박사

Transfer-free large-scale high-quality monolayer graphene synthesized at low temperatures below 150 ℃

박병주 2019년
논문상세정보
    • 저자 박병주
    • 형태사항 121 p.: 26 cm
    • 일반주기 충남대학교 논문은 저작권에 의해 보호받습니다, 지도교수: 윤순길, 참고문헌 : p. 106-119
    • 학위논문사항 학위논문(박사)-, 2019. 8, 忠南大學校 大學院, 신소재공학과 재료공학 전공
    • DDC 620.11, 22
    • 발행지 대전
    • 언어 kor
    • 출판년 2019
    • 발행사항 忠南大學校 大學院
    유사주제 논문( 727)
' Transfer-free large-scale high-quality monolayer graphene synthesized at low temperatures below 150 ℃' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 기술과 연합작용
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
728 0

0.0%

' Transfer-free large-scale high-quality monolayer graphene synthesized at low temperatures below 150 ℃' 의 참고문헌

  • Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, H. Zhang, Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells, Small, 2010, 6, 307-312.
  • Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, Z. X. Shen, Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening, ACS Nano, 2, 2008, 2301-2305.
  • Z. Chen, Y.M. Lin,M. J. Rooks, and P. Avouris, Graphene nanoribbon electronics, Physica E, 2007, 40, 228.
  • Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Graphene and graphene oxide: Synthesis, properties, and applications, Advanced Materials, 22, 2010, 3906-3924.
  • Y. Zhang, Y.-W. Tan, H. L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature, 438, 2005, 201-204.
  • Y. Ye, Y. Dai, L. Dai, Z. Shi, N. Liu, F. Wang, L. Fu, R. Peng, X. Wen, Z. Chen, Z. Liu, G. Qin, High-performance single CdS nanowire (nanobelt) schottky junctionsolar cells with Au/graphene Schottky electrodes, ACS Appl. Mater. Inter., 2, 2010, 3406-3410.
  • Y. Ye, L. Gan, L. Dai, Y. Dai, X. Guo, H. Meng, B. Yu, Z. Shi, K. Shang, G. Qin, A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells, Nanoscale, 3, 2011, 1477-1481.
  • Y. Wang, S. W. Tong, X. F. Xu, B. Ӧzyilmaz, K. P. Loh, Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells, Adv. Mater., 23, 2011, 1514-1518.
  • Y. W. Son, M. L. Cohen, S. G. Louie, Energy Gaps in Graphene Nanoribbons, PRL, 2006, 97, 216803.
  • Y. Ouyang, X. Wang, H. Dai, J. Guo, Carrier scattering in graphene nanoribbon field-effect transistors, Appl. Phys. Lett., 2008, 92, 243124.
  • Y. Obeng, P. Srinivasan. Graphene: Is it the future for semiconductors? An overview of the material, devices, and applications, Interface-Electrochemical Society, 20, 2011, 47.
  • Y. -M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, Ph. Avouris, 100-GHz transistors from wafer-scale epitaxial graphene, Science, 327, 2010, 662.
  • X. Wang, L. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nanoletters, 2008, 8, 323.
  • X. Q. Zeng, Y. L. Wang, Z. L. Xiao, M. L. Latimer, T. Xu, W. K. Kwok, Hydrogen responses of ultrathin Pd films and nanowire networks with a Ti buffer layer, J. Mater. Sci., 47, 2012, 6647-6651.
  • X. Ma, H. Zhang, Fabrication of graphene films with high transparent conducting characteristics, Nanoscale Res. Lett., 8, 2013, 440-446.
  • X. Li, X.Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science, 2008, 319, 1229.
  • X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-Area Synthesis of High- Quality and Uniform Graphene Films on Copper Foils, Science. 324 (2009) 1312– 1314.
  • X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 2009, 324, 1312-1314.
  • X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, R. S. Ruoff, Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper, J. Am. Chem. Soc., 133, 2011, 2816-2819.
  • X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E. M. Vogel, E. Voelkl, L. Colombo, R. S. Ruoff, Graphene films with large domain size by a two-step chemical vapor deposition process, Nano Letters, 10, 2010, 4328-4334.
  • X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications, Small, 7, 2011, 1876-1902.
  • X. F. Wang, M. Zhao, D. D. Nolte, Optical Contrast and Clarity of Graphene on an Arbitrary Substrate, Appl. Phys. Lett., 95, 2009, 081102.
  • X. Du, I. Skachko, A. Barker, E. Y. Andrei, Approaching ballistic transport in suspended graphene, Nat. Nanotechnol., 3, 2008, 491-495.
  • W.-J. Kim, Y. M. Chang, J. Lee, D. Kang, J. H. Lee, Y.-W. Song, Ultrafast optical nonlinearity of multi-layered graphene synthesized by the interface growth process, Nanotechnology, 23, 2012, 225706.
  • W. Zhu, T. Low, V. Perebeinos, A. A. Bol, Y. Zhu, H. Yan, J. Tersoff, P. Avouris, Structure and electronic transport in graphene wrinkles, Nano Lett., 12, 2012, 3431-3436.
  • W. Zhu, T. Low, V. Perebeinos, A. A. Bol, Y. Zhu, H. Yan, J. Tersoff, P. Avouris, Structure and Electronic Transport in Graphene Wrinkles, Nano Lett., 2012, 12, 3431-3436
  • W. Zhang, D. R. Sadedin, M. A. Reuter, J. C. McCallum, The De-oxidation of Partially Oxidized Titanium by Hydrogen Plasma, Mater. Forum., 31, 2007, 76-83.
  • W. S. Hummers Jr., R. E. Offeman, J. Am. Chem. Soc., 80, 1958, 1339.
  • W. J. Borland, S. Ferguson, Embedded Passive Components in Printed Wiring Boards: A Technology Review, CircuiTree Magazine, March, 2011, 94-106.
  • W. Han, A. Zettl, An Efficient Route to Graphitic Carbon-Layer-Coated Gallium Nitride Nanorods, Adv. Mater., 2002, 14, 1560-1562.
  • V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, S. Seal, Graphene based materials: Past, present and future. Progress in Materials Science, 2011, 56, 1178-1271.
  • V. Ryzhii, M. Ryzhii, T. Otsuji, Thermionic and tunneling transport mechanisms in graphene field-effect transistors, Phys. Stat. Sol. A, 2008, 205, 1527.
  • V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, N. Kirova, Device model for graphene bilayer field-effect transistor, J. Appl. Phys., 2009, 105, 104510.
  • V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, Current-voltage characteristics of a graphene-nanoribbon field-effect transistor, J. Appl. Phys., 2008, 103, 094510.
  • V. M. Pereira, A. H. Castro, N. M. R. Peres, Tight-binding approach to uniaxial strain in graphene, Phys. Rev. B, 80, 2009, 045401.
  • V. E. Caladoa, G. F. Schneider, A. M. M. G. Theulings, C. Dekker, L. M. K. Vandersypen, Formation and control of wrinkles in graphene by the wedging transfer method, Appl. Phys. Lett., 101, 2012, 103116.
  • T. R. Nayak, H. Andersen, V. S. Makam, C. Khaw, S. Bae, X. Xu, P.-L. R. Ee, J.-H. Ahn, B. H. Hong, G. Pastorin, B. zyilmaz, Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells, ACS Nano, 5, 2011, 4670-4678.
  • T. Oznuluer, E. Pince, E. O. Polat, O. Balci, O. Salihoglu, C. Kocabas, Synthesis of graphene on gold, Appl. Phys. Lett., 98, 2011, 183101.
  • T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene, Science, 2006, 313, 951.
  • T. M. Paronyan, E. M. Pigos, G. Chen, A. R. Harutyunyan, Formation of ripples in graphene as a result of interfacial instabilities, ACS Nano, 5, 2011, 9619-9627.
  • T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, J. H. Lee, Recent advances in graphene-based biosensors, Biosens. Bioelectron., 26, 2011, 4637-4648.
  • S.-Y. Kwon, C. V. Ciobanu, V. Petrova, V. B. Shenoy, J. Bare o, V. Gambin, I. Petrov, S. Kodambaka, Growth of Semiconducting Graphene on Palladium. Nano Letters, 9, 2009, 3985-3990.
  • S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D.-H. Lee, F. Guinea, A. H. C. Neto, A. Lanzara, Substrate-induced band gap opening in epitaxial graphene, Nat. Mater., 6, 2007, 770-775.
  • S. Wang, P. K. Ang, Z. Wang, A. L. L. Tang, J. T. L. Thong, K. P. Loh, High mobility, printable, and solution-processed graphene electronics, Nano Lett., 10 (2010) 92-98.
  • S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 2007, 1558-1565.
  • S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Graphene-based composite materials, Nature, 442, 2006, 282-286.
  • S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Graphene-based composite materials, Nature, 2006, 442, 282-286.
  • S. S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, M. Chhowalla, Solution processable graphene oxide as an efficient hole transport layer in polymer solar cells, ACS Nano, 2016, 4, 3169-3174.
  • S. S. Das, A. K. Geim, P. Kim, A. H. MacDonald, Exploring graphene - Recent research advances – Foreword, Solid State Comm., 2007, 143, 1-2.
  • S. K. Hong, S. M. Song, O. Sul, B. J. Cho, Carboxylic group as the origin of electrical performance degradation during the transfer process of CVD growth graphene, J. Electrochem. Soc., 159, 2012, K107-109.
  • S. J. Chae, F. G neş, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H.-J. Shin, S.-M. Yoon, J.-Y. Choi, M. H. Park, C. W. Yang, D. Pribat, Y. H. Lee, Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation, Adv. Mater., 21, 2009, 2328-2333.
  • S. H. Lee, J. H. Kim, B. J. Park, J. Park, H. S. Kim, S. G. Yoon, Wrinkle-Free Graphene Electrodes in Zinc Tin Oxide Thin-Film Transistors for Large Area Applications, Nanotechnology, 28, 2017, 075205.
  • S. H. Chan, S. H. Chen, W. T. Lin, M. C. Li, Y. C. Lin, C. C. Kuo, Low-Temperature Synthesis of Graphene on Cu using Plasma-Assisted Thermal Chemical Vapor Deposition, Nanoscale Res. Lett., 8, 2013, 285-290.
  • S. Doniach, M. Šunjić, Many-electron singularity in X-ray Photoemission and X-ray line spectra from metals, J. Phys. C: Solid St. Phys., 3, 1970, 285-291.
  • S. D. Sarma, S. Adam, E.H. Hwang, E. Rossi, Electronic transport in two-dimensional graphene, Reviews of Modern Physics, 83, 2011, 407.
  • S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, C. Zhang, Direct Synthesis of Graphene on SiO2 Substrates by Chemical Vapor Deposition, CrystEngComm, 15, 2013, 1840-1844.
  • S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. zyilmaz, J.-H. Ahn, B. H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5 (2010) 574-578.
  • R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Fine structure constant defines visual transparency of grapheme, Science, 2008, 320, 1308.
  • R. Lewandowska, J. Liu, Raman Microscopy: Analysis of Nanomaterials, Reference Module in Materials Science and Materials Engineering, 2016
  • R. Balog, B. J rgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. L gsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, L. Hornek r, Bandgap opening in graphene induced by patterned hydrogen adsorption, Nat. Mater., 9, 2010, 315-319.
  • R. A. Palmer, T. M. Doan, P. G. Lloyd, B. L. Jarvis, N. U. Ahmed, Reduction of TiO2 with Hydrogen Plasma, Plasma Chemisty and. Plasma Processing, 22, 2002, 335−350.
  • Q. Zhang, T. Fang, H. Xing, A. Seabaugh, D. Jena, Graphene Nanoribbon Tunnel Transistors, IEEE Electron Device Lett., 2008, 0741, 3106.
  • Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, Atomic layer graphene as a saturable absorber for ultrafast pulsed lasers, Adv. Funct. Mater., 19, 2009, 3077-3083
  • P. Zhao, J. Chauhan, J. Guo, Computational study of tunneling transistor based on graphene nanoribbon, Nano Letters, 2009, 9, 684.
  • P. W. Sutter, J.-I. Flege, E. A. Sutter, Epitaxial graphene on ruthenium, Nature Materials, 7, 2008, 406-411.
  • P. R. Wallace, The band theory of graphite, Physical Review, 71, 1947, 622-634.
  • Na, S. H., Song, H. A. & Yoon, S. G. Realization of transparent and flexible capacitors using reliable graphene electrodes, RSC Adv., 2012, 2, 5214-5220.
  • N.-J. Seong, J.-H. Park, S.-G. Yoon, Effect of excess bismuth concentration ondielectric and electrical properties of fully crystallized Bi2Mg2/3Nb4/3O7 thin films, Appl. Phys. Lett., 91, 2007, 072904.
  • N. D. Cuong, J. K. Ahn, K. W. Park, N. J. Seong, S. G. Yoon, An Extremely High Dielectric Constant in Bismuth-Based Pyrochlore Multilayer Film Capacitors Combined with Percolative Structure, Appl. Phys. Lett., 2008, 93, 212901.
  • M. Y. Lin, C. F. Su, S. C. Lee, S. Y. Lin, The growth mechanisms of graphene directly on sapphire substrates by using the chemical vapor deposition, J. Appl. Phys., 115, 2014, 223510.
  • M. Y. Han, B. Ozyilmaz, Y. B. Zhang, P. Kim, Energy Band-Gap Engineering of Graphene Nanoribbons, Phys. Rev. Lett., 2007, 98, 206805.
  • M. Wilson, Electrons in atomically thin carbon sheets behave like massless particles, Physics Today, 59, 2006, 21.
  • M. S. Jang, H. Kim, Y. W. Son, H. A. Atwater, W. A. Goddard III, Graphene field effect transistor without an energy gap, PNAS, 110, 2013, 8786-8789.
  • M. M. Khader, F. M. N. Kheiri, B. E. El-Anadouli, B. G. Ateya, Mechanism of Reduction of Rutile with Hydrogen, J. Phys. Chem., 97, 1993, 6074-6077.
  • M. Luisiera, G. Klimeck, Performance analysis of statistical samples of graphene nanoribbon tunneling transistors with line edge roughness, Appl. Phys. Lett., 2009, 94, 223505.
  • M. Losurdo, M. M. Giangregorio, P. Capezzuto, G. Bruno, Graphene CVD Growth on Copper and Nickel: Role of Hydrogen in Kinetics and Structure, Phys. Chem. Chem. Phys., 13, 2011, 20836-20843.
  • M. J. Allen, V. C. Tung, R. B. Kaner, Honeycomb carbon: A review of graphene, Chemical Reviews, 110, 2009, 132-145.
  • M. I. Katsnelson. Graphene: Carbon in two dimensions. Materials Today, 2007, 10, 20-27.
  • M. H. Rümmeli, A. Bachmatiuk, A. Scott, F. Börrnert, J. H. Warner, V. Hoffman, J. H. Lin, G. Cuniberti, B. Büchner, Direct Low-Temperature Nanographene CVD Synthesis over a Dielectric Insulator, ACS Nano, 4, 2010, 4206-4210.
  • M. Choe, B. H. Lee, G. Jo, J. Park, W. Park, S. Lee, W.-K. Hong, M.-J. Seong, Y. H. Kahng, K. Lee, T. Lee, Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes, Org. Electron., 2010, 11, 1864-1869.
  • M. Borghei, R. Karimzadeh, A. Rashidi, N. Izadi, Kinetics of methane decomposition to COx-free hydrogen and carbon nanofiber over Ni-Cu/MgO catalyst, International Journal of Hydrogen Energy, 35, 2010, 9479-9488.
  • L. G. D. Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, C. Zhou, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics, ACS Nano, 4, 2010, 2865-2873.
  • L. G. D. Arco, Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics, ACS Nano, 2010, 4, 2865-2873.
  • K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004) 666-669.
  • K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. R hrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, T. Seyller, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide, Nature Materials, 8, 2009, 203-207.
  • K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 2009, 706-710.
  • K. S. A. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 2005, 438, 197-200.
  • K. Nakada, M. Fujita, G. Dresslhaus, M. S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B, 1996, 54, 17954.
  • K. Murakami, S. Tanaka, A. Hirukawa, T. Hiyama, T. Kuwajima, E. Kano, M. Takeguchi, J. Fujita, Direct Synthesis of Large Area Graphene on Insulating Substrate by Gallium Vapor-Assisted Chemical Vapor Deposition, Appl. Phys. Lett., 2015, 106, 093112.
  • K. Kim, J.-Y. Choi, T. Kim, S.-H Cho, H.-J, Chung, A role for graphene in silicon based semiconductor devices, Nature, 479, 2011, 338-344.
  • K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications, 2008, 146, 351-355.
  • K. Asai, Y. Nagayasu, K. Takane, S. Iwamoto, E. Yagasaki, K. Ishii, M. Inoue, Mechanism of methane decomposition over Ni catalyst at high temperature, J. Jap. Petro. Inst., 51, 2008, 42-49.
  • K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, M. Chhowalla, Atomic and electronic structure of graphene-oxide, Nano Lett., 9, 2009, 1058-1063.
  • J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77 (1996) 3865-3868.
  • J.-P. Shim, M. Choe, S.-R. Jeon, D. Seo, T. Lee, D.-S. Lee, InGaN based p–i–n solar cells with graphene electrodes, Appl. Phys. Express, 2011, 4, 052302.
  • J.-O. Carlsson, P. M. Martin, Handbook of Deposition Technologies for Films and Coatings - Chapter 7, 3rd edition, Science, Applications and Technology, 2009.
  • J.-H. Son, S.-J. Baeck, M.-H. Park, J.-B. Lee, C.-W. Yang, J.-K. Song, W.-C. Zin, J.-H. Ahn, Detection of graphene domains and defects using liquid crystals, Nat. Commun., 5, 2014, 3484-3470.
  • J.-H. Park, C.-J. Xian, N.-J. Seong, S.-G. Yoon, Realization of a high capacitance density in Bi2Mg2/3Nb4/3O7 pyrochlore thin films deposited directly on polymer substrates for embedded capacitor applications, Appl. Phys. Lett., 89, 2006, 232910.
  • J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic light-emitting diodes on solution-processed graphene transparent electrodes, ACS Nano, 4, 2100, 43-48.
  • J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic solar cells with solution-processed graphene transarent electrodes, Appl. Phys. Lett., 2008, 92, 263302.
  • J. Wei, T. Vo, F. Inam, Epoxy/graphene nanocomposites–processing and properties: A review, RSC Advances, 2015, 5, 73510-73524.
  • J. Sun, Y. Chen, X. Cai, B. Ma, Z. Chen, M. K. Priydarshi, K. Chen, T. Gao, X. Song, Q. Ji, X. Guo, D. Zou, Y. Zhang, and Z. Liu, Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes, Nano Research, 8, 2015, 3496-3504.
  • J. Park, J. Lee, J. H. Choi, D. K. Hwang, Y. W. Song, Growth Quantitative Growth Analysis, and Applications of Graphene on γ-Al2O3 Catalysts, Sci. Rep., 5, 0015, 11839.
  • J. Lundstedt, S. He, A Time-Domain Optimization Technique for the Simultaneous Reconstruction of the Characteristic Impedance, Resistance and Conductance of a Transmission Line, J. Electromagn. Waves Appl., 10, 1996, 581-601.
  • J. Kwak, J. H. Chu, J.-K. Choi, S.-D. Park, H. Go, S. Y. Kim, K. Park, S.-D. Kim, Y.-W. Kim, E. Yoon, S. Kodambaka, S.-Y. Kwon, Near Room-Temperature Synthesis of Transfer-Free Graphene Films, Nat. Commun., 3, 2012, 645.
  • J. Jiang, S.-G. Hur, S.-G. Yoon, Epitaxial PMN-PT thin films grown on LaNiO3/CeO2/YSZ buffered Si (001) substrates by pulsed laser deposition, J. Electrochem. Soc., 2011, 158, G83-G87.
  • J. Jiang, H.-H. Hwang, W.-J. Lee, S.-G. Yoon, Microstructural and electrical properties of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT) epitaxial films grown on Si substrates, Sensor and Actuat B:Chemical, 155, 2011, 854-85.
  • J. Jang, M. Son, S. Chung, K. Kim, C. Cho, B. H. Lee, M. H. Ham, Low-Temperature-Grown Continuous Graphene Films from Benzene by Chemical Vapor Deposition at Ambient Pressure. Sci. Rep., 5, 2016, 17955.
  • J. Hajto, J. Hu, A. J. Snell, K. Turvey, M. Rose, DC and ac Measurements on Metal/a-Si:H/Metal Room Temperature Quantized Resistance Devices, J. Non-Cryst. Solids, 2000, 266-269, 1058-1061.
  • J. Fujita, T. Ichihashi, S. Nakazawa, S. Okada, M. Ishida, Y. Ochiai, Inducing graphite tube transformation with liquid gallium and flash discharge, Appl. Phys. Lett., 88, 2006, 083109.
  • J. Fujita, T. Hiyama, A. Hirukawa, T. Kondo, J. Nakamura, S. Ito, R. Araki, Y. Ito, M. Takeguchi, W. W. Pai, Near Room Temperature Chemical Vapor Deposition of Graphene with Diluted Methane and Molten Gallium Catalyst, Sci. Rep., 7, 2017, 12371.
  • J. Finder, Scanning tunneling microscopy and atomic force microscopy in organic chemistry, Angew. Chem. Int. Edit., 31, 1992, 1298-1328.
  • J. C. Meyer, Graphene, 5 - Transmission electron microscopy (TEM) of graphene, Woodhead Publishing, 2014,
  • J. Bai, X. Duan, Y. Huang, Rational fabrication of graphene nanoribbons using a nanowire etch mask, Nanoletters, 2009, 9, 2083.
  • J. An, E. Voelkl, J. W. Suk, X. Li, C. W. Magnuson, L. Fu, P. Tiemeijer, M. Bischoff, B. Freitag, E. Popova, R. S. Ruoff, Domain (grain) boundaries and evidence of ‘‘Twinlike’’ structure in chemically vapor deposited grown graphene, ACS Nano, 5, 2011, 2433.
  • J. A. Rogers, Making graphene for macroelectronics, Nat. Nanotechnol., 3, 2008, 254-255.
  • J-H. Lee, E. K. Lee, W.-J. Joo, Y. Jang, B.-S. Kim, J. Y. Lim, S.-H. Choi, S. J. Ahn, J. R. Ahn, M.-H. Park, C.-W. Yang, B. L. Choi, S.-W. Hwang, D. Whang, Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium, Science, 344, 2014, 286-289.
  • I. W. Frank, D. M. Tanenbaum, A. M. van der Zande, P. L. McEuen, Mechanical properties of suspended graphene sheets, Journal of Vacuum Science & Technology B, 2007, 25, 2558-2561.
  • I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, K. L. Shepard, Current saturation in zero bandgap, top-gated graphene field-effect transistors, Nature Nanotechnol., 2008, 3, 654.
  • I. Childres, L. A. Jauregui, W. Park, H. Cao, Y. P. Chen, Raman Spectroscopy of Graphene and Related Materials, 2013
  • H.-S. Song, K.-D. Lee, J.-W. Sohn, S.-H. Yang, S. S. P. Parkin, C.-Y. You, S.-C. Shin, Relationship between Gilbert damping and magneto-crystalline anisotropy in a Ti-buffered Co/Ni multilayer system, Appl. Phys. Lett., 103, 2013, 022406.
  • H. Sekimoto, T. Uda, Y. Nose, S. Sato, H. Kakiuchi, Y. Awakura, Reduction of Titanium Oxide in the Presence of Nickel by Nonequilibrium Hydrogen Gas, J. Mater. Res., 24, 2009, 2391-2399.
  • H. Kim, A. A. Abdala, C. W. Macosko, Graphene/polymer nanocomposites, Macromolecules, 2010, 43, 6515-6530.
  • H. Bi, S. Sun, F. Huang, X. Xie, M. Jiang, Direct Growth of Few-Layer Graphene Films on SiO2 Substrates and Their Photovoltaic Applications, J. Mater. Chem., 22, 2012, 411-416.
  • G. Wang, M. Zhang, Y. Zhu, G. Ding, D. Jiang, Q. Guo, S. Liu, X. Xie, P. K. Chu, Z. Di, X. Wang, Direct growth of graphene film on germanium substrate, Sci. Rep., 3, 2013, 2465.
  • G. S. Kim, S. Y. Lee, J. H. Hahn, B. Y. Lee, J. G. Han, J. H. Lee, S. Y. Lee, Effects of the thickness of Ti buffer layer on the mechanical properties of TiN coatings, Surf. Coat. Tech., 171, 2003, 83-90.
  • G. Nandamuri, S. Roumimov, R. Solanki, Remote Plasma Assisted Growth of Graphene Films, Appl. Phys. Lett., 96, 2010, 154101.
  • G. Liang, N. Neophytou, M. S. Lundstrom, D. E. Nikonov, Contact effects in graphene nanoribbon transistors, Nanoletters, 2008, 8, 1819.
  • G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 1996, 11169-1186.
  • G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, T. Lee, The application of graphene as electrodes in electrical and optical devices, Nanotechnology, 2012, 23, 112001.
  • F. Tseng, D. Unluer, K. Holcomb, M. R. Stan, A. W. Ghosh, Diluted chirality dependence in edge rough graphene nanoribbon field-effect transistors, Appl. Phys. Lett., 2009, 94, 223112.
  • F. Schwierz, Graphene transistors, Nat. Nanotechnol., 5, 2010, 487-496.
  • F. M. Rojas, J. F. Rossier, L. Brey, and J. J. Palacios, Performance limits of graphene-ribbon field-effect transistors, Phys. Rev. B, 2008, 77, 045301.
  • E. A. Brandes, Smithells Metals Reference Book, 6th edition, Ch. 8, Butterworth & Co. Ltd, 1983.
  • D. W. Shaw, Crystal Growth, Plenum Press, London, 1974, p. 11.
  • D. W. Kim, Y. H. Kim, H. S. Jeong, H. T. Jung, Direct visualization of large-area graphene domains and boundaries by optical birefringency, Nat. Nanotechnol., 7, 2012, 29-34.
  • D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, The chemistry of graphene oxide, Chemical Society Reviews, 2010, 39, 228-240.
  • D. P. E. Smith, H. H rber, C. Gerber, G. Binnig, Smectic liquid crystal monolayers on graphite observed by scanning tunneling microscopy, Science, 245, 1989, 43-45.
  • D. P. Cann, C. A. Randall, T. R. Shrout, Investigation of the dielectric properties of bismuth pyrochlores. Solid State Commun., 100, 1996, 529-534.
  • D. L. Duong, G. H. Han, S. M. Lee, F. Gunes, E. S. Kim, S. T. Kim, H. Kim, Q. H. Ta, K. P. So, S. J. Yoon, S. J. Chae, Y. W. Jo, M. H. Park, S. H. Chae, S. C. Lim, J. Y. Choi, Y. H. Lee, Probing graphene grain boundaries with optical microscopy, Nature, 490, 2012, 235-240.
  • D. Jariwala, A. Srivastava, P. M. Ajayan, Graphene Synthesis and Band Gap Opening, Journal of Nanoscience and Nanotechnology, 11, 2011, 6621-6641.
  • D. Depla, S. Mahieu, J. E. Greene, Handbook of Deposition Technologies for Films and Coatings - Chapter 5, 3rd edition, Science, Applications and Technology, 2009.
  • D. B. Farmer, R. G. Mojarad, V. Perebeinos, Y. M. Lin, G. S. Tulevski, J. C. Tsang, P. Avouris, Chemical doping and electron-hole conduction asymmetry in graphene devices, Nanoletters, 2009, 9, 388.
  • D. A. Areshkin, D. Gunlycke, C. T. White, Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects, Nano Lett., 2007, 7, 204.
  • C.-J. Xian, S.-G. Yoon, Transparent capacitor for the storage of electric power produced by transparent solar cells, J. Electrochem. Soc., 156, 2009, G180-G183.
  • C.-J. Xian, J.-H. Park, K.-C. Ahn, S.-G. Yoon, Electrical properties of Bi2Mg2/3Nb4/3O7 pyrochlore thin films deposited on Pt and Cu metal at low temperatures for embedded capacitor applications, Appl. Phys. Lett., 90, 2007, 052903.
  • C. Lee, X. Wei, J. W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science 2008, 321, 385-388.
  • C. Gomez-Navarro, M. Burghard, K. Kern. Elastic properties of chemically derived single graphene sheets, Nano Letters, 2008, 8, 2045-2049.
  • C. Di, D. Wei, G. Yu, Y. Liu, Y. Guo, D. Zhu, Patterned Graphene as Source/Drain Electrodes for Bottom-Contact Organic Field-Effect Transistors, Adv. Mater., 20, 2008, 3289-3293.
  • Blochl, P. E. Projector augmented-wave method, Phys. Rev. B, 50, 1994, 17953-17979.
  • B. Obradovic, R. Kotlyar, F. Heinz, P.Matagne, T. Rakshit, M. D. Giles, M. A. Stettler, Analysis of graphene nanoribbons as a channel material for field-effect transistors, Appl. Phys. Lett., 2006, 88, 142102.
  • B. Jang, C. H. Kim, S. T. Choi, K. S. Kim, K. S. Kim, H. J. Lee, S. Cho, J. H. Ahn, and H. H. Kim, Damage mitigation in roll-to-roll transfer of CVD-graphene to flexible substrates, 2D Mater., 4, 2017, 024002.
  • B. J. Park, J. S. Choi, J. H. Eom, H. Ha, H. Y. Kim, S. Lee, H. Shin, and S. G. Yoon, Defect-free graphene synthesized directly at 150 C via chemical vapor deposition with no transfer, ACS Nano, 12, 2018, 2008-2016.
  • B. J. Park, J. S. Choi, H. S. Kim, H. Y. Kim, J. R. Jeong, H. J. Choi, H. J. Jung, M. W. Jung, K. S. An, S. G. Yoon, Realization of Large-Area Wrinkle-Free Monolayer Graphene, Sci. Rep., 5, 20105, 9610.
  • B. J. Kim, H. Jang, S.-K. Lee, B. H. Hong, J.-H. Ahn, J. H. Cho, High-performance flexible graphene field effect transistors with ion gel gate dielectrics, Nano Lett., 10, 2010, 3464-3466.
  • B. A ssa, N. K. Memon, A. Ali, M. K. Khraisheh, Recent progress in the growth and applications of graphene as a smart material: a review, Frontiers in Materials, 2, 2015, 58.
  • A.K. Geim, K.S. Novoselov, The rise of graphene., Nature Materials. 6 (2007) 183– 191.
  • A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov., K. Watanabe, T. Taniguchi, A. K. Geim, Micrometer-scale ballistic transport in encapsulated graphene at room temperature, Nano Letters, 11, 2011, 2396-2399.
  • A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, R. M. Wallace, The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2, Appl. Phys. Lett., 99, 2011, 122108.
  • A. K. Geim, Graphene: Status and prospects, Science, 2009, 4, 1530–1534.
  • A. K. Geim, A. H. MacDonald, Graphene: Exploring carbon flatland, Physics Today, 2007, 60, 35.
  • A. C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Reviews of Modern Physics, 81, 2009, 109.
  • A. Buchsteiner, A. Lerf, J. Pieper, Water dynamics in graphite oxide investigated with neutron scattering, J. Phys. Chem. B, 110, 2006, 22328-22338.
  • . J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, L. M. K. Vandersypen, Gate-induced insulating state in bilayer graphene devices, Nature Mater., 2008, 7, 151.
  • . G. C. Liang, N. Neophytou, D. E. Nikonov, M. S. Lundstrom, Performance projections for ballistic graphene nanoribbon field-effect transistors, IEEE Trans. Electron. Dev., 2007, 54, 677.