periodontal bone loss. Proc Natl Acad Sci U S A, 2013. 110(52): p. E5059-68.
  • Yu, Y., et al., Diversity of innate immune recognition mechanism for bacterial polymeric meso-diaminopimelic acid-type peptidoglycan in insects. J Biol Chem, 2010. 285(43): p. 32937-45.
  • Youssef, A., D. Aboalola, and V.K. Han, The Roles of Insulin-Like Growth Factors in Mesenchymal Stem Cell Niche. Stem Cells Int, 2017. 2017: p. 9453108.
  • Yi, L., et al., Gene Modification of Transforming Growth Factor beta (TGFbeta) and Interleukin 10 (IL-10) in Suppressing Mt Sonicate Induced Osteoclast Formation and Bone Absorption. Med Sci Monit, 2018. 24: p. 5200-5207.
  • Wu, M., G. Chen, and Y.P. Li, TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res, 2016. 4: p. 16009.
  • Wu, H.J., et al., Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity, 2010. 32(6): p. 815- 27.
  • Wright, N.C., et al., The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res, 2014. 29(11): p. 2520-6.
  • Woo, T. and J.D. Adachi, Role of bisphosphonates and calcitonin in the prevention and treatment of osteoporosis. Best Pract Res Clin Rheumatol, 2001. 15(3): p. 469-81.
  • Wang, Z., et al., Probiotics protect mice from CoCrMo particles-induced osteolysis. Int J Nanomedicine, 2017. 12: p. 5387-5397.
  • Wada, T., et al., RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med, 2006. 12(1): p. 17-25.
  • Voss, P.J., et al., Osteonecrosis of the jaw in patients transitioning from bisphosphonates to denosumab treatment for osteoporosis. Odontology, 2018. 106(4): p. 469-480.
  • Vollmer, W., et al., Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev, 2008. 32(2): p. 259-86.
  • Vollmer, W., Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol Rev, 2008. 32(2): p. 287-306.
  • Vollmer, W., D. Blanot, and M.A. de Pedro, Peptidoglycan structure and architecture. FEMS Microbiol Rev, 2008. 32(2): p. 149-67.
  • Viala, J., et al., Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol, 2004. 5(11): p. 1166-74.
  • Typas, A., et al., From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol, 2011. 10(2): p. 123-36.
  • Troll, J.V., et al., Taming the symbiont for coexistence: a host PGRP neutralizes a bacterial symbiont toxin. Environ Microbiol, 2010. 12(8): p. 2190-203.
  • Thunnissen, A.M., et al., Structure of the 70-kDa soluble lytic transglycosylase complexed with bulgecin A. Implications for the enzymatic mechanism. Biochemistry, 1995. 34(39): p. 12729-37.
  • Teitelbaum, S.L., Bone resorption by osteoclasts. Science, 2000. 289(5484): p. 1504-8.
  • Tanaka, S., et al., Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J Clin Invest, 1993. 91(1): p. 257-63.
  • Takito, J., S. Inoue, and M. Nakamura, The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone. Int J Mol Sci, 2018. 19(4).
  • Takei, Y., T. Minamizaki, and Y. Yoshiko, Functional diversity of fibroblast growth factors in bone formation. Int J Endocrinol, 2015. 2015: p. 729352.
  • Takayanagi, H., et al., Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell, 2002. 3(6): p. 889-901.
  • Sun, S.Y., et al., Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res, 2005. 65(16): p. 7052-8.
  • Stenbeck, G., Formation and function of the ruffled border in osteoclasts. Semin Cell Dev Biol, 2002. 13(4): p. 285-92.
  • Stein, G.S., et al., Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene, 2004. 23(24): p. 4315-29.
  • Sozen, T., L. Ozisik, and N.C. Basaran, An overview and management of osteoporosis. Eur J Rheumatol, 2017. 4(1): p. 46-56.
  • Sophocleous, A. and A.I. Idris, Rodent models of osteoporosis. Bonekey Rep, 2014. 3: p. 614.
  • Sjogren, K., et al., The gut microbiota regulates bone mass in mice. J Bone Miner Res, 2012. 27(6): p. 1357-67.
  • Schwarzer, M., et al., Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science, 2016. 351(6275): p. 854-7.
  • Schultz, M., et al., Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice. Inflamm Bowel Dis, 2002. 8(2): p. 71-80.
  • Schricker, M.E., G.H. Thompson, and J.R. Schreiber, Osteomyelitis due to Bacillus cereus in an adolescent: case report and review. Clin Infect Dis, 1994. 18(6): p. 863-7.
  • Schnell, S., et al., The 1-year mortality of patients treated in a hip fracture program for elders. Geriatr Orthop Surg Rehabil, 2010. 1(1): p. 6-14.
  • Schlesinger, P.H., et al., Characterization of the osteoclast ruffled border chloride channel and its role in bone resorption. J Biol Chem, 1997. 272(30): p. 18636-43.
  • Schepper, J.D., et al., Probiotics in Gut-Bone Signaling. Adv Exp Med Biol, 2017. 1033: p. 225-247.
  • Schepper, J.D., et al., Probiotic Lactobacillus reuteri Prevents Postantibiotic Bone Loss by Reducing Intestinal Dysbiosis and Preventing Barrier Disruption. J Bone Miner Res, 2019. 34(4): p. 681-698.
  • Schapira, D. and C. Schapira, Osteoporosis - the Evolution of a Scientific Term. Osteoporosis International, 1992. 2(4): p. 164-167.
  • Rubino, S.J., et al., Nod-like receptors in the control of intestinal inflammation. Curr Opin Immunol, 2012. 24(4): p. 398-404.
  • Rizzo, G. and L. Baroni, Soy, Soy Foods and Their Role in Vegetarian Diets. Nutrients, 2018. 10(1).
  • Raisz, L.G., Physiology and pathophysiology of bone remodeling. Clin Chem, 1999. 45(8 Pt 2): p. 1353-8.
  • Raggatt, L.J. and N.C. Partridge, Cellular and molecular mechanisms of bone remodeling. J Biol Chem, 2010. 285(33): p. 25103-8.
  • Putignani, L., et al., The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood. Pediatr Res, 2014. 76(1): p. 2-10.
  • Picherit, C., et al., Dose-dependent bone-sparing effects of dietary isoflavones in the ovariectomised rat. Br J Nutr, 2001. 85(3): p. 307-16.
  • Petnicki-Ocwieja, T., et al., Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci U S A, 2009. 106(37): p. 15813-8.
  • Park, O.J., et al., Muramyl Dipeptide, a Shared Structural Motif of Peptidoglycans, Is a Novel Inducer of Bone Formation through Induction of Runx2. J Bone Miner Res, 2017. 32(7): p. 1455-1468.
  • Park, J.H., et al., RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J Immunol, 2007. 178(4): p. 2380-6.
  • Ozaras, N. and A. Rezvani, Diffuse skeletal pain after administration of alendronate. Indian J Pharmacol, 2010. 42(4): p. 245-6.
  • Ohlsson, C., et al., Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One, 2014. 9(3): p. e92368.
  • O'Brien, C.A., Control of RANKL gene expression. Bone, 2010. 46(4): p. 911-9.
  • Nikitovic, D., et al., Parathyroid hormone/parathyroid hormone-related peptide regulate osteosarcoma cell functions: Focus on the extracellular matrix (Review). Oncol Rep, 2016. 36(4): p. 1787-92.
  • Musette, P., et al., Treatment of osteoporosis: recognizing and managing cutaneous adverse reactions and drug-induced hypersensitivity. Osteoporos Int, 2010. 21(5): p. 723-32.
  • Muller, A., A. Klockner, and T. Schneider, Targeting a cell wall biosynthesis hot spot. Nat Prod Rep, 2017. 34(7): p. 909-932.
  • Moschen, A.R., et al., The RANKL/OPG system is activated in inflammatory bowel disease and relates to the state of bone loss. Gut, 2005. 54(4): p. 479-87.
  • Morabito, N., et al., Effects of genistein and hormone-replacement therapy on bone loss in early postmenopausal women: a randomized double-blind placebo-controlled study. J Bone Miner Res, 2002. 17(10): p. 1904-12.
  • Mokoena, M.P., Lactic Acid Bacteria and Their Bacteriocins: Classification, Biosynthesis and Applications against Uropathogens: A Mini-Review. Molecules, 2017. 22(8).
  • Meylan, E., J. Tschopp, and M. Karin, Intracellular pattern recognition receptors in the host response. Nature, 2006. 442(7098): p. 39-44.
  • Metzger, C.E., et al., Inflammatory Bowel Disease in a Rodent Model Alters Osteocyte Protein Levels Controlling Bone Turnover. J Bone Miner Res, 2017. 32(4): p. 802-813.
  • McHugh, K.P., et al., Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest, 2000. 105(4): p. 433-40.
  • McElroy, J.F. and G.N. Wade, Short- and long-term effects of ovariectomy on food intake, body weight, carcass composition, and brown adipose tissue in rats. Physiol Behav, 1987. 39(3): p. 361-5.
  • McCabe, L.R., et al., Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol, 2013. 228(8): p. 1793-8.
  • McCabe, L.R. and N. Parameswaran, Advances in Probiotic Regulation of Bone and Mineral Metabolism. Calcif Tissue Int, 2018. 102(4): p. 480-488.
  • Marina-Garcia, N., et al., Clathrin- and dynamin-dependent endocytic pathway regulates muramyl dipeptide internalization and NOD2 activation. J Immunol, 2009. 182(7): p. 4321-7.
  • Magalhaes, J.G., et al., Nucleotide oligomerization domain-containing proteins instruct T cell helper type 2 immunity through stromal activation. Proc Natl Acad Sci U S A, 2011. 108(36): p. 14896-901.
  • Magalhaes, J.G., et al., Nod2-dependent Th2 polarization of antigen-specific immunity. J Immunol, 2008. 181(11): p. 7925-35.
  • Maekawa, T. and G. Hajishengallis, Topical treatment with probiotic Lactobacillus brevis CD2 inhibits experimental periodontal inflammation and bone loss. J Periodontal Res, 2014. 49(6): p. 785-91.
  • Macho Fernandez, E., et al., Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut, 2011. 60(8): p. 1050-9.
  • Lyte, M., Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease Foreword. Microbial Endocrinology: The Microbiota- Gut-Brain Axis in Health and Disease, 2014. 817: p. Vii-Vii.
  • Lucas, S., et al., Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun, 2018. 9(1): p. 55.
  • Long, F., Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol, 2011. 13(1): p. 27-38.
  • Loehry, C.A., et al., Permeability of the small intestine to substances of different molecular weight. Gut, 1970. 11(6): p. 466-70.
  • Li, Z., K. Kong, and W. Qi, Osteoclast and its roles in calcium metabolism and bone development and remodeling. Biochem Biophys Res Commun, 2006. 343(2): p. 345-50.
  • Li, J.Y., et al., Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest, 2016. 126(6): p. 2049- 63.
  • Lee, S.H., Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intest Res, 2015. 13(1): p. 11-8.
  • Lee, J., et al., pH-dependent internalization of muramyl peptides from early endosomes enables Nod1 and Nod2 signaling. J Biol Chem, 2009. 284(35): p. 23818-29.
  • Lee, E., et al., Lactobacillus plantarum Strain Ln4 Attenuates Diet-Induced Obesity, Insulin Resistance, and Changes in Hepatic mRNA Levels Associated with Glucose and Lipid Metabolism. Nutrients, 2018. 10(5).
  • Lebeer, S., J. Vanderleyden, and S.C. De Keersmaecker, Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev, 2008. 72(4): p. 728-64, Table of Contents.
  • Le Bourhis, L., S. Benko, and S.E. Girardin, Nod1 and Nod2 in innate immunity and human inflammatory disorders. Biochem Soc Trans, 2007. 35(Pt 6): p. 1479-84.
  • Lacey, D.L., et al., Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 1998. 93(2): p. 165-76.
  • Kyrgidis, A. and K.A. Toulis, Denosumab-related osteonecrosis of the jaws. Osteoporos Int, 2011. 22(1): p. 369-70.
  • Kwak, S.H., et al., Cancer Preventive Potential of Kimchi Lactic Acid Bacteria (Weissella cibaria, Lactobacillus plantarum). J Cancer Prev, 2014. 19(4): p. 253-8.
  • Kuo, T.R. and C.H. Chen, Bone biomarker for the clinical assessment of osteoporosis: recent developments and future perspectives. Biomark Res, 2017. 5: p. 18.
  • Kular, J., et al., An overview of the regulation of bone remodelling at the cellular level. Clin Biochem, 2012. 45(12): p. 863-73.
  • Komori, T., et al., Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 1997. 89(5): p. 755-64.
  • Kobayashi, R., et al., Oral administration of Lactobacillus gasseri SBT2055 is effective in preventing Porphyromonas gingivalis-accelerated periodontal disease. Sci Rep, 2017. 7(1): p. 545.
  • Klaenhammer, T.R., et al., The impact of probiotics and prebiotics on the immune system. Nat Rev Immunol, 2012. 12(10): p. 728-34.
  • Kim, N., et al., A novel member of the leukocyte receptor complex regulates osteoclast differentiation. J Exp Med, 2002. 195(2): p. 201-9.
  • Kim, J., et al., Serum amyloid A inhibits osteoclast differentiation to maintain macrophage function. J Leukoc Biol, 2016. 99(4): p. 595-603.
  • Kim, J., et al., Lipoproteins are an important bacterial component responsible for bone destruction through the induction of osteoclast differentiation and activation. J Bone Miner Res, 2013. 28(11): p. 2381-91.
  • Kim, H.J., et al., Lipoteichoic acid and muramyl dipeptide synergistically induce maturation of human dendritic cells and concurrent expression of proinflammatory cytokines. J Leukoc Biol, 2007. 81(4): p. 983-9.
  • Kenkre, J.S. and J. Bassett, The bone remodelling cycle. Ann Clin Biochem, 2018. 55(3): p. 308-327.
  • Kawai, M. and C.J. Rosen, The insulin-like growth factor system in bone: basic and clinical implications. Endocrinol Metab Clin North Am, 2012. 41(2): p. 323-33, vi.
  • Kaewsrichan, J., et al., Sequential induction of marrow stromal cells by FGF2 and BMP2 improves their growth and differentiation potential in vivo. Arch Oral Biol, 2011. 56(1): p. 90-101.
  • Jones, R.M., J.G. Mulle, and R. Pacifici, Osteomicrobiology: The influence of gut microbiota on bone in health and disease. Bone, 2018. 115: p. 59-67.
  • Jimi, E., et al., Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J Immunol, 1999. 163(1): p. 434-42.
  • Jiao, Y., et al., Induction of bone loss by pathobiont-mediated Nod1 signaling in the oral cavity. Cell Host Microbe, 2013. 13(5): p. 595-601.
  • Irwin, R., et al., Intestinal inflammation without weight loss decreases bone density and growth. Am J Physiol Regul Integr Comp Physiol, 2016. 311(6): p. R1149-R1157.
  • Irazoki, O., S.B. Hernandez, and F. Cava, Peptidoglycan Muropeptides: Release, Perception, and Functions as Signaling Molecules. Front Microbiol, 2019. 10: p. 500.
  • Ikeda, Y., et al., Intake of fermented soybeans, natto, is associated with reduced bone loss in postmenopausal women: Japanese Population-Based Osteoporosis (JPOS) Study. J Nutr, 2006. 136(5): p. 1323-8.
  • Humphrey, M.B., et al., TREM2, a DAP12-associated receptor, regulates osteoclast differentiation and function. J Bone Miner Res, 2006. 21(2): p. 237-45.
  • Humann, J. and L.L. Lenz, Bacterial peptidoglycan degrading enzymes and their impact on host muropeptide detection. J Innate Immun, 2009. 1(2): p. 88-97.
  • Huang, W., et al., Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci, 2007. 12: p. 3068-92.
  • Honma, K., et al., Interferon regulatory factor 4 negatively regulates the production of proinflammatory cytokines by macrophages in response to LPS. Proc Natl Acad Sci U S A, 2005. 102(44): p. 16001-6.
  • Hathaway-Schrader, J.D., et al., Antibiotic Perturbation of Gut Microbiota Dysregulates Osteoimmune Cross Talk in Postpubertal Skeletal Development. Am J Pathol, 2019. 189(2): p. 370-390.
  • Hasegawa, M., et al., Differential release and distribution of Nod1 and Nod2 immunostimulatory molecules among bacterial species and environments. J Biol Chem, 2006. 281(39): p. 29054-63.
  • Hasegawa, M., et al., A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation. EMBO J, 2008. 27(2): p. 373-83.
  • Hankiewicz, J. and E. Swierczek, Lysozyme in human body fluids. Clin Chim Acta, 1974. 57(3): p. 205-9.
  • Guerra-Menendez, L., et al., IGF-I increases markers of osteoblastic activity and reduces bone resorption via osteoprotegerin and RANK-ligand. J Transl Med, 2013. 11: p. 271.
  • Guan, R., et al., Structural basis for peptidoglycan binding by peptidoglycan recognition proteins. Proc Natl Acad Sci U S A, 2004. 101(49): p. 17168-73.
  • Goodson, M.S., et al., Identifying components of the NF-kappaB pathway in the beneficial Euprymna scolopes-Vibrio fischeri light organ symbiosis. Appl Environ Microbiol, 2005. 71(11): p. 6934-46.
  • Glass, D.A., 2nd, et al., Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell, 2005. 8(5): p. 751- 64.
  • Girardin, S.E., et al., Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J Biol Chem, 2003. 278(43): p. 41702-8.
  • Girardin, S.E., et al., Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem, 2003. 278(11): p. 8869- 72.
  • Girardin, S.E., et al., Nod1 detects a unique muropeptide from gramnegative bacterial peptidoglycan. Science, 2003. 300(5625): p. 1584-7.
  • Gilbert, L., et al., Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology, 2000. 141(11): p. 3956-64.
  • Gatej, S.M., et al., Probiotic Lactobacillus rhamnosus GG prevents alveolar bone loss in a mouse model of experimental periodontitis. J Clin Periodontol, 2018. 45(2): p. 204-212.
  • Fritz, J.H., et al., Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists. Eur J Immunol, 2005. 35(8): p. 2459-70.
  • Fritz, J.H., et al., Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity, 2007. 26(4): p. 445-59.
  • Fritz, J.H., et al., Nod-like proteins in immunity, inflammation and disease. Nat Immunol, 2006. 7(12): p. 1250-7.
  • Frei, R., M. Akdis, and L. O'Mahony, Prebiotics, probiotics, synbiotics, and the immune system: experimental data and clinical evidence. Curr Opin Gastroenterol, 2015. 31(2): p. 153-8.
  • Franchi, L., et al., Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev, 2009. 227(1): p. 106-28.
  • Food and Agriculture Organization of the United Nations. and World Health Organization., Probiotics in food : health and nutritional properties and guidelines for evaluation. FAO food and nutrition paper,. 2006, Rome: Food and Agriculture Organization of the United Nations : World Health Organization. viii, 50 p.
  • Felis, G.E. and F. Dellaglio, Taxonomy of Lactobacilli and Bifidobacteria. Curr Issues Intest Microbiol, 2007. 8(2): p. 44-61.
  • Fakhry, M., et al., Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J Stem Cells, 2013. 5(4): p. 136- 48.
  • Dziarski, R. and D. Gupta, The peptidoglycan recognition proteins (PGRPs). Genome Biology, 2006. 7(8).
  • Doyle, R.J., J. Chaloupka, and V. Vinter, Turnover of cell walls in microorganisms. Microbiol Rev, 1988. 52(4): p. 554-67.
  • Devescovi, V., et al., Growth factors in bone repair. Chir Organi Mov, 2008. 92(3): p. 161-8.
  • Dagil, Y.A., et al., The Dual NOD1/NOD2 Agonism of Muropeptides Containing a Meso-Diaminopimelic Acid Residue. PLoS One, 2016. 11(8): p. e0160784.
  • D'Amelio, P. and G.C. Isaia, The use of raloxifene in osteoporosis treatment. Expert Opinion on Pharmacotherapy, 2013. 14(7): p. 949-956.
  • Collins, F.L., et al., Temporal and regional intestinal changes in permeability, tight junction, and cytokine gene expression following ovariectomy-induced estrogen deficiency. Physiol Rep, 2017. 5(9).
  • Collins, F.L., et al., Lactobacillus reuteri 6475 Increases Bone Density in Intact Females Only under an Inflammatory Setting. PLoS One, 2016. 11(4): p. e0153180.
  • Clarke, T.B., et al., Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med, 2010. 16(2): p. 228-31.
  • Ciucci, T., et al., Bone marrow Th17 TNFalpha cells induce osteoclast differentiation, and link bone destruction to IBD. Gut, 2015. 64(7): p. 1072- 81.
  • Choi, J.Y., et al., Subnuclear targeting of Runx/Cbfa/AML factors is essential for tissue-specific differentiation during embryonic development. Proc Natl Acad Sci U S A, 2001. 98(15): p. 8650-5.
  • Chiang, S.S. and T.M. Pan, Antiosteoporotic effects of Lactobacillus - fermented soy skim milk on bone mineral density and the microstructure of femoral bone in ovariectomized mice. J Agric Food Chem, 2011. 59(14): p. 7734-42.
  • Chaves de Souza, J.A., et al., NOD1 in the modulation of host-microbe interactions and inflammatory bone resorption in the periodontal disease model. Immunology, 2016. 149(4): p. 374-385.
  • Cavallari, J.F., et al., Muramyl Dipeptide-Based Postbiotics Mitigate Obesity-Induced Insulin Resistance via IRF4. Cell Metab, 2017. 25(5): p. 1063-1074 e3.
  • Cava, F. and M.A. de Pedro, Peptidoglycan plasticity in bacteria: emerging variability of the murein sacculus and their associated biological functions. Curr Opin Microbiol, 2014. 18: p. 46-53.
  • Cao, J., et al., Expression of RANKL and OPG correlates with age-related bone loss in male C57BL/6 mice. J Bone Miner Res, 2003. 18(2): p. 270-7.
  • Callewaert, L. and C.W. Michiels, Lysozymes in the animal kingdom. J Biosci, 2010. 35(1): p. 127-60.
  • Burr, D.B. and M.R. Allen, Basic and applied bone biology. 2013, Amsterdam: Elsevier/Academic Press. xv, 373 pages.
  • Britton, R.A., et al., Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol, 2014. 229(11): p. 1822-30.
  • Bourhis, L.L. and C. Werts, Role of Nods in bacterial infection. Microbes Infect, 2007. 9(5): p. 629-36.
  • Biswas, A., T. Petnicki-Ocwieja, and K.S. Kobayashi, Nod2: a key regulator linking microbiota to intestinal mucosal immunity. J Mol Med (Berl), 2012. 90(1): p. 15-24.
  • Bielig, H., et al., NOD-like receptor activation by outer membrane vesicles from Vibrio cholerae non-O1 non-O139 strains is modulated by the quorumsensing regulator HapR. Infect Immun, 2011. 79(4): p. 1418-27.
  • Bernard, E., et al., Identification of the amidotransferase AsnB1 as being responsible for meso-diaminopimelic acid amidation in Lactobacillus plantarum peptidoglycan. J Bacteriol, 2011. 193(22): p. 6323-30.
  • Bawa, S., The significance of soy protein and soy bioactive compounds in the prophylaxis and treatment of osteoporosis. J Osteoporos, 2010. 2010: p. 891058.
  • Baik, J.E., et al., Differential profiles of gastrointestinal proteins interacting with peptidoglycans from Lactobacillus plantarum and Staphylococcus aureus. Mol Immunol, 2015. 65(1): p. 77-85.
  • Asagiri, M. and H. Takayanagi, The molecular understanding of osteoclast differentiation. Bone, 2007. 40(2): p. 251-64.
  • Armstrong, A.P., et al., A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function. J Biol Chem, 2002. 277(46): p. 44347-56.
  • Arjmandi, B.H., et al., Bone-sparing effect of soy protein in ovarian hormone-deficient rats is related to its isoflavone content. Am J Clin Nutr, 1998. 68(6 Suppl): p. 1364S-1368S.
  • Andersen, T.L., et al., Understanding coupling between bone resorption and formation: are reversal cells the missing link? Am J Pathol, 2013. 183(1): p. 235-46.
  • Allaire, J.M., et al., The Intestinal Epithelium: Central Coordinator of Mucosal Immunity: (Trends in Immunology 39, 677-696, 2018). Trends Immunol, 2019. 40(2): p. 174.
  • Ali, T., et al., Osteoporosis in inflammatory bowel disease. Am J Med, 2009. 122(7): p. 599-604.