박사

효과적인 담수화를 위한 축전식 탈염장치(CDI)를 이용한 탄소 소재 기반 나노복합재 개발

논문상세정보
' 효과적인 담수화를 위한 축전식 탈염장치(CDI)를 이용한 탄소 소재 기반 나노복합재 개발' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Activated carbon
  • Capacitive deionization
  • Mixed transition metal oxides
  • Water desalination
  • nanofibers
  • nitrogen-doping
  • 나노섬유
  • 물 담수화
  • 용량 성 탈 이온화
  • 질소도핑
  • 혼합 전이 금속 산화물
  • 활성탄
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
322 0

0.0%

' 효과적인 담수화를 위한 축전식 탈염장치(CDI)를 이용한 탄소 소재 기반 나노복합재 개발' 의 참고문헌

  • Zubizarreta, L., et al., Tailoring the textural properties of activated carbon xerogels by chemical activation with KOH. Microporous and Mesoporous Materials, 2008. 115(3): p. 480-490.
  • Zou, L., et al., Using mesoporous carbon electrodes for brackish water desalination. Water research, 2008. 42(8): p. 2340-2348.
  • Zhu, Y., et al., Carbon-based supercapacitors produced by activation of graphene. Science, 2011. 332(6037): p. 1537-1541.
  • Zhu, S., et al., Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angewandte Chemie International Edition, 2013. 52(14): p. 3953-3957.
  • Zhou, Y. and R.S. Tol, Evaluating the costs of desalination and water transport. Water resources research, 2005. 41(3).
  • Zhou, L., D. Zhao, and X.W. Lou, Double- Shelled CoMn2O4 Hollow Microcubes as High- Capacity Anodes for Lithium- Ion Batteries. Advanced Materials, 2012. 24(6): p. 745-748.
  • Zhong, M., et al., Effect of reduced graphene oxide on the properties of an activated carbon cloth/polyaniline flexible electrode for supercapacitor application. Journal of Power Sources, 2012. 217: p. 6-12.
  • Zhao, Y., et al., Anionic polymer compound bioflocculant as a coagulant aid with aluminum sulfate and titanium tetrachloride. Bioresource technology, 2012. 108: p. 45-54.
  • Zhao, S., et al., High capacity and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization. Applied Surface Science, 2016. 369: p. 460-469.
  • Zhao, S., et al., Creating 3D Hierarchical Carbon Architectures with Micro-, Meso-, and Macropores via a Simple Self-Blowing Strategy for a Flowthrough Deionization Capacitor. ACS Applied Materials & Interfaces, 2016. 8(28): p. 18027-18035.
  • Zhao, R., et al., Time-dependent ion selectivity in capacitive charging of porous electrodes. Journal of colloid and interface science, 2012. 384(1): p. 38-44.
  • Zhao, R., et al., Optimization of salt adsorption rate in membrane capacitive deionization. Water research, 2013. 47(5): p. 1941-1952.
  • Zhao, R., P. Biesheuvel, and A. Van der Wal, Energy consumption and constant current operation in membrane capacitive deionization. Energy & Environmental Science, 2012. 5(11): p. 9520-9527.
  • Zhang, L.L. and X. Zhao, Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 2009. 38(9): p. 2520-2531.
  • Zhang, L. and G. Shi, Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. The Journal of Physical Chemistry C, 2011. 115(34): p. 17206-17212.
  • Zhang, G., et al., Formation of ZnMn2O4 ball- in- ball hollow microspheres as a high- performance anode for lithium- Ion batteries. Advanced materials, 2012. 24(34): p. 4609-4613.
  • Zhang, D., et al., Preparation and desalination performance of multiwall carbon nanotubes. Materials Chemistry and Physics, 2006. 97(2-3): p. 415- 419.
  • Zhang, D., et al., Influence of carbonization of hot-pressed carbon nanotube electrodes on removal of NaCl from saltwater solution. Materials chemistry and physics, 2006. 96(1): p. 140-144.
  • Zhang, D., et al., Enhanced capacitive deionization performance of graphene/carbon nanotube composites. Journal of Materials Chemistry, 2012. 22(29): p. 14696-14704.
  • Zhang, D., et al., Enhanced capacitive deionization of graphene/mesoporous carbon composites. Nanoscale, 2012. 4(17): p. 5440-5446.
  • Zhan, Y., et al., Carbon nanotube–chitosan composite electrodes for electrochemical removal of Cu (II) ions. Journal of Alloys and Compounds, 2011. 509(18): p. 5667-5671.
  • Zhai, X., et al., Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chemical Communications, 2012. 48(64): p. 7955-7957.
  • Zeng, Z., J. Liu, and H.H. Savenije, A simple approach to assess water scarcity integrating water quantity and quality. Ecological indicators, 2013. 34: p. 441-449.
  • Zan, L., et al., Photocatalysis effect of nanometer TiO 2 and TiO 2-coated ceramic plate on Hepatitis B virus. Journal of Photochemistry and Photobiology B: Biology, 2007. 86(2): p. 165-169.
  • Yuen, F.K. and B. Hameed, Recent developments in the preparation and regeneration of activated carbons by microwaves. Advances in colloid and interface science, 2009. 149(1-2): p. 19-27.
  • Yuan, C., et al., Mixed transition- metal oxides: design, synthesis, and energyrelated applications. Angewandte Chemie International Edition, 2014. 53(6): p. 1488-1504.
  • Yu, Z., et al., Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 2015. 8(3): p. 702-730.
  • Ying, T.-Y., et al., Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel. Journal of colloid and interface science, 2002. 250(1): p. 18-27.
  • Yin, H., et al., Three- dimensional graphene/metal oxide nanoparticle hybrids for high- performance capacitive deionization of saline water. Advanced materials, 2013. 25(43): p. 6270-6276.
  • Yeh, C.-L., et al., Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio. Desalination, 2015. 367: p. 60-68.
  • Yasin, A.S., et al., ZrO 2 nanofibers/activated carbon composite as a novel and effective electrode material for the enhancement of capacitive deionization performance. RSC Advances, 2017. 7(8): p. 4616-4626.
  • Yasin, A.S., et al., Influence of Ti x Zr (1− x) O 2 nanofibers composition on the photocatalytic activity toward organic pollutants degradation and water splitting. Ceramics International, 2015. 41(9): p. 11876-11885.
  • Yasin, A.S., et al., Facile synthesis of TiO 2/ZrO 2 nanofibers/nitrogen codoped activated carbon to enhance the desalination and bacterial inactivation via capacitive deionization. Scientific reports, 2018. 8(1): p. 541.
  • Yasin, A.S., et al., Fabrication of N-doped &SnO2-incorporated activated carbon to enhance desalination and bio-decontamination performance for capacitive deionization. Journal of Alloys and Compounds, 2017. 729: p. 764-775.
  • Yasin, A.S., et al., Enhanced desalination performance of capacitive deionization using zirconium oxide nanoparticles-doped graphene oxide as a novel and effective electrode. Separation and Purification Technology, 2016. 171: p. 34-43.
  • Yasin, A.S., et al., Design of novel electrode for capacitive deionization using electrospun composite titania/zirconia nanofibers doped-activated carbon. Materials Letters, 2018. 213: p. 62-66.
  • Yang, Z.Y., et al., Sponge- templated preparation of high surface area graphene with ultrahigh capacitive deionization performance. Advanced Functional Materials, 2014. 24(25): p. 3917-3925.
  • Yang, K.-L., S. Yiacoumi, and C. Tsouris, Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry. Journal of Electroanalytical Chemistry, 2003. 540: p. 159-167.
  • Yang, J., et al., Functionalized N-doped porous carbon nanofiber webs for a lithium–sulfur battery with high capacity and rate performance. The Journal of Physical Chemistry C, 2014. 118(4): p. 1800-1807.
  • Yang, J., et al., Development of novel MnO 2/nanoporous carbon composite electrodes in capacitive deionization technology. Desalination, 2011. 276(1): p. 199-206.
  • Yang, J., L. Zou, and H. Song, Preparing MnO 2/PSS/CNTs composite electrodes by layer-by-layer deposition of MnO 2 in the membrane capacitive deionisation. Desalination, 2012. 286: p. 108-114.
  • Yang, J. and L. Zou, Recycle of calcium waste into mesoporous carbons as sustainable electrode materials for capacitive deionization. Microporous and Mesoporous Materials, 2014. 183: p. 91-98.
  • Yang, C.-M., et al., Capacitive deionization of NaCl solution with carbon aerogel-silicagel composite electrodes. Desalination, 2005. 174(2): p. 125- 133.
  • Yan, C., L. Zou, and R. Short, Polyaniline-modified activated carbon electrodes for capacitive deionisation. Desalination, 2014. 333(1): p. 101- 106.
  • Xu, Y., et al., Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS nano, 2010. 4(12): p. 7358-7362.
  • Xu, Y., et al., Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS nano, 2010. 4(7): p. 4324-4330.
  • Xu, Y., et al., Holey graphene frameworks for highly efficient capacitive energy storage. Nature communications, 2014. 5: p. 4554.
  • Xu, Y., et al., Flexible solid-state supercapacitors based on threedimensional graphene hydrogel films. ACS nano, 2013. 7(5): p. 4042-4049.
  • Xu, X., et al., Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance. Scientific reports, 2015. 5.
  • Xu, X., et al., Facile synthesis of novel graphene sponge for high performance capacitive deionization. Scientific reports, 2015. 5: p. srep08458.
  • Xu, X., et al., Carbon spheres with hierarchical micro/mesopores for water desalination by capacitive deionization. Journal of Materials Chemistry A, 2016. 4(41): p. 16094-16100.
  • Xu, P., et al., Treatment of brackish produced water using carbon aerogelbased capacitive deionization technology. Water research, 2008. 42(10-11): p. 2605-2617.
  • Xiang, Q., J. Yu, and M. Jaroniec, Nitrogen and sulfur co-doped TiO 2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity. Physical Chemistry Chemical Physics, 2011. 13(11): p. 4853-4861.
  • Wu, Z.S., et al., Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nature communications, 2013. 4: p. 2487.
  • Wu, Z.-S., et al., Graphene/metal oxide composite electrode materials for energy storage. Nano Energy, 2012. 1(1): p. 107-131.
  • Wu, T., et al., Asymmetric capacitive deionization utilizing nitric acid treated activated carbon fiber as the cathode. Electrochimica Acta, 2015. 176: p. 426-433.
  • Worsley, M.A., et al., Synthesis of graphene aerogel with high electrical conductivity. Journal of the American Chemical Society, 2010. 132(40): p. 14067-14069.
  • Wong, K.T., et al., Phenyl-functionalized magnetic palm-based powdered activated carbon for the effective removal of selected pharmaceutical and endocrine-disruptive compounds. Chemosphere, 2016. 152: p. 71-80.
  • Wimalasiri, Y. and L. Zou, Carbon nanotube/graphene composite for enhanced capacitive deionization performance. Carbon, 2013. 59: p. 464- 471.
  • Wen, X., et al., Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization. Journal of Materials Chemistry A, 2013. 1(39): p. 12334-12344.
  • Welgemoed, T. and C. Schutte, Capacitive deionization technology™: an alternative desalination solution. Desalination, 2005. 183(1-3): p. 327-340.
  • Welgemoed, T. and C. Schutte, Capacitive deionization technology™: an alternative desalination solution. Desalination, 2005. 183(1): p. 327-340.
  • Wang, Z., et al., Nitrogen-doped porous carbon derived from a bimetallic metal–organic framework as highly efficient electrodes for flow-through deionization capacitors. Journal of Materials Chemistry A, 2016. 4(28): p. 10858-10868.
  • Wang, Z., et al., In situ expanding pores of dodecahedron-like carbon frameworks derived from MOFs for enhanced capacitive deionization. ACS Applied Materials & Interfaces, 2017.
  • Wang, Y.-H., et al., Dispersing WO3 in carbon aerogel makes an outstanding supercapacitor electrode material. Carbon, 2014. 69: p. 287-293.
  • Wang, Y., et al., Freestanding 3D graphene/cobalt sulfide composites for supercapacitors and hydrogen evolution reaction. RSC Advances, 2015. 5(9): p. 6886-6891.
  • Wang, X., et al., Preparation of activated mesoporous carbons for electrosorption of ions from aqueous solutions. Journal of Materials Chemistry, 2010. 20(22): p. 4602-4608.
  • Wang, L., et al., Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes. Journal of Materials Chemistry, 2011. 21(45): p. 18295-18299.
  • Wang, H.-J., et al., Temperature-induced hydrophobic-hydrophilic transition observed by water adsorption. Science, 2008. 322(5898): p. 80-83.
  • Wang, H., et al., In situ creating interconnected pores across 3D graphene architectures and their application as high performance electrodes for flowthrough deionization capacitors. Journal of Materials Chemistry A, 2016. 4(13): p. 4908-4919.
  • Wang, H., et al., Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization. Journal of Materials Chemistry A, 2014. 2(13): p. 4739-4750.
  • Wang, G., et al., Highly mesoporous activated carbon electrode for capacitive deionization. Separation and Purification Technology, 2013. 103: p. 216-221.
  • Wang, G., et al., Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization. Journal of Materials Chemistry, 2012. 22(41): p. 21819-21823.
  • Wang, G., et al., Electrospun porous hierarchical carbon nanofibers with tailored structures for supercapacitors and capacitive deionization. New Journal of Chemistry, 2016. 40(4): p. 3786-3792.
  • Wang, G., et al., Activated carbon nanofiber webs made by electrospinning for capacitive deionization. Electrochimica Acta, 2012. 69: p. 65-70.
  • Wang, C., et al., SnO2 nanostructures-TiO2 nanofibers heterostructures: controlled fabrication and high photocatalytic properties. Inorganic Chemistry, 2009. 48(15): p. 7261-7268.
  • Voutchkov, N. and R. Semiat, Seawater desalination. Advanced membrane technology and applications, 2008: p. 47-86.
  • Ummel, K. and D. Wheeler, Desert power: the economics of solar thermal electricity for Europe, North Africa, and the Middle East. Center for Global Development Working Paper, 2008(156).
  • Tsouris, C., et al., Mesoporous carbon for capacitive deionization of saline water. Environmental science & technology, 2011. 45(23): p. 10243-10249.
  • Trieb, F., et al., AQUA-CSP: Concentrating Solar Power for Seawater Desalination. German Aerospace Center (DLR), Study for the German Ministry of Environment, Nature Conservation and Nuclear Safety, Stuttgart, 2007.
  • Tran, T.D., J. Farmer, and R. Pekala, Carbon aerogels and their applications in supercapacitors and electrosorption processes. Chemistry & Materials Science Dept., Lawrence Livermore National Laboratory, Livermore, CA, 2003. 94550.
  • Tofighy, M.A. and T. Mohammadi, Salty water desalination using carbon nanotube sheets. Desalination, 2010. 258(1): p. 182-186.
  • Tien, T., Electrical Conductivity in the System ZrO2—CaZrO3. Journal of the American Ceramic Society, 1964. 47(9): p. 430-433.
  • Thangavel, K., et al., Structural, morphological and optical properties of ZnO nano-fibers. Superlattices and Microstructures, 2016. 90: p. 45-52.
  • Teng, H., T.-S. Yeh, and L.-Y. Hsu, Preparation of activated carbon from bituminous coal with phosphoric acid activation. Carbon, 1998. 36(9): p. 1387-1395.
  • Tang, W., et al., Various cell architectures of capacitive deionization: Recent advances and future trends. Water research, 2018.
  • Tang, K., et al., Seawater desalination by over-potential membrane capacitive deionization: Opportunities and hurdles. Chemical Engineering Journal, 2019. 357: p. 103-111.
  • Tanaka, Y., Mass transport and energy consumption in ion-exchange membrane electrodialysis of seawater. Journal of Membrane Science, 2003. 215(1-2): p. 265-279.
  • Tanaka, H., T. Nosoko, and T. Nagata, Parametric investigation of a basintype- multiple-effect coupled solar still. Desalination, 2000. 130(3): p. 295- 304.
  • Tan, Z.a., et al., High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer. Scientific reports, 2014. 4: p. 4691.
  • Tan, I., A. Ahmad, and B. Hameed, Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies. Desalination, 2008. 225(1-3): p. 13-28.
  • Suss, M.E., et al., Capacitive desalination with flow-through electrodes. Energy & Environmental Science, 2012. 5(11): p. 9511-9519.
  • Suss, M., et al., Water desalination via capacitive deionization: what is it and what can we expect from it? Energy & Environmental Science, 2015. 8(8): p. 2296-2319.
  • Sung-Suh, H.M., et al., Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO 2 under visible and UV light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 163(1): p. 37-44.
  • Sunada, K., et al., Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environmental Science & Technology, 1998. 32(5): p. 726- 728.
  • Sun, L., et al., Nitrogen- Doped Porous Graphitic Carbon as an Excellent Electrode Material for Advanced Supercapacitors. Chemistry–A European Journal, 2014. 20(2): p. 564-574.
  • Sui, Z., et al., Easy and green synthesis of reduced graphite oxide-based hydrogels. Carbon, 2011. 49(13): p. 4314-4321.
  • Strickler, D. and W. Carlson, Electrical conductivity in the ZrO2- rich region of several M2O3—ZrO2 systems. Journal of the American Ceramic Society, 1965. 48(6): p. 286-289.
  • Stoller, M.D., et al., Interfacial capacitance of single layer graphene. Energy & Environmental Science, 2011. 4(11): p. 4685-4689.
  • Stoller, M.D., et al., Graphene-based ultracapacitors. Nano letters, 2008. 8(10): p. 3498-3502.
  • Stoeckli, F., et al., Microporosity in carbon blacks. Carbon, 2002. 40(2): p. 211-215.
  • Smirnova, A., et al., Novel carbon aerogel-supported catalysts for PEM fuel cell application. International journal of hydrogen energy, 2005. 30(2): p. 149-158.
  • Sheng, K.-x., et al., High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon Materials, 2011. 26(1): p. 9-15.
  • Shannon, M.A., et al., Science and technology for water purification in the coming decades. Nature, 2008. 452(7185): p. 301-310.
  • Shaffer, D.L., et al., Forward osmosis: where are we now? Desalination, 2015. 356: p. 271-284.
  • Seo, S.-J., et al., Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water research, 2010. 44(7): p. 2267-2275.
  • Seema, H., et al., Graphene–SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight. Nanotechnology, 2012. 23(35): p. 355705.
  • Saud, P.S., et al., Carbon quantum dots anchored TiO2 nanofibers: Effective photocatalyst for waste water treatment. Ceramics International, 2015. 41(9): p. 11953-11959.
  • Saquing, C.D., et al., Preparation of platinum/carbon aerogel nanocomposites using a supercritical deposition method. The journal of physical chemistry B, 2004. 108(23): p. 7716-7722.
  • Sandia, D., water purification roadmap–a report of the executive committee, US Department of the Interior, Bureau of Reclamation and Sandia National Laboratories. 2003, DWPR Program Report.
  • Saha, S., et al., Investigation of band structure and electrochemical properties of h-BN/rGO composites for asymmetric supercapacitor applications. Materials Chemistry and Physics, 2017.
  • Sadrzadeh, M., A. Kaviani, and T. Mohammadi, Mathematical modeling of desalination by electrodialysis. Desalination, 2007. 206(1-3): p. 538-546.
  • Sadrzadeh, M. and T. Mohammadi, Sea water desalination using electrodialysis. Desalination, 2008. 221(1): p. 440-447.
  • Region, M., Combined Solar Power and Desalination Plants: Techno- Economic Potential in Mediterranean Partner Countries. 2009.
  • Rath, T. and P.P. Kundu, Reduced graphene oxide paper based nanocomposite materials for flexible supercapacitors. RSC Advances, 2015. 5(34): p. 26666-26674.
  • Rasines, G., et al., N-doped monolithic carbon aerogel electrodes with optimized features for the electrosorption of ions. Carbon, 2015. 83: p. 262- 274.
  • Rao, C.e.N.e.R., et al., Graphene: the new two- dimensional nanomaterial. Angewandte Chemie International Edition, 2009. 48(42): p. 7752-7777.
  • Raluy, G., L. Serra, and J. Uche, Life cycle assessment of MSF, MED and RO desalination technologies. Energy, 2006. 31(13): p. 2361-2372.
  • Raj, D.V., et al., Electrochemical performance of SnO2 hexagonal nanoplates. Ionics, 2014. 20(3): p. 335-346.
  • Porada, S., et al., Water desalination using capacitive deionization with microporous carbon electrodes. ACS applied materials & interfaces, 2012. 4(3): p. 1194-1199.
  • Porada, S., et al., Review on the science and technology of water desalination by capacitive deionization. Progress in materials science, 2013. 58(8): p. 1388-1442.
  • Porada, S., et al., Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy & Environmental Science, 2013. 6(12): p. 3700-3712.
  • Porada, S., et al., Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation. Journal of Materials Chemistry A, 2014. 2(24): p. 9313-9321.
  • Pilon, L., H. Wang, and A. d’Entremont, Recent advances in continuum modeling of interfacial and transport phenomena in electric double layer capacitors. Journal of The Electrochemical Society, 2015. 162(5): p. A5158- A5178.
  • Piccirillo, C., et al., Light induced antibacterial activity and photocatalytic properties of Ag/Ag 3 PO 4-based material of marine origin. Journal of Photochemistry and Photobiology A: Chemistry, 2015. 296: p. 40-47.
  • Peng, Z., et al., High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization. Journal of Materials Chemistry, 2012. 22(14): p. 6603-6612.
  • Peng, Z., et al., Comparative electroadsorption study of mesoporous carbon electrodes with various pore structures. The Journal of Physical Chemistry C, 2011. 115(34): p. 17068-17076.
  • Pekala, R., et al., Carbon aerogels for electrochemical applications. Journal of non-crystalline solids, 1998. 225: p. 74-80.
  • Pekala, R., et al., Aerogels derived from multifunctional organic monomers. Journal of Non-Crystalline Solids, 1992. 145: p. 90-98.
  • Park, N., C.W. Jang, and R. Babu, Development of minimum-salinity feedwater for reduction of unit production cost of reverse-osmosis desalination plants. Journal of Korea Water Resources Association, 2016. 49(5): p. 431-438.
  • Park, K.-K., et al., Development of a carbon sheet electrode for electrosorption desalination. Desalination, 2007. 206(1-3): p. 86-91.
  • Park, K.-H. and D.-H. Kwak, Electrosorption and electrochemical properties of activated-carbon sheet electrode for capacitive deionization. Journal of Electroanalytical Chemistry, 2014. 732: p. 66-73.
  • Park, J.Y., I.H. Lee, and G.N. Bea, Optimization of the electrospinning conditions for preparation of nanofibers from polyvinylacetate (PVAc) in ethanol solvent. Journal of Industrial and Engineering Chemistry, 2008. 14(6): p. 707-713.
  • Park, J.-S., et al., Removal of hardness ions from tap water using electromembrane processes. Desalination, 2007. 202(1-3): p. 1-8.
  • Park, B.-H. and J.-H. Choi, Improvement in the capacitance of a carbon electrode prepared using water-soluble polymer binder for a capacitive deionization application. Electrochimica Acta, 2010. 55(8): p. 2888-2893.
  • Papapetrou, M., C. Epp, and E. Tzen, Autonomous desalination units based on renewable energy systems-a review of representative installations worldwide, in Solar Desalination for the 21st Century. 2007, Springer. p. 343-353.
  • Pant, H.R., et al., Photocatalytic and antibacterial properties of a TiO 2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles. Journal of hazardous materials, 2011. 189(1): p. 465-471.
  • Pant, H.R., et al., Antibacterial and photocatalytic properties of Ag/TiO 2/ZnO nano-flowers prepared by facile one-pot hydrothermal process. Ceramics International, 2013. 39(2): p. 1503-1510.
  • Pant, B., et al., Characterization and antibacterial properties of Ag NPs loaded nylon-6 nanocomposite prepared by one-step electrospinning process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012. 395: p. 94-99.
  • Ozdemir, I., et al., Preparation and characterization of activated carbon from grape stalk by zinc chloride activation. Fuel Processing Technology, 2014. 125: p. 200-206.
  • Ortiz, J., et al., Brackish water desalination by electrodialysis: batch recirculation operation modeling. Journal of Membrane Science, 2005. 252(1-2): p. 65-75.
  • Organization, W.H., European standards for drinking-water. European standards for drinking-water., 1970.
  • Oren, Y., Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review). Desalination, 2008. 228(1-3): p. 10-29.
  • Oren, Y., Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review). Desalination, 2008. 228(1): p. 10-29.
  • Oren, Y. and A. Soffer, Water desalting by means of electrochemical parametric pumping. Journal of Applied Electrochemistry, 1983. 13(4): p. 473-487.
  • Oren, Y. and A. Soffer, Water desalting by means of electrochemical parametric pumping. II. Separation properties of a multistage column. Journal of Applied Electrochemistry, 1983. 13(4): p. 489-505.
  • Oren, Y. and A. Soffer, Electrochemical parametric pumping. Journal of the Electrochemical Society, 1978. 125(6): p. 869-875.
  • Oladunni, J., et al., A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization: from theory to practice. Separation and Purification Technology, 2018.
  • Oh, H.-J., et al., Nanoporous activated carbon cloth for capacitive deionization of aqueous solution. Thin Solid Films, 2006. 515(1): p. 220-225.
  • Obaid, M., et al., Under-oil superhydrophilic wetted PVDF electrospun modified membrane for continuous gravitational oil/water separation with outstanding flux. Water research, 2017. 123: p. 524-535.
  • Noked, M., et al., The rate-determining step of electroadsorption processes into nanoporous carbon electrodes related to water desalination. The Journal of Physical Chemistry C, 2009. 113(51): p. 21319-21327.
  • Niu, Z., et al., A leavening strategy to prepare reduced graphene oxide foams. Advanced Materials, 2012. 24(30): p. 4144-4150.
  • Niu, R., et al., An insight into the improved capacitive deionization performance of activated carbon treated by sulfuric acid. Electrochimica Acta, 2015. 176: p. 755-762.
  • Ning, X., et al., High performance nitrogen-doped porous graphene/carbon frameworks for supercapacitors. Journal of Materials Chemistry A, 2014. 2(23): p. 8859-8867.
  • Niltharach, A., et al., Structural characterizations of sol–gel synthesized TiO2 and Ce/TiO2 nanostructures. Physica B: Condensed Matter, 2012. 407(15): p. 2915-2918.
  • Nieto, A., B. Boesl, and A. Agarwal, Multi-scale intrinsic deformation mechanisms of 3D graphene foam. Carbon, 2015. 85: p. 299-308.
  • Nie, C., et al., Electrosorption of different cations and anions with membrane capacitive deionization based on carbon nanotube/nanofiber electrodes and ion-exchange membranes. Desalination and Water Treatment, 2011. 30(1-3): p. 266-271.
  • Nicot, J.-P. and B. Gross, Self-sealing evaporation ponds for small inland desalination facilities and containment equivalence concepts in Texas. Desalination and Water Treatment, 2009. 3(1-3): p. 29-42.
  • Nair, R.R., et al., Fine structure constant defines visual transparency of graphene. Science, 2008. 320(5881): p. 1308-1308.
  • Nadakatti, S., M. Tendulkar, and M. Kadam, Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology. Desalination, 2011. 268(1-3): p. 182-188.
  • Nadakatti, S., M. Tendulkar, and M. Kadam, Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology. Desalination, 2011. 268(1): p. 182-188.
  • NHMRC, A., National water quality management strategy: Australian drinking water guidelines. National Health and Medical Research Council and Agricultural and Resource Management Council of Australia and New Zealand: Canberra, 1996.
  • Myint, M.T.Z. and J. Dutta, Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach. Desalination, 2012. 305: p. 24-30.
  • Murphy, G.W., Electrochemical demineralization of water with carbon electrodes. 1965.
  • Motlak, M., et al., High-efficiency dye-sensitized solar cells based on nitrogen and graphene oxide co-incorporated TiO 2 nanofibers photoelectrode. Chemical Engineering Journal, 2015. 268: p. 153-161.
  • Mossad, M., W. Zhang, and L. Zou, Using capacitive deionisation for inland brackish groundwater desalination in a remote location. Desalination, 2013. 308: p. 154-160.
  • Mossad, M. and L. Zou, A study of the capacitive deionisation performance under various operational conditions. Journal of hazardous materials, 2012. 213: p. 491-497.
  • Moreno-Castilla, C. and F. Maldonado-H dar, Carbon aerogels for catalysis applications: An overview. Carbon, 2005. 43(3): p. 455-465.
  • Mohamed, I.M., et al., Nitrogen-doped&SnO2-incoportaed TiO2 nanofibers as novel and effective photoanode for enhanced efficiency dye-sensitized solar cells. Chemical Engineering Journal, 2016. 304: p. 48-60.
  • Mohamed, I.M., et al., Nitrogen-doped&SnO 2-incoportaed TiO 2 Nanofibers as Novel and Effective Photoanode for Enhanced Efficiency Dyesensitized Solar Cells. Chemical Engineering Journal, 2016.
  • Mohamed, I.M., et al., Electrocatalytic behavior of a nanocomposite of Ni/Pd supported by carbonized PVA nanofibers towards formic acid, ethanol and urea oxidation: A physicochemical and electro-analysis study. Applied Surface Science, 2018. 435: p. 122-129.
  • Mohamed, I.M., et al., Efficiency enhancement of dye-sensitized solar cells by use of ZrO 2-doped TiO 2 nanofibers photoanode. Journal of colloid and interface science, 2016. 476: p. 9-19.
  • Mohamed, I.M., et al., Design of an efficient photoanode for dye-sensitized solar cells using electrospun one-dimensional GO/N-doped nanocomposite SnO2/TiO2. Applied Surface Science, 2017. 400: p. 355-364.
  • Mohamed, I.M., et al., Design of an efficient photoanode for dye-sensitized solar cells using electrospun one-dimensional GO/N-doped nanocomposite SnO 2/TiO 2. Applied Surface Science, 2016.
  • Miller, S., H. Shemer, and R. Semiat, Energy and environmental issues in desalination. Desalination, 2015. 366: p. 2-8.
  • Mezher, T., et al., Techno-economic assessment and environmental impacts of desalination technologies. Desalination, 2011. 266(1-3): p. 263-273.
  • Metke, T., et al., Particulate-free porous silicon networks for efficient capacitive deionization water desalination. Scientific reports, 2016. 6: p. 24680.
  • Meng, W., et al., Ti atomic bonding environment in Ti-containing hydrocarbon coatings. Journal of Applied Physics, 2000. 88(5): p. 2415-2422.
  • McGovern, R.K., On the potential of forward osmosis to energetically outperform reverse osmosis desalination. Journal of Membrane Science, 2014. 469: p. 245-250.
  • Mayes, R.T., et al., Hierarchical ordered mesoporous carbon from phloroglucinol-glyoxal and its application in capacitive deionization of brackish water. Journal of Materials Chemistry, 2010. 20(39): p. 8674-8678.
  • Mauter, M.S. and M. Elimelech, Environmental applications of carbonbased nanomaterials. Environmental Science & Technology, 2008. 42(16): p. 5843-5859.
  • Ma, Y., et al., Synthesis and characterization of thermally stable Sm, N codoped TiO 2 with highly visible light activity. Journal of Hazardous Materials, 2010. 182(1): p. 386-393.
  • Luo, F., et al., A power free electrodialysis (PFED) for desalination. Desalination, 2017. 404: p. 138-146.
  • Luk č, J., et al., Influence of Zr as TiO2 doping ion on photocatalytic degradation of 4-chlorophenol. Applied Catalysis B: Environmental, 2007. 74(1-2): p. 83-91.
  • Luk č, J., et al., Influence of Zr as TiO 2 doping ion on photocatalytic degradation of 4-chlorophenol. Applied Catalysis B: Environmental, 2007. 74(1): p. 83-91.
  • Long, C., et al., Nitrogen- Doped Carbon Networks for High Energy Density Supercapacitors Derived from Polyaniline Coated Bacterial Cellulose. Advanced Functional Materials, 2014. 24(25): p. 3953-3961.
  • Loeb, S., Sea water demineralization by means of an osmotic membrane. Adv Chem Ser, 1962. 38: p. 117-132.
  • Liu, Z., et al., Effect of hydrogen on the mesopore development of pitch-based spherical activated carbon containing iron during activation by steam. Carbon, 1999. 37(12): p. 2063-2066.
  • Liu, Y.-H., et al., Electrodeposited manganese dioxide/activated carbon composite as a high-performance electrode material for capacitive deionization. ACS Sustainable Chemistry & Engineering, 2016. 4(9): p. 4762-4770.
  • Liu, Y., et al., Ultra-thin carbon nanofiber networks derived from bacterial cellulose for capacitive deionization. Journal of Materials Chemistry A, 2015. 3(16): p. 8693-8700.
  • Liu, Y., et al., Review on carbon-based composite materials for capacitive deionization. RSC Advances, 2015. 5(20): p. 15205-15225.
  • Liu, Y., et al., Porous carbon spheres via microwave-assisted synthesis for capacitive deionization. Electrochimica Acta, 2015. 151: p. 489-496.
  • Liu, Y., et al., Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization. Electrochimica Acta, 2015. 158: p. 403-409.
  • Liu, Y., et al., Nitrogen-doped electrospun reduced graphene oxide–carbon nanofiber composite for capacitive deionization. RSC Advances, 2015. 5(43): p. 34117-34124.
  • Liu, Y., et al., Nitrogen-doped carbon nanorods with excellent capacitive deionization ability. Journal of Materials Chemistry A, 2015. 3(33): p. 17304- 17311.
  • Liu, Y., et al., Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal-organic frameworks for capacitive deionization. Scientific reports, 2016. 6: p. 32784.
  • Liu, Y., et al., Carbon nanorods derived from natural based nanocrystalline cellulose for highly efficient capacitive deionization. Journal of Materials Chemistry A, 2014. 2(48): p. 20966-20972.
  • Liu, Y., et al., Carbon aerogels electrode with reduced graphene oxide additive for capacitive deionization with enhanced performance. Inorganic Chemistry Frontiers, 2014. 1(3): p. 249-255.
  • Liu, P.-I., et al., Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization. Electrochimica Acta, 2013. 96: p. 173-179.
  • Liu, P., et al., Graphene-based materials for capacitive deionization. Journal of Materials Chemistry A, 2017.
  • Liu, P., et al., Grafting sulfonic and amine functional groups on 3D graphene for improved capacitive deionization. Journal of Materials Chemistry A, 2016. 4(14): p. 5303-5313.
  • Liu, J., et al., Structure and electrochemistry comparison of electrospun porous carbon nanofibers for capacitive deionization. Electrochimica Acta, 2016. 210: p. 171-180.
  • Lim, J.-A., et al., Fabrication and characterization of a porous carbon electrode for desalination of brackish water. Desalination, 2009. 238(1-3): p. 37-42.
  • Liao, L., H. Peng, and Z. Liu, Chemistry makes graphene beyond graphene. Journal of the American chemical society, 2014. 136(35): p. 12194-12200.
  • Li, Z., et al., 3D porous graphene with ultrahigh surface area for microscale capacitive deionization. Nano Energy, 2015. 11: p. 711-718.
  • Li, Y., et al., N-doped hierarchical porous carbon derived from hypercrosslinked diblock copolymer for capacitive deionization. Separation and Purification Technology, 2016. 165: p. 190-198.
  • Li, Y., et al., Effects of the hydration ratio on the electrosorption selectivity of ions during capacitive deionization. Desalination, 2016. 399: p. 171-177.
  • Li, X., et al., Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. Journal of the American Chemical Society, 2011. 133(9): p. 2816-2819.
  • Li, X., et al., Chemically derived, ultrasmooth graphene nanoribbon semiconductors. science, 2008. 319(5867): p. 1229-1232.
  • Li, P., I.-W. Chen, and J.E. Penner-Hahn, X-ray-absorption studies of zirconia polymorphs. I. Characteristic local structures. Physical Review B, 1993. 48(14): p. 10063.
  • Li, L., et al., Ordered mesoporous carbons synthesized by a modified sol–gel process for electrosorptive removal of sodium chloride. Carbon, 2009. 47(3): p. 775-781.
  • Li, J., et al., Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. Journal of Power Sources, 2006. 158(1): p. 784-788.
  • Li, H., et al., The capacitive deionization behaviour of a carbon nanotube and reduced graphene oxide composite. Journal of Materials Chemistry A, 2013. 1(21): p. 6335-6341.
  • Li, H., et al., Reduced graphene oxide and activated carbon composites for capacitive deionization. Journal of Materials Chemistry, 2012. 22(31): p. 15556-15561.
  • Li, H., et al., Novel graphene-like electrodes for capacitive deionization. Environmental science & technology, 2010. 44(22): p. 8692-8697.
  • Li, H., et al., Kinetics and thermodynamics study for electrosorption of NaCl onto carbon nanotubes and carbon nanofibers electrodes. Chemical Physics Letters, 2010. 485(1-3): p. 161-166.
  • Li, H., et al., Kinetics and thermodynamics study for electrosorption of NaCl onto carbon nanotubes and carbon nanofibers electrodes. Chemical Physics Letters, 2010. 485(1): p. 161-166.
  • Li, H., et al., Hydrothermally synthesized graphene and Fe 3 O 4 nanocomposites for high performance capacitive deionization. RSC Advances, 2016. 6(15): p. 11967-11972.
  • Li, H., et al., Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes. Water research, 2008. 42(20): p. 4923-4928.
  • Li, H., et al., Electrosorption behavior of graphene in NaCl solutions. Journal of Materials Chemistry, 2009. 19(37): p. 6773-6779.
  • Li, H., et al., A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. Journal of Electroanalytical Chemistry, 2011. 653(1-2): p. 40-44.
  • Li, H., et al., A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. Journal of Electroanalytical Chemistry, 2011. 653(1): p. 40-44.
  • Li, H., Y. Ma, and R. Niu, Improved capacitive deionization performance by coupling TiO 2 nanoparticles with carbon nanotubes. Separation and Purification Technology, 2016. 171: p. 93-100.
  • Leitner, G., Is there a water crisis? International Desalination & Water Reuse Quarterly, 1998. 7(4): p. 10-21.
  • Lee, W.-h. and J.H. Moon, Monodispersed N-doped carbon nanospheres for supercapacitor application. ACS applied materials & interfaces, 2014. 6(16): p. 13968-13976.
  • Lee, J.-W., et al., Electrosorption Behavior of $ TiO_2 $/Activated Carbon Composite for Capacitive Deionization. Applied Chemistry for Engineering, 2010. 21(3): p. 265-271.
  • Lee, J.-H., W.-S. Bae, and J.-H. Choi, Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process. Desalination, 2010. 258(1-3): p. 159-163.
  • Lee, J.-B., et al., Desalination of a thermal power plant wastewater by membrane capacitive deionization. Desalination, 2006. 196(1-3): p. 125-134.
  • Lee, J., et al., Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy & Environmental Science, 2014. 7(11): p. 3683-3689.
  • Lee, H.-J., et al., Designing of an electrodialysis desalination plant. Desalination, 2002. 142(3): p. 267-286.
  • Laxman, K., et al., Improved desalination by zinc oxide nanorod induced electric field enhancement in capacitive deionization of brackish water. Desalination, 2015. 359: p. 64-70.
  • Largeot, C., et al., Relation between the ion size and pore size for an electric double-layer capacitor. Journal of the American Chemical Society, 2008. 130(9): p. 2730-2731.
  • Landon, J., et al., Impact of pore size characteristics on the electrosorption capacity of carbon xerogel electrodes for capacitive deionization. Journal of The Electrochemical Society, 2012. 159(11): p. A1861-A1866.
  • Kwak, N.-S., et al., Synthesis and electrical properties of NaSS–MAA–MMA cation exchange membranes for membrane capacitive deionization (MCDI). Desalination, 2012. 285: p. 138-146.
  • Kumar, R., et al., Carbon aerogels through organo-inorganic co-assembly and their application in water desalination by capacitive deionization. Carbon, 2016. 99: p. 375-383.
  • Kuila, T., et al., Facile method for the preparation of water dispersible graphene using sulfonated poly (ether–ether–ketone) and its application as energy storage materials. Langmuir, 2012. 28(25): p. 9825-9833.
  • Konadu, K.T., et al., Bio-modification of carbonaceous matter in gold ores: Model experiments using powdered activated carbon and cell-free spent medium of Phanerochaete chrysosporium. Hydrometallurgy, 2016.
  • Klein, R. and K. Winn, Environmental Assessment (EA): Proposed Well and Reservoir (Roy City Corporation), Hill Air Force Base, Utah. 2006, STREAMLINE CONSULTING LLC FARMINGTON UT.
  • Kinoshita, K., Carbon: electrochemical and physicochemical properties. 1988.
  • Kim, Y.-J. and J.-H. Choi, Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane. Separation and Purification Technology, 2010. 71(1): p. 70-75.
  • Kim, K.S., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. nature, 2009. 457(7230): p. 706.
  • Kikuchi, Y., et al., Photocatalytic bactericidal effect of TiO 2 thin films: dynamic view of the active oxygen species responsible for the effect. Journal of photochemistry and photobiology A: Chemistry, 1997. 106(1): p. 51-56.
  • Khezami, L., et al., Production and characterisation of activated carbon from wood components in powder: Cellulose, lignin, xylan. Powder Technology, 2005. 157(1-3): p. 48-56.
  • Karatepe, N., et al., Sulfur dioxide adsorption by activated carbons having different textural and chemical properties. Fuel, 2008. 87(15-16): p. 3207- 3215.
  • Kabay, N., et al., Effect of feed characteristics on the separation performances of monovalent and divalent salts by electrodialysis. Desalination, 2003. 158(1-3): p. 95-100.
  • Junjie, Y., et al., Improvement of a multi-stage flash seawater desalination system for cogeneration power plants. Desalination, 2007. 217(1): p. 191- 202.
  • Johnson, A. and J. Newman, Desalting by means of porous carbon electrodes. Journal of the Electrochemical Society, 1971. 118(3): p. 510-517.
  • Job, N., et al., Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials. Carbon, 2005. 43(12): p. 2481-2494.
  • Jia, B. and W. Zhang, Preparation and application of electrodes in capacitive deionization (CDI): a state-of-art review. Nanoscale research letters, 2016. 11(1): p. 64.
  • Jeon, S.-i., et al., Desalination via a new membrane capacitive deionization process utilizing flow-electrodes. Energy & Environmental Science, 2013. 6(5): p. 1471-1475.
  • Jensen, H., et al., XPS and FTIR investigation of the surface properties of different prepared titania nano-powders. Applied Surface Science, 2005. 246(1-3): p. 239-249.
  • Jana, M., et al., Non-covalent functionalization of reduced graphene oxide using sulfanilic acid azocromotrop and its application as a supercapacitor electrode material. Journal of Materials Chemistry A, 2015. 3(14): p. 7323- 7331.
  • Ivanova, T., A. Harizanova, and M. Surtchev, Formation and investigation of sol–gel TiO2–V2O5 system. Materials Letters, 2002. 55(5): p. 327-333.
  • Hummers Jr, W.S. and R.E. Offeman, Preparation of graphitic oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339.
  • Hulicova-Jurcakova, D., et al., Nitrogen- Enriched Nonporous Carbon Electrodes with Extraordinary Supercapacitance. Advanced Functional Materials, 2009. 19(11): p. 1800-1809.
  • Hoover, L.A., et al., Forward with osmosis: emerging applications for greater sustainability. Environmental science & technology, 2011. 45(23): p. 9824-9830.
  • Henthorne, L., Desalination today. Southwest Hydrology, 2003. 2(3): p. 12-13.
  • Hatzell, K.B., et al., Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization. Environmental science & technology, 2015. 49(5): p. 3040-3047.
  • Haro, M., et al., Stability of a carbon gel electrode when used for the electroassisted removal of ions from brackish water. Carbon, 2011. 49(12): p. 3723- 3730.
  • Hao, P., et al., Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale, 2014. 6(20): p. 12120-12129.
  • Handbury, W., T. Hodgkies, and R. Morris, Desalination Technology 93. An Intensive Course. 1993, Porthan Ltd., Easter Auchinloch. Lenzie, Glasgow, UK.
  • Han, Z., et al., Ammonia solution strengthened three-dimensional macroporous graphene aerogel. Nanoscale, 2013. 5(12): p. 5462-5467.
  • Han, J., et al., Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. Journal of Materials Chemistry A, 2014. 2(15): p. 5352-5357.
  • Hajkova, P., et al., Photocatalytic effect of TiO2 films on viruses and bacteria. Plasma Processes and Polymers, 2007. 4(S1): p. S397-S401.
  • Haddad, B.M., A case for an ecological-economic research program for desalination. Desalination, 2013. 324: p. 72-78.
  • Gupta, A., T. Sakthivel, and S. Seal, Recent development in 2D materials beyond graphene. Progress in Materials Science, 2015. 73: p. 44-126.
  • Greenlee, L.F., et al., Reverse osmosis desalination: water sources, technology, and today's challenges. Water research, 2009. 43(9): p. 2317- 2348.
  • Gratuito, M., et al., Production of activated carbon from coconut shell: Optimization using response surface methodology. Bioresource Technology, 2008. 99(11): p. 4887-4895.
  • Goodenough, J., H. Abruna, and M. Buchanan, Basic Research Needs for Electrical Energy Storage. Report of the Basic Energy Sciences Workshop on Electrical Energy Storage, April 2-4, 2007. 2007, DOESC (USDOE Office of Science (SC)).
  • Gleick, P.H., et al., The World's Water 2006-2007: The Biennial Report on Freshwater Resources. 2013: Island Press.
  • Ghouri, Z.K., et al., Synthesis and characterization of Nitrogen-doped &CaCO3-decorated reduced graphene oxide nanocomposite for electrochemical supercapacitors. Electrochimica Acta, 2015. 184: p. 193- 202.
  • Gelover, S., et al., A practical demonstration of water disinfection using TiO 2 films and sunlight. Water research, 2006. 40(17): p. 3274-3280.
  • Gaikwad, M.S. and C. Balomajumder, Polymer coated Capacitive Deionization Electrode for Desalination: A mini review. Electrochemical Energy Technology, 2016. 2(1).
  • Gabelich, C.J., T.D. Tran, and I.M. Suffet, Electrosorption of inorganic salts from aqueous solution using carbon aerogels. Environmental science & technology, 2002. 36(13): p. 3010-3019.
  • Fritzmann, C., et al., State-of-the-art of reverse osmosis desalination. Desalination, 2007. 216(1-3): p. 1-76.
  • Friends of the Earth v. Gaston Copper Recycling, in F. 3d. 2000, Court of Appeals, 4th Circuit. p. 149.
  • Frackowiak, E. and F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001. 39(6): p. 937-950.
  • Foo, K. and B. Hameed, A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects. Journal of hazardous materials, 2009. 170(2): p. 552-559.
  • Fong, H., I. Chun, and D. Reneker, Beaded nanofibers formed during electrospinning. Polymer, 1999. 40(16): p. 4585-4592.
  • Focazio, M.J., et al., A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States—II) Untreated drinking water sources. Science of the total Environment, 2008. 402(2-3): p. 201-216.
  • Farmer, J.C., et al., The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water. 1995, Lawrence Livermore National Lab., CA (United States).
  • Farmer, J.C., et al., Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes. Journal of the Electrochemical Society, 1996. 143(1): p. 159-169.
  • Fang, K., et al., Recovering ammonia from municipal wastewater by flowelectrode capacitive deionization. Chemical Engineering Journal, 2018. 348: p. 301-309.
  • Fan, L., et al., Directional neurite outgrowth on superaligned carbon nanotube yarn patterned substrate. Nano letters, 2012. 12(7): p. 3668-3673.
  • Evans, S., M. Accomazzo, and J. Accomazzo, Electrochemically Controlled Ion Exchange I. Mechanism. Journal of the Electrochemical Society, 1969. 116(2): p. 307-309.
  • Engelman, R., et al., People in the balance. Population and natural resources at the turn of the millennium. 2000.
  • Eltawil, M.A., Z. Zhengming, and L. Yuan, A review of renewable energy technologies integrated with desalination systems. Renewable and Sustainable Energy Reviews, 2009. 13(9): p. 2245-2262.
  • Elimelech, M. and W.A. Phillip, The future of seawater desalination: energy, technology, and the environment. science, 2011. 333(6043): p. 712-717.
  • El-Dessouky, H.T. and H.M. Ettouney, Fundamentals of salt water desalination. 2002: Elsevier.
  • El-Deen, A.G., et al., TiO 2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization. Desalination, 2015. 361: p. 53-64.
  • El-Deen, A.G., et al., Flexible 3D Nanoporous Graphene for Desalination and Bio-decontamination of Brackish Water via Asymmetric Capacitive Deionization. ACS Applied Materials & Interfaces, 2016. 8(38): p. 25313- 25325.
  • El-Deen, A.G., et al., A TiO 2 nanofiber/activated carbon composite as a novel effective electrode material for capacitive deionization of brackish water. RSC Advances, 2014. 4(110): p. 64634-64642.
  • El-Deen, A.G., N.A. Barakat, and H.Y. Kim, Graphene wrapped MnO2- nanostructures as effective and stable electrode materials for capacitive deionization desalination technology. Desalination, 2014. 344: p. 289-298.
  • Dong, Q., et al., Selective removal of lead ions through capacitive deionization: Role of ion-exchange membrane. Chemical Engineering Journal, 2018.
  • Dong, Q., et al., Electrospun composites made of reduced graphene oxide and activated carbon nanofibers for capacitive deionization. Electrochimica Acta, 2014. 137: p. 388-394.
  • De, B., et al., Carbon dot stabilized copper sulphide nanoparticles decorated graphene oxide hydrogel for high performance asymmetric supercapacitor. Carbon, 2017. 122: p. 247-257.
  • Dai, K., et al., NaCl adsorption in multi-walled carbon nanotubes. Materials Letters, 2005. 59(16): p. 1989-1992.
  • Dai, K., et al., NaCl adsorption in multi-walled carbon nanotube/active carbon combination electrode. Chemical Engineering Science, 2006. 61(2): p. 428-433.
  • Council, N.R., Desalination: A national perspective. Committee on Advancing Desalination Technology. 2008, Washington, DC: National Academies Press.
  • Cooley, H., P.H. Gleick, and G.H. Wolff, Desalination, with a grain of salt: a California perspective. 2006, Pacific Institute for Studies in Development, Environment, and Security ….
  • Cong, H.-P., et al., Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS nano, 2012. 6(3): p. 2693-2703.
  • Choi, B.G., et al., 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS nano, 2012. 6(5): p. 4020-4028.
  • Cho, M., et al., Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Applied and environmental microbiology, 2005. 71(1): p. 270-275.
  • Chmiola, J., et al., Desolvation of ions in subnanometer pores and its effect on capacitance and double- layer theory. Angewandte Chemie International Edition, 2008. 47(18): p. 3392-3395.
  • Chen, Z., et al., Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature materials, 2011. 10(6): p. 424-428.
  • Chen, Y., et al., Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization. Chemical Engineering Journal, 2014. 252: p. 30-37.
  • Chen, G.-C., et al., Effects of copper, lead, and cadmium on the sorption and desorption of atrazine onto and from carbon nanotubes. Environmental science & technology, 2008. 42(22): p. 8297-8302.
  • Chen, B., et al., Enhanced capacitive desalination of MnO 2 by forming composite with multi-walled carbon nanotubes. RSC Advances, 2016. 6(8): p. 6730-6736.
  • Chabot, V., et al., A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy & Environmental Science, 2014. 7(5): p. 1564-1596.
  • Caturla, F., M. Molina-Sabio, and F. Rodriguez-Reinoso, Preparation of activated carbon by chemical activation with ZnCl2. Carbon, 1991. 29(7): p. 999-1007.
  • Camacho, L.M., J.A. Fox, and J.O. Ajedegba, Optimization of electrodialysis metathesis (EDM) desalination using factorial design methodology. Desalination, 2017. 403: p. 136-143.
  • Cagnon, B., et al., Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresource Technology, 2009. 100(1): p. 292-298.
  • Buros, O., The ABCs of desalting. 2000: International Desalination Association Topsfield, MA.
  • Burn, S., et al., Desalination techniques—A review of the opportunities for desalination in agriculture. Desalination, 2015. 364: p. 2-16.
  • Bouhadana, Y., et al., Several basic and practical aspects related to electrochemical deionization of water. AIChE journal, 2010. 56(3): p. 779- 789.
  • Bouchelta, C., et al., Preparation and characterization of activated carbon from date stones by physical activation with steam. Journal of Analytical and Applied Pyrolysis, 2008. 82(1): p. 70-77.
  • Boniardi, N., et al., Lactic acid production by electrodialysis Part II: Modelling. Journal of applied electrochemistry, 1997. 27(2): p. 135-145.
  • Bockris, J.O.M. and A.K. Reddy, Modern electrochemistry 2B: electrodics in chemistry, engineering, biology and environmental science. Vol. 2. 2000: Springer Science & Business Media.
  • Blair, J.W. and G.W. Murphy, Saline water conversion. Adv Chem Ser, 1960. 27: p. 206.
  • Biesheuvel, P., B. Van Limpt, and A. Van der Wal, Dynamic adsorption/desorption process model for capacitive deionization. The journal of physical chemistry C, 2009. 113(14): p. 5636-5640.
  • Biener, J., et al., Advanced carbon aerogels for energy applications. Energy & Environmental Science, 2011. 4(3): p. 656-667.
  • Baten, R. and K. Stummeyer, How sustainable can desalination be? Desalination and Water Treatment, 2013. 51(1-3): p. 44-52.
  • Barlow, M., Tony Clark in Blue Gold. 2002, New Press, New York.
  • Barlow, M. and T. Clarke, Who owns water? The Nation, 2002. 2: p. 11-14.
  • Barakat, N.A., et al., Influence of temperature on the photodegradation process using Ag-doped TiO2 nanostructures: negative impact with the nanofibers. Journal of Molecular Catalysis A: Chemical, 2013. 366: p. 333-340.
  • Aworn, A., P. Thiravetyan, and W. Nakbanpote, Preparation of CO2 activated carbon from corncob for monoethylene glycol adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009. 333(1-3): p. 19-25.
  • Avlonitis, S., K. Kouroumbas, and N. Vlachakis, Energy consumption and membrane replacement cost for seawater RO desalination plants. Desalination, 2003. 157(1): p. 151-158.
  • Arora, N., F. Banat, and E. Alhseinat, Capacitive deionization performance of CNTs-Si-Ag based electrodes for the removal of heat stable salts from methyldiethanolamine (MDEA) solution in natural gas sweetening units. Chemical Engineering Journal, 2019. 356: p. 400-412.
  • Anderson, M.A., A.L. Cudero, and J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete? Electrochimica Acta, 2010. 55(12): p. 3845-3856.
  • Amoco Oil Co. v. Environmental Protection Agency, in F. 2d. 1974, Court of Appeals, Dist. of Columbia Circuit. p. 722.
  • Ambrosi, A., et al., Electrochemistry of graphene and related materials. Chemical reviews, 2014. 114(14): p. 7150-7188.
  • AlMarzooqi, F.A., et al., Application of capacitive deionisation in water desalination: a review. Desalination, 2014. 342: p. 3-15.
  • Al-Sahali, M. and H. Ettouney, Developments in thermal desalination processes: design, energy, and costing aspects. Desalination, 2007. 214(1): p. 227-240.
  • Al-Harbi, O. and K. Lehnert. Al-Khafji solar water desalination. in The Saudi international water technology conference. 2011.
  • Al-Fulaij, H., et al., Simulation of stability and dynamics of multistage flash desalination. Desalination, 2011. 281: p. 404-412.
  • Akther, N., et al., Recent advancements in forward osmosis desalination: a review. Chemical Engineering Journal, 2015. 281: p. 502-522.
  • Ahmad, A., M. Loh, and J. Aziz, Preparation and characterization of activated carbon from oil palm wood and its evaluation on methylene blue adsorption. Dyes and pigments, 2007. 75(2): p. 263-272.
  • Afkhami, A. and B.E. Conway, Investigation of removal of Cr (VI), Mo (VI), W (VI), V (IV), and V (V) oxy-ions from industrial waste-waters by adsorption and electrosorption at high-area carbon cloth. Journal of colloid and interface science, 2002. 251(2): p. 248-255.