박사

Deep Belief Network에 기반한 Super Learner 앙상블 분류모형 = Classification Model Using Super Learner Ensemble Based on Deep Belief Network

최도연 2019년
논문상세정보
' Deep Belief Network에 기반한 Super Learner 앙상블 분류모형 = Classification Model Using Super Learner Ensemble Based on Deep Belief Network' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 확율(PROBABILITIES), 응용수학(통계학)
  • Super Learner 앙상블
  • dbn
  • deep belief network
  • 분류모형
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
609 0

0.0%

' Deep Belief Network에 기반한 Super Learner 앙상블 분류모형 = Classification Model Using Super Learner Ensemble Based on Deep Belief Network' 의 참고문헌

  • Zou, H. (2006). The adaptive lasso and its oracle properties, Journal of the American Statistical Association , 101, 1418-1429.
  • Zhu, L., Chen, L., Zhao, D., Zhou, J., and Zhang, W. (2017), Emotion recognition from chinese speech for smart affective services using a combination of SVM and DBN, Sensors, 17, 1-14.
  • Zhang, G. P. (2000). Neural networks for classification: A Survey, IEEE Transactions on Systems, Man and Cybernetics Part C, 30, 451-462.
  • Yuan, Y. and Shaw, M. (1995). Induction of fuzzy decision trees, Fuzzy Sets System, 69, 125-139.
  • Yang, X. Lo, D. Xia, X. Zhang, Y. and Sun, J. (2015). Deep learning for just-in-time defect prediction, International Conference on Software Quality, Reliability and Security, 17–26.
  • Xiao, Y., Wu J., Lin, Z., and Zhao X. (2018). A deep learning-based multi-model ensemble method for cancer prediction, Computer Methods and Programs in Biomedicine, 153, 1-9.
  • Wu, L., Yang, Y., and Liu, H. (2013). Nonnegative-lasso and applicationin index tracking, Computational Statistics & Data Analysis, 70, 116-126.
  • Wolpert, D. H. (1992). Stacked generalization, Neural Networks, 5, 241-259.
  • Wang, X., Zhang, W., Zhao, F., Liu, J., Li, P., and Zhang, Q. (2013). Detection of adulteration of sesame and peanut oils via volatiles by GC GC−TOF/MS coupled with principal components analysis and cluster analysis, European Journal of Lipid Science and Technology. 115, 337−347.
  • Vapnik, V. N. (1996). The Nature of Statistical Learning Theory, Springer, New York.
  • Van der Laan, M. J., Polley E. C., and Hubbard A. E. (2007). Super learner, Statistical Applications in Genetics and Molecular Biology, 6, 1-23.
  • Tibshirani, R. (1996): “Regression Shrinkage and Selection via the Lasso,” Journal of the Royal Statistical Society, Series B, 58, 267–288.
  • Shi, P. (2018). Speech emotion recognition based on deep belief network, International Conference on Networking, Sensing and Control.
  • Sha, F., Lin, Y., Saul, L. K., and Lee, D. D. (2007). Multiplicative updates for nonnegative quadratic programming, Neural Computation, 19, 2004-2031.
  • Sewak, M., Vaidya, P., Chan, C. C., and Duan, Z. H. (2007). SVM approach to breast cancer classification. The International Multi-Symposiums on Computer and Computational Sciences, 1, 32-37.
  • Salunkhe, U. R. and Mali, S. N. (2016). Classifier ensemble design for imbalanced data classification: a hybrid approach, Procedia Computer Science, 85, 725-732.
  • Rubinstein, R. Y. and Kroese, D. P. (2004). The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning, Springer, New York.
  • Ramasubramanian, K. and Singh, A. (2016). Machine Learning Using R . Springer, New York.
  • R Development Core Team. (2010). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, URL http://www.R-project.org.
  • Polley, E. C. and van der Laan, M. J. (2010). Super learner in prediction, U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 266.
  • Park, M. Y. and Hastie, T. L. (2007). 1-regularization path algorithm for generalized linear models, Journal of the Royal Statistical Society Series B, 69, 659-677.
  • Newman, D. J., Hettich, S., Blake, C. L., and Merz, C. J. (2017). UCI repository of machine learning databases, URL http://archive.ics.uci.edu/ml/.
  • McDonald, J. W. and Diamond, I. D. (1990). On the fitting of generalized linear models with nonnegativity parameter constraints, Biometrics, 46, 201-206.
  • McCullagh, P. and Nelder, J. (1989). Generalized Linear Models, second edition, CHAPMAN & HALL/CRC, London.
  • Mandal, B. N. and Ma, J. (2016b). nnlasso: Non-Negative Lasso and Elastic Net Penalized Generalized Linear Models, R package version 0.3, URL https://cran.r-project.org/web/packages/nnlasso.
  • Mandal, B. N. and Ma, J. (2016a). l1 regularized multiplicative iterative path algorithm for non-negative generalized linear models, Computational Statistics & Data Analysis, 101, 289-299.
  • Lin, H. W. and Tegmark, M. (2016). Why does deep and cheap learning work so well?, Journal of Statistical Physics, 168, 1223–1247.
  • Lim, J. S., Sohn, J. Y., Sohn, J. T., and Lim D. H. (2013). Breast cancer classification using optimal support vector machine. Journal of The Korean Society of Health Informatics and Statistics, 38, 108-121.
  • Lim, J. S., Oh Y. S., and Lim, D. H. (2014). Bagging support vector machine for improving breast cancer classification, Journal of the Korean Society of Health Informatics and Statistics, 39, 15-24.
  • Lawson, C. L. and Hanson, R. J. (1995). Solving least squares problems, SIAM Review, 18, 518-520.
  • Kuhn, M. (2018). caret: Classification and Regression Training. URL https://cran.r-project.org/web/packages/caret. R package version 6.0-81.
  • Kuhn, M. (2008). Building predictive models in R using the caret package, Journal of Statistical Software, 28, 1-26.
  • Kitbumrungrat, K. (2012). Comparison logistic regression and discriminant analysis in classification groups for breast cancer, International Journal of Computer Science and Network Security, 12, 111-115.
  • Kim, J. Y. (2017). Comparison of Classical Classification Methods with Deep Learning Method, Master’s Thesis, Ewha Womans University.
  • Kamei, Y., Shihab, E., Adams, B., and Hassan, A. E. Mockus, A. Sinha, A. and Ubayashi, N. (2013). A large-scale empirical study of just-in-time quality assurance, IEEE Transactions on Software Engineering, 39, 757–773.
  • Igel, C. and Husken, M. (2003). Empirical evaluation of the improved Rprop learning algorithms, Neurocomputing, 50, 105–123
  • Huang, C., Gong, W., Fu, W., and Feng, D. (2014). A research of speech emotion recognition based on deep belief network and SVM, Mathematical Problems in Engineering, 2014, 1-7.
  • Hinton, G. E., Srivastave, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R. (2012). Improving neural networks by preventing coadaptation of feature detectors. Technical Report, arXiv:1207.0580.
  • Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks, Science, 313, 504-507.
  • Gupta, S., Kumar, D., and Sharma, A. (2011). Data mining classification techniques applied for breast cancer diagnosis and prognosis, Indian Journal of Computer Science and Engineering, 2, 188-195.
  • Franc, V., Hlavac, V., and Navara, M. (2005). Sequential coordinate-wise algorithm for the non-negative least squares problem, Lecture Notes in Computer Science, 3691, 407-414.
  • Fiuzy, M., Haddadnia, J., Mollania, N., Hashemian, M., and Hassanpour, K. (2012). Introduction of a new diagnostic method for breast cancer based on fine needle aspiration (FNA) test data and combining intelligent systems, Iranian Journal of Cancer Prevention, 5, 169-177.
  • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems, Annals of Eugenics, 7, 111-132.
  • Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96, 1348-1360.
  • Drees, M. (2013). Implementierung und Analyse von tiefen Architekturen in R, Master’s Thesis, University of Fachhochschule Dortmund.
  • Cook, N. R. (2008). Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve, Clinical Chemistry, 54, 17-23.
  • Choi, D. Y., Jeong, K. M., and Lim, D. H. (2018). Breast cancer classification using deep Learning-based ensemble, Journal of Health Informatics and Statistics, 43, 140-147.
  • Cho, K., Ilin, A., and Raiko, T. (2011). Improved learning of Gaussian-bernoulli restricted Boltzmann machines, In International Conference on Artificial Neural Networks, 6791, 10–17.
  • Chao, H., Song, C., Lu, B. Y., and Liu, Y. L. (2019). Feature extraction based on DBN-SVM for tone recognition, Journal of Information Processing Systems, 15, 91-99.
  • Breiman, L., Friedman J. H, Olshen, R. A, and Stone, C. J. (1984). Classification and Regression Trees, Chapman & Hall/CRC, London.
  • Breiman, L. (1996b). Bagging predictors, Machine Learning, 24, 123-140.
  • Breiman, L. (1996a). Stacked regression, Machine Learning, 24, 49-64.
  • Bengio, Y. et al. (2009). Learning deep architectures for AI, Foundations and trends in Machine Learning, 2, 1–127.