박사

식물성 플라본의 혈관신생과 세포성장 억제를 통한 항암 활성 연구

최자운 2019년
논문상세정보
' 식물성 플라본의 혈관신생과 세포성장 억제를 통한 항암 활성 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Angiogenesis
  • Cancer
  • Mouse tumor model
  • Plant flavones
  • apopto-sis
  • b16f10
  • baicalein
  • diosmetin
  • llc
  • natural products
  • 디오스메틴
  • 마우스 종양 모델
  • 바이칼레인
  • 세포자살
  • 식물 플라본
  • 천연추출물
  • 혈관 신생
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,457 0

0.0%

' 식물성 플라본의 혈관신생과 세포성장 억제를 통한 항암 활성 연구' 의 참고문헌

  • Zhao, R., et al., Protective effects of diosmetin extracted from Galium verum L. on the thymus of U14-bearing mice. Canadian journal of physiology and pharmacology, 2011. 89(9): p. 665-673.
  • Zhang, Y., et al., Effects of baicalein on apoptosis, cell cycle arrest, migration and invasion of osteosarcoma cells. Food and Chemical Toxicology, 2013. 53: p. 325-333.
  • Yan, X., et al., Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell & bioscience, 2017. 7: p. 50-50.
  • Yamashita, S., et al., γ-Tocotrienol upregulates aryl hydrocarbon receptor expression and enhances the anticancer effect of baicalein. Biochemical and Biophysical Research Communications, 2016. 473(4): p. 801-807.
  • Williams, C., C. Quirk, and A. Quirk, Melanoma: A new strategy to reduce morbidity and mortality. The Australasian medical journal, 2014. 7(7): p. 266.
  • Wang, Z.X., et al., Baicalein Induces Apoptosis and Autophagy via Endoplasmic Reticulum Stress in Hepatocellular Carcinoma Cells. Biomed Research International, 2014.
  • Wang, Y.F., et al., Baicalein Triggers Autophagy and Inhibits the Protein Kinase B/Mammalian Target of Rapamycin Pathway in Hepatocellular Carcinoma HepG2 Cells. Phytotherapy Research, 2015. 29(5): p. 674- 679.
  • Viallard, C. and B. Larriv e, Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis, 2017. 20(4): p. 409-426.
  • Tredan, O., et al., Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst, 2007. 99(19): p. 1441-54.
  • Testa, R., et al., The possible role of flavonoids in the prevention of diabetic complications. Nutrients, 2016. 8(5): p. 310.
  • Sundar, S.S. and T.S. Ganesan, Role of lymphangiogenesis in cancer. J Clin Oncol, 2007. 25(27): p. 4298-307.
  • Sultana, S., et al., Medicinal plants combating against cancer-a green anticancer approach. Asian Pac J Cancer Prev, 2014. 15(11): p. 4385-94.
  • Shang, B., Z. Cao, and Q. Zhou, Progress in tumor vascular normalization for anticancer therapy: challenges and perspectives. Front Med, 2012. 6(1): p. 67-78.
  • Seyfried, T.N. and L.C. Huysentruyt, On the origin of cancer metastasis. Critical reviews in oncogenesis, 2013. 18(1-2): p. 43.
  • Saraswati, S. and S. Agrawal, Brucine, an indole alkaloid from Strychnos nux-vomica attenuates VEGF-induced angiogenesis via inhibiting VEGFR2 signaling pathway in vitro and in vivo. Cancer letters, 2013. 332(1): p. 83-93.
  • Safarzadeh, E., S. Sandoghchian Shotorbani, and B. Baradaran, Herbal medicine as inducers of apoptosis in cancer treatment. Adv Pharm Bull, 2014. 4(Suppl 1): p. 421-7.
  • Ruibin, J., et al., Therapy Effects of Wogonin on Ovarian Cancer Cells. BioMed research international, 2017. 2017: p. 9381513-9381513.
  • Rossi, M., et al., Flavonoids and colorectal cancer in Italy. Cancer Epidemiology and Prevention Biomarkers, 2006. 15(8): p. 1555-1558.
  • Roowi, S. and A. Crozier, Flavonoids in tropical citrus species. Journal of agricultural and food chemistry, 2011. 59(22): p. 12217-12225.
  • Rolston, K.V.I., Infections in Cancer Patients with Solid Tumors: A Review. Infectious Diseases and Therapy, 2017. 6(1): p. 69-83.
  • Ren, W., et al., Flavonoids: promising anticancer agents. Medicinal research reviews, 2003. 23(4): p. 519-534.
  • Rees, A., G.F. Dodd, and J.P.E. Spencer, The Effects of Flavonoids on Cardiovascular Health: A Review of Human Intervention Trials and Implications for Cerebrovascular Function. Nutrients, 2018. 10(12): p. 1852.
  • Ravishankar, D., et al., Flavonoids as prospective compounds for anticancer therapy. The international journal of biochemistry & cell biology, 2013. 45(12): p. 2821-2831.
  • Qi, F., et al., Chinese herbal medicines as adjuvant treatment during chemoor radio-therapy for cancer. Bioscience trends, 2010. 4(6).
  • Prakash, O., et al., Anticancer Potential of Plants and Natural Products: A Review. American Journal of Pharmacological Sciences, 2013. 1(6): p. 104-115.
  • Pietta, P.-G., Flavonoids as antioxidants. Journal of natural products, 2000. 63(7): p. 1035-1042.
  • Pfeffer, C. and A. Singh, Apoptosis: a target for anticancer therapy. International journal of molecular sciences, 2018. 19(2): p. 448.
  • Peterson, J.J., et al., Improving the estimation of flavonoid intake for study of health outcomes. Nutrition reviews, 2015. 73(8): p. 553-576.
  • Panche, A., A. Diwan, and S. Chandra, Flavonoids: an overview. Journal of nutritional science, 2016. 5.
  • Pan, M.-H., et al., Inhibition of citrus flavonoids on 12-Otetradecanoylphorbol 13-acetate-induced skin inflammation and tumorigenesis in mice. Food Science and Human Wellness, 2012. 1(1): p. 65-73.
  • O'Neill, A.C., J.P. Jagannathan, and N.H. Ramaiya, Evolving Cancer Classification in the Era of Personalized Medicine: A Primer for Radiologists. Korean J Radiol, 2017. 18(1): p. 6-17.
  • Newman, D.J., G.M. Cragg, and K.M. Snader, Natural products as sources of new drugs over the period 1981− 2002. Journal of natural products, 2003. 66(7): p. 1022-1037.
  • Newman, D. and G. M. Cragg, Natural Products as Sources of New Drugs from 1981 to 2014. Vol. 79. 2016.
  • Nagy, J.A., et al. Heterogeneity of the tumor vasculature. in Seminars in thrombosis and hemostasis. 2010. NIH Public Access.
  • Mueller, M., et al., Oregano: a source for peroxisome proliferatoractivated receptor γ antagonists. Journal of agricultural and food chemistry, 2008. 56(24): p. 11621-11630.
  • Moon, Y.J., X. Wang, and M.E. Morris, Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicology in vitro, 2006. 20(2): p. 187-210.
  • Mohana‐Kumaran, N., et al., Targeting the intrinsic apoptosis pathway as a strategy for melanoma therapy. Pigment cell & melanoma research, 2014. 27(4): p. 525-539.
  • Miller, K.D., et al., Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin, 2016. 66(4): p. 271-89.
  • Liu, J., et al., Diosmetin inhibits the metastasis of hepatocellular carcinoma cells by downregulating the expression levels of MMP-2 and MMP-9. Molecular medicine reports, 2016. 13(3): p. 2401-2408.
  • Liu, J., et al., Diosmetin inhibits cell proliferation and induces apoptosis by regulating autophagy via the mammalian target of rapamycin pathway in hepatocellular carcinoma HepG2 cells. Oncology letters, 2016. 12(6): p. 4385-4392.
  • Liu, H., et al., The Fascinating Effects of Baicalein on Cancer: A Review. Int J Mol Sci, 2016. 17(10).
  • Liu, H., L. Lv, and K. Yang, Chemotherapy targeting cancer stem cells. American journal of cancer research, 2015. 5(3): p. 880.
  • Liu, B., et al., Diosmetin induces apoptosis by upregulating p53 via the TGF-β signal pathway in HepG2 hepatoma cells. Molecular medicine reports, 2016. 14(1): p. 159-164.
  • Ling, Y., et al., Baicalein potently suppresses angiogenesis induced by vascular endothelial growth factor through the p53/Rb signaling pathway leading to G1/S cell cycle arrest. Experimental Biology and Medicine, 2011. 236(7): p. 851-858.
  • Liao, W., et al., Intracellular antioxidant detoxifying effects of diosmetin on 2, 2-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress through inhibition of reactive oxygen species generation. Journal of agricultural and food chemistry, 2014. 62(34): p. 8648-8654.
  • Lee, W., S.K. Ku, and J.S. Bae, Anti-inflammatory effects of Baicalin, Baicalein, and Wogonin in vitro and in vivo. Inflammation, 2015. 38(1): p. 110-25.
  • Lee, S.-G., et al., Baicalein Inhibits Progression of Gallbladder Cancer Cells by Downregulating ZFX. Plos One, 2015. 10(1): p. e0114851.
  • Lechner, M.G., et al., Immunogenicity of Murine Solid Tumor Models as a Defining Feature of In Vivo Behavior and Response to Immunotherapy. Journal of Immunotherapy, 2013. 36(9): p. 477-489.
  • Lakshmi, A. and S. Subramanian, Chemotherapeutic effect of tangeretin, a polymethoxylated flavone studied in 7, 12-dimethylbenz(a)anthracene induced mammary carcinoma in experimental rats. Biochimie, 2014. 99: p. 96-109.
  • Kunimasa, K., et al., Nobiletin, a citrus polymethoxyflavonoid, suppresses multiple angiogenesis‐related endothelial cell functions and angiogenesis in vivo. Cancer science, 2010. 101(11): p. 2462-2469.
  • Krishnamurthi, K., 17-screening of natural products for anticancer and antidiabetic properties. Cancer, 2007. 3(4): p. 69-75.
  • Kim, C., et al., Vascular RhoJ Is an Effective and Selective Target for Tumor Angiogenesis and Vascular Disruption. Cancer Cell, 2014. 25(1): p. 102-117.
  • Jain, R.K., Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nature medicine, 2001. 7(9): p. 987.
  • Jain, R.K., Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science, 2005. 307(5706): p. 58-62.
  • Jain, R.K., Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer cell, 2014. 26(5): p. 605-622.
  • Imran, M., et al., Luteolin, a flavonoid, as an anticancer agent: A review. Biomed Pharmacother, 2019. 112: p. 108612.
  • Huang, Y., et al., Baicalein reduces angiogenesis in the inflammatory microenvironment via inhibiting the expression of AP-1. Oncotarget, 2016.
  • Holopainen, T., et al., Effects of angiopoietin-2-blocking antibody on endothelial cell–cell junctions and lung metastasis. Journal of the National Cancer Institute, 2012. 104(6): p. 461-475.
  • Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. cell, 2000. 100(1): p. 57-70.
  • Hanahan, D. and R.A. Weinberg, Hallmarks of Cancer: The Next Generation. Cell, 2011. 144(5): p. 646-674.
  • Gomes, F.G., et al., Tumor angiogenesis and lymphangiogenesis: tumor/endothelial crosstalk and cellular/microenvironmental signaling mechanisms. Life Sci, 2013. 92(2): p. 101-7.
  • Garbe, C., et al., Diagnosis and treatment of melanoma: European consensus-based interdisciplinary guideline. European journal of cancer, 2010. 46(2): p. 270-283.
  • Garavello, W., et al., Flavonoids and laryngeal cancer risk in Italy. Annals of oncology, 2007. 18(6): p. 1104-1109.
  • Gao, Y., et al., Anticancer properties of baicalein: a review. Medicinal chemistry research : an international journal for rapid communications on design and mechanisms of action of biologically active agents, 2016. 25(8): p. 1515-1523.
  • Foubert, P. and J.A. Varner, Integrins in tumor angiogenesis and lymphangiogenesis. Methods Mol Biol, 2012. 757: p. 471-86.
  • Folkman, J., Role of angiogenesis in tumor growth and metastasis. Semin Oncol, 2002. 29(6 Suppl 16): p. 15-8.
  • Folkman, J., Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov, 2007. 6(4): p. 273-86.
  • Folkman, J., Angiogenesis. Annu Rev Med, 2006. 57: p. 1-18.
  • Ferlay, J., et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International journal of cancer, 2015. 136(5): p. E359-E386.
  • Ferlay, J., et al., Cancer incidence and mortality worldwide: IARC CancerBase. GLOBOCAN 2012 v10, 2012. 11.
  • Eggermont, A.M., A. Spatz, and C. Robert, Cutaneous melanoma. The Lancet, 2014. 383(9919): p. 816-827.
  • Ebos, J.M. and R.S. Kerbel, Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nature reviews Clinical oncology, 2011. 8(4): p. 210.
  • Dong, Y., et al., [Effects of sinensetin on proliferation and apoptosis of human gastric cancer AGS cells]. Zhongguo Zhong Yao Za Zhi, 2011. 36(6): p. 790-4.
  • Dong, L.H., et al., Baicalin inhibits PDGF-BB-stimulated vascular smooth muscle cell proliferation through suppressing PDGFR beta-ERK signaling and increase in p27 accumulation and prevents injury-induced neointimal hyperplasia (vol 20, pg 1252, 2010). Cell Research, 2011. 21(8): p. 1276-1276.
  • Dong, L.-H., et al., Baicalin inhibits PDGF-BB-stimulated vascular smooth muscle cell proliferation through suppressing PDGFRβ-ERK signaling and increase in p27 accumulation and prevents injury-induced neointimal hyperplasia. Cell Research, 2010. 20(11): p. 1252-1262.
  • Domingues, B., et al., Melanoma treatment in review. ImmunoTargets and Therapy, 2018. 7: p. 35.
  • Dewing, D., M. Emmett, and R. Pritchard Jones, The roles of angiogenesis in malignant melanoma: trends in basic science research over the last 100 years. ISRN oncology, 2012. 2012.
  • Cully, M., Tumour vessel normalization takes centre stage. Nature Reviews Drug Discovery, 2017. 16: p. 87.
  • Chung, A.S. and N. Ferrara, Developmental and pathological angiogenesis. Annual review of cell and developmental biology, 2011. 27: p. 563-584.
  • Chen, Y.J., et al., Baicalein Triggers Mitochondria-Mediated Apoptosis and Enhances the Antileukemic Effect of Vincristine in Childhood Acute Lymphoblastic Leukemia CCRF-CEM Cells. Evidence-Based Complementary and Alternative Medicine, 2013.
  • Chen, K.L., et al., Baicalein Inhibits the Invasion and Metastatic Capabilities of Hepatocellular Carcinoma Cells via Down-Regulation of the ERK Pathway. Plos One, 2013. 8(9).
  • Chen, J., et al., The flavonoid nobiletin inhibits tumor growth and angiogenesis of ovarian cancers via the Akt pathway. International journal of oncology, 2015. 46(6): p. 2629-2638.
  • Chandler, D., et al., Effects of plant‐derived polyphenols on TNF‐α and nitric oxide production induced by advanced glycation endproducts. Molecular nutrition & food research, 2010. 54(S2): p. S141-S150.
  • Chan, B.C., et al., Synergistic effects of diosmetin with erythromycin against ABC transporter over-expressed methicillin-resistant Staphylococcus aureus (MRSA) RN4220/pUL5054 and inhibition of MRSA pyruvate kinase. Phytomedicine, 2013. 20(7): p. 611-614.
  • Cebe-Suarez, S., A. Zehnder-Fjallman, and K. Ballmer-Hofer, The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci, 2006. 63(5): p. 601-15.
  • Cathcart, M.C., et al., Anti-cancer effects of baicalein in non-small cell lung cancer in-vitro and in-vivo. BMC Cancer, 2016. 16: p. 707.
  • Cassidy, A. and A.-M. Minihane, The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. The American journal of clinical nutrition, 2017. 105(1): p. 10-22.
  • Carmeliet, P. and R.K. Jain, Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nature reviews Drug discovery, 2011. 10(6): p. 417.
  • Carmeliet, P. and R.K. Jain, Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011. 473(7347): p. 298.
  • Bıtıs, L., et al., Flavonoids and antioxidant activity of Rosa agrestis leaves. Natural Product Research, 2010. 24(6): p. 580-589.
  • Butler, M.S., The role of natural product chemistry in drug discovery. Journal of natural products, 2004. 67(12): p. 2141-2153.
  • Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca-a Cancer Journal for Clinicians, 2018. 68(6): p. 394-424.
  • Bouck, N., V. Stellmach, and S.C. Hsu, How tumors become angiogenic. Adv Cancer Res, 1996. 69: p. 135-74.
  • Batra, P. and A.K. Sharma, Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech, 2013. 3(6): p. 439-459.
  • Bahadori, M., J. Baharara, and E. Amini, Anticancer Properties of Chrysin on Colon Cancer Cells, In vitro and In vivo with Modulation of Caspase-3, -9, Bax and Sall4. Iranian journal of biotechnology, 2016. 14(3): p. 177-184.
  • Augustin, H.G., et al., Control of vascular morphogenesis and homeostasis through the angiopoietin–Tie system. Nature reviews Molecular cell biology, 2009. 10(3): p. 165.
  • Appelmann, I., et al., Angiogenesis inhibition in cancer therapy: platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) and their receptors: biological functions and role in malignancy. Recent Results Cancer Res, 2010. 180: p. 51-81.
  • Androutsopoulos, V.P., et al., Anticancer effects of the flavonoid diosmetin on cell cycle progression and proliferation of MDA-MB 468 breast cancer cells due to CYP1 activation. Oncology reports, 2009. 21(6): p. 1525-1528.
  • Androutsopoulos, V.P. and D.A. Spandidos, The flavonoids diosmetin and luteolin exert synergistic cytostatic effects in human hepatoma HepG2 cells via CYP1A-catalyzed metabolism, activation of JNK and ERK and P53/P21 up-regulation. The Journal of nutritional biochemistry, 2013. 24(2): p. 496-504.
  • AlGamdi, N., W. Mullen, and A. Crozier, Tea prepared from Anastatica hirerochuntica seeds contains a diversity of antioxidant flavonoids, chlorogenic acids and phenolic compounds. Phytochemistry, 2011. 72(2-3): p. 248-254.