박사

2차원 나노소재 기반 기능성 하이브리드 소재 합성 및 에너지 변환과 저장 소자 응용

장우리 2019년
논문상세정보
' 2차원 나노소재 기반 기능성 하이브리드 소재 합성 및 에너지 변환과 저장 소자 응용' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 2d nanomaterials
  • boron nitride
  • functional hybrid composite
  • graphene
  • piezoelectric
  • supercapacitor
  • 그래핀
  • 기능성 하이브리드 복합소재
  • 슈퍼캐패시터
  • 압전용 센서
  • 육방정계 보론 나이트라이드
  • 이차원 나노 소재
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
628 0

0.0%

' 2차원 나노소재 기반 기능성 하이브리드 소재 합성 및 에너지 변환과 저장 소자 응용' 의 참고문헌

  • 진동 에너지를 이용한 압전 에너지 하베스팅
    안창원 조욱 세라미스트 18, 22-26 [2015]
  • Z. Tang, Facile preparation of CoNi2S4@NiSe nano arrays on compressed nickel foam for high performance flexible supercapacitors. RSC Advances 6, 112307-112316 (2016).
  • Z. Li, G. Zhu, R. Yang, A. C. Wang, & Z. L. Wang, Muscle-Driven In Vivo Nanogenerator. Advanced Materials 22, 2534-2537(2010).
  • Y.-Y. Chiu, W.-Y. Lin, H.-Y. Wang, S.-B. Huang, & M.-H. Wu, Development of a piezoelectric polyvinylidene fluoride (PVDF) polymer-based sensor patch for simultaneous heartbeat and respiration monitoring. Sensors and Actuators A: Physical 189, 328-334(2013).
  • Y.-M. Fan, Y. Liu, X. Liu, Y. Liu, & L.-Z. Fan, Hierarchical porous NiCo2S4-rGO composites for high-performance supercapacitors. Electrochimica Acta 249, 1-8(2017).
  • Y. Wu, Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nature Communications 9, 1425(2018).
  • Y. Sun, X. Hu, W. Luo, F. Xia & Y. Huang, Reconstruction of Conformal Nanoscale MnO on Graphene as a High-Capacity and Long-Life Anode Material for Lithium Ion Batteries. Advanced Functional Materials 23, 2436-2444 (2013).
  • Y. Mao, Sponge-Like Piezoelectric Polymer Films for Scalable and Integratable Nanogenerators and Self-Powered Electronic Systems. Advanced Energy Materials 4,(2014).
  • Y. M. Chen, Pushing the cycling stability limit of hierarchical metal oxide core/shell nanoarrays pseudocapacitor electrodes by nanoscale interface optimization. Nanoscale 10, 14352-14358 (2018).
  • Y. J. Han, Y. J. Kwon, J. U. Lee, J. S. Im, Recent Progress on Carbon Materials for Lithium-Ion Rechargeable Batteries. Polymer science and technology 28, 195-200 (2017).
  • Y. Hernandez, High-yield production of graphene by liquid-phase exfoliation of graphite. Nature nanotechnology 3, 563 (2008).
  • Y. Choi, Highly Biocompatible Carbon Nanodots for Simultaneous Bioimaging and Targeted Photodynamic Therapy In Vitro and In Vivo. Advanced Functional Materials 24, 5781-5789 (2014).
  • X. Zhao, Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS nano 6, 5404-5412 (2012).
  • X. Wei, M. S. Wang, Y. Bando & D. Golberg, Tensile tests on individual multi‐walled boron nitride nanotubes. Advanced Materials 22, 4895-4899 (2010).
  • X. Huang, Reduced graphene oxide–polyaniline hybrid: Preparation, characterization and its applications for ammonia gas sensing. Journal of Materials Chemistry 22, 22488-22495 (2012).
  • X. Chen, D. Chen, X. Guo, R. Wang & H. Zhang, Facile Growth of Caterpillar-like NiCo2S4 Nanocrystal Arrays on Nickle Foam for High-Performance Supercapacitors. ACS Applied Materials & Interfaces 9, 18774-18781 (2017).
  • X. Blase, A. Rubio, S. Louie, & M. Cohen, Stability and band gap constancy of boron nitride nanotubes. EPL (Europhysics Letters) 28, 335 (1994).
  • X. Blase, A. Rubio, S. G. Louie, & M. L. Cohen, Stability and Band Gap Constancy of Boron Nitride Nanotubes. Europhysics Letters (EPL) 28, 335-340 (1994).
  • X. Bai, Deformation-driven electrical transport of individual boron nitride nanotubes. Nano letters 7, 632-637 (2007).
  • W.-S. Jung, Powerful curved piezoelectric generator for wearable applications. Nano Energy 13, 174-181(2015).
  • W. contributors, Supercapacitor. In Wikipedia, The Free Encyclopedia (2019).
  • W. contributors, Spinel group. Wikipedia, The Free Encyclopedia.
  • W. Zhou, Fabrication of Co3O4-reduced graphene oxide scrolls for high-performance supercapacitor electrodes. Physical Chemistry Chemical Physics 13, 14462-14465 (2011).
  • W. S. Hummers, R. E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society 80, 1339-1339, (1958).
  • W. Meng, Y. Huang, Y. Fu, Z. Wang, & C. Zhi, Polymer composites of boron nitride nanotubes and nanosheets. Journal of Materials Chemistry C 2, 10049-10061(2014).
  • W. Jang, D.-Y. Jeon, Y.-S. Lee & H. Y. Koo, Effect of Potassium Ions on the Formation of Mixed-Valence Manganese Oxide/Graphene Nanocomposites. Materials 12, 1245 (2019).
  • W. Contributors, Boron nitride. In Wikipedia, The Free Encyclopedia.
  • T.-H. Wu, Charge storage mechanism of activated manganese oxide composites for pseudocapacitors. Journal of Materials Chemistry A 3, 12786-12795 (2015).
  • T.-D. Dang, A. N. Banerjee, S. W. Joo, & B.-K. Min, Effect of Potassium Ions on the Formation of Crystalline Manganese Oxide Nanorods via Acidic Reduction of Potassium Permanganate. Industrial & Engineering Chemistry Research 52, 14154-14159 (2013).
  • T. Wang, Facile preparation and sulfidation analysis for activated multiporous carbon@NiCo2S4 nanostructure with enhanced supercapacitive properties. Electrochimica Acta 211, 627-635(2016).
  • T. Sainsbury, Covalently Functionalized Hexagonal Boron Nitride Nanosheets by Nitrene Addition. Chemistry - A European Journal 18, 10808-10812 (2012).
  • T. Peng, In situ growth of binder-free CNTs@Ni–Co–S nanosheets core/shell hybrids on Ni mesh for high energy density asymmetric supercapacitors. Journal of Materials Chemistry A 4, 8888-8897(2016).
  • S.-Y. Ju, M. Utz, & F. Papadimitrakopoulos, Enrichment Mechanism of Semiconducting Single-Walled Carbon Nanotubes by Surfactant Amines. Journal of the American Chemical Society 131, 6775-6784(2009).
  • S. Xu, Self-powered nanowire devices. Nature Nanotechnology 5, 366 (2010)
  • S. Hussain, T. Liu, N. Aslam, Y. Zhang & S. Zhao, Truncated NiCo2S4 cubohexa-octahedral nanostructures for high-performance supercapacitor. Materials Letters 189, 21-24 (2017).
  • S. G. Mohamed, S. Y. Attia & H. H. Hassan, Spinel-structured FeCo2O4 mesoporous nanosheets as efficient electrode for supercapacitor applications. Microporous and Mesoporous Materials 251, 26-33(2017).
  • S. G. Mohamed, I. Hussain & J.-J. Shim, One-step synthesis of hollow C-NiCo2S4 nanostructures for high-performance supercapacitor electrodes. Nanoscale 10, 6620-6628 (2018).
  • R. Zou, Three-dimensional-networked NiCo2S4 nanosheet array/carbon cloth anodes for high-performance lithium-ion batteries. Npg Asia Materials 7, 195(2015).
  • R. K tz, & M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica Acta 45, 2483-2498(2000).
  • Q. Yang, High performance graphene/manganese oxide hybrid electrode with flexible holey structure. Electrochimica Acta 129, 237-244 (2014).
  • Q. Li, X. Sun, K. Lozano, Y. Mao, Asymmetric supercapacitors with dominant pseudocapacitance based on manganese oxide nanoflowers in a neutral aqueous electrolyte. RSC Advances 3, 24886-24890 (2013).
  • P. Staiti, F. Lufrano, Study and optimisation of manganese oxide-based electrodes for electrochemical supercapacitors. Journal of Power Sources 187, 284-289 (2009).
  • P. Simon & Y. Gogotsi, A Collection of Reviews from Nature Journals, 320-329 (2010).
  • P. Ruetschi, Cation‐Vacancy Model for MnO2. Journal of The Electrochemical Society 131, 2737-2744 (1984).
  • P. G. Kang, Piezoelectric power generation of vertically aligned lead-free (K, Na) NbO 3 nanorod arrays. RSC Advances 4, 29799-29805 (2014).
  • N. Wang, M. Yao, P. Zhao, W. Hu & S. Komarneni, Remarkable electrochemical properties of novel LaNi0.5Co0.5O3/0.333Co3O4 hollow spheres with a mesoporous shell. Journal of Materials Chemistry A 5, 5838-5845 (2017)
  • N. Li, Z. Chen, W. Ren, F. Li & H. M. Cheng, Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc Natl Acad Sci U S A 109, 17360-17365 (2012).
  • M.-S. Lee, M. Park, H. Y. Kim & S.-J. Park, Effects of Microporosity and Surface Chemistry on Separation Performances of N-Containing Pitch-Based Activated Carbons for CO2/N2 Binary Mixture. Scientific Reports 6, 23224(2016).
  • M.-K. Song, Anomalous Pseudocapacitive Behavior of a Nanostructured, Mixed-Valent Manganese Oxide Film for Electrical Energy Storage. Nano Letters 12, 3483-3490 (2012).
  • M. Zhang, Single BaTiO3 nanowires-polymer fiber based nanogenerator. Nano Energy 11, 510-517(2015).
  • M. Zhang, A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application. Nano Energy 13, 298-305 (2015).
  • M. Winter & R. J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews 104, 4245-4270 (2004).
  • M. Salauddin, Miniaturized springless hybrid nanogenerator for powering portable and wearable electronic devices from human-body-induced vibration. Nano Energy 51, 61-72 (2018).
  • M. S. Ramkumar, M. Sownthara & S. M, power-management-of-hybrid-renewableenergy-system-by-frequency-deviationcontrol. 3 (2014).
  • M. Noor-A-Alam, H. J. Kim, & Y.-H. Shin, Dipolar polarization and piezoelectricity of a hexagonal boron nitride sheet decorated with hydrogen and fluorine. Physical Chemistry Chemical Physics 16, 6575-6582(2014).
  • M. Lee, A Hybrid Piezoelectric Structure for Wearable Nanogenerators. Advanced Materials 24, 1759-1764(2012).
  • M. F. Khan, Stable and reversible doping of graphene by using KNO3 solution and photo-desorption current response. RSC Advances 5, 50040-50046(2015).
  • M. C. LeMieux, Self-Sorted, Aligned Nanotube Networks for Thin-Film Transistors. Science 321, 101-104 (2008).
  • M. C. Biesinger, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science 257, 2717-2730 (2011).
  • L.-Q. Mai, Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nature Communications 4, 2923(2013).
  • L.-Q. Fan, Facile one-step hydrothermal syntheses and supercapacitive performances of reduced graphene oxide/MnO2 composites. Composites Science and Technology 103, 113-118 (2014).
  • L. Shen, NiCo2S4 Nanosheets Grown on Nitrogen-Doped Carbon Foams as an Advanced Electrode for Supercapacitors. Advanced Energy Materials 5, 1400977 (2015).
  • L. Deng, Graphene–MnO2 and graphene asymmetrical electrochemical capacitor with a high energy density in aqueous electrolyte. Journal of Power Sources 196, 10782-10787(2011).
  • K.-W. Park, Carboxylated graphene oxide–Mn2O3 nanorod composites for their electrochemical characteristics. Journal of Materials Chemistry A 2, 4292-4298 (2014).
  • K.-I. Park, Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons. Advanced Materials 24, 2999-3004 (2012).
  • K.-B. Kim & W. Jang, Transparent and flexible piezoelectric sensor for detecting human movement with a boron nitride nanosheet (BNNS). Nano Energy 54, 91-98 (2018).
  • K.-A. N. Duerloo, M. T. Ong & E. J. Reed, Intrinsic Piezoelectricity in Two-Dimensional Materials. The Journal of Physical Chemistry Letters 3, 2871-2876 (2012).
  • K. Yang, Intercalating Oleylamines in Graphite Oxide. Langmuir 28, 2904-2908(2012).
  • K. I. Park, Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv Mater 26, 2514-2520 (2014).
  • J.-M. Park, D.-J. Kwon,, Z.-J. Wang, G.-Y. Gu, & K. L. DeVries, A new strategy of carbon fiber reinforced plastic drilling evaluation using thermal measurement. Journal of Composite Materials 47, 2005-2011(2012).
  • J. Zhu, 3D Carbon/Cobalt-Nickel Mixed-Oxide Hybrid Nanostructured Arrays for Asymmetric Supercapacitors. Small 10, 2937-2945 (2014).
  • J. Zheng, High quality graphene with large flakes exfoliated by oleyl amine. Chemical Communications 46, 5728-5730 (2010).
  • J. Zhang, C. Wang & C. Bowen, Piezoelectric effects and electromechanical theories at the nanoscale. Nanoscale 6, 13314-13327 (2014).
  • J. Yu, Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer 53, 471-480 (2012).
  • J. Xu, Novel NiCo2S4@reduced graphene oxide@carbon nanotube nanocomposites for high performance supercapacitors. RSC Advances 6, 100504-100510 (2016).
  • J. Xu, A sandwich-type three-dimensional layered double hydroxide nanosheet array/graphene composite: fabrication and high supercapacitor performance. Journal of Materials Chemistry A 2, 1022-1031(2014).
  • J. W. Lee, A. S. Hall, J.-D. Kim, T. E. Mallouk, A Facile and Template-Free Hydrothermal Synthesis of Mn3O4 Nanorods on Graphene Sheets for Supercapacitor Electrodes with Long Cycle Stability. Chemistry of Materials 24, 1158-1164 (2012).
  • J. T. Mefford, W. G. Hardin, S. Dai, K. P. Johnston & K. J. Stevenson, Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nature Materials 13, 726(2014).
  • J. N. Coleman, Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568-571 (2011).
  • J. Liu, Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High-Performance Pseudocapacitive Materials. Advanced Materials 23, 2076-2081 (2011).
  • J. Kong, H. Dai, Full and Modulated Chemical Gating of Individual Carbon Nanotubes by Organic Amine Compounds. The Journal of Physical Chemistry B 105, 2890-2893 (2001).
  • J. H. Kang, Multifunctional electroactive nanocomposites based on piezoelectric boron nitride nanotubes. Acs Nano 9, 11942-11950 (2015).
  • J. H. Jung, Lead-Free NaNbO3 Nanowires for a High Output Piezoelectric Nanogenerator. ACS Nano 5, 10041-10046, (2011).
  • H. Yu, Porous graphene-polyaniline nanoarrays composite with enhanced interface bonding and electrochemical performance. Composites Science and Technology 154, 76-84 (2018).
  • H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Graphene oxide doped polyaniline for supercapacitors. Electrochemistry Communications 11, 1158-1161 (2009).
  • H. Wan, NiCo2S4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors. CrystEngComm 15, 7649-7651(2013).
  • H. W. Nesbitt & D. Banerjee, Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO 2 precipitation. American Mineralogist 83, 305-315 (1998).
  • H. Adelkhani, S. M. Jafari. Novel Nanostructured MnO2 Prepared by Pulse Electrodeposition: Characterization and Electrokinetics. 材料科学与技术 24, 857-862 (2008).
  • G.-H. Lim, Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet electrodes for self-powered human-motion detection. Nano Energy 42, 300-306(2017).
  • G. Yu, Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano letters 11, 2905-2911 (2011).
  • G. S. Gund, D. P. Dubal, B. H. Patil, S. S. Shinde & C. D. Lokhande, Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors. Electrochimica Acta 92, 205-215(2013).
  • F. Zhao, Low temperature fabrication of hydrangea-like NiCo2S4 as electrode materials for high performance supercapacitors. Materials Letters 186, 206-209(2017).
  • F. Zhang, A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy & Environmental Science 6, 1623-1632 (2013).
  • F. Tuinstra, J. L. Koenig, Raman Spectrum of Graphite. The Journal of Chemical Physics 53, 1126-1130 (1970).
  • E. V. Basiuk, Interaction of Oxidized Single-Walled Carbon Nanotubes with Vaporous Aliphatic Amines. The Journal of Physical Chemistry B 106, 1588-1597(2002).
  • E. Alonso, C. Hutter, M. Romero, A. Steinfeld, & J. Gonzalez-Aguilar, Kinetics of Mn2O3–Mn3O4 and Mn3O4–MnO Redox Reactions Performed under Concentrated Thermal Radiative Flux. Energy & Fuels 27, 4884-4890 (2013).
  • D.-W. Wang, F. Li, H.-M. Cheng, Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. Journal of Power Sources 185, 1563-1568 (2008).
  • D. Wulferding, Domain engineering of the metastable domains in the 4f-uniaxial-ferromagnet CeRu2Ga2B. Scientific Reports 7, 46296 (2017).
  • D. W. Wang, F. Li, M. Liu, G. Q. Lu & H. M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high‐rate electrochemical capacitive energy storage. Angewandte Chemie International Edition 47, 373-376 (2008).
  • D. Belanger, T. Brousse, J. W. Long, Manganese Oxides: Battery Materials Make the Leap to Electrochemical Capacitors. INTERFACE -PENNINGTON- 17, 49-52 (2008).
  • C. Zhi, Y. Bando, C. Tang, H. Kuwahara, & D. Golberg, Large‐Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties. Advanced Materials 21, 2889-2893 (2009).
  • C. Zhi, N. Hanagata,, Y. Bando, & D. Golberg, Dispersible Shortened Boron Nitride Nanotubes with Improved Molecule‐Loading Capacity. Chemistry – An Asian Journal 6, 2530-2535 (2011).
  • C. Wan, Y. Jiao & J. Li, Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. Journal of Materials Chemistry A 5, 3819-3831 (2017).
  • C. R. Bowen, H. A. Kim, P. M. Weaver, & S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy & Environmental Science 7, 25-44(2014).
  • C. N. R. Rao, & A. Nag, Inorganic Analogues of Graphene. European Journal of Inorganic Chemistry 2010, 4244-4250 (2010).
  • C. Chang, V. H. Tran, J. Wang, Y.-K. Fuh & L. Lin, Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency. Nano Letters 10, 726-731(2010).
  • A. Venkataraman, Pseudocapacitors for Energy Storage. 2486(2000).
  • A. Sumboja, C. Y. Foo, X. Wang, P. S. Lee, Large areal mass, flexible and free‐standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Advanced materials 25, 2809-2815 (2013).
  • A. P. Suryavanshi, M.-F. Yu, J. Wen, C. Tang, & Bando, Y. Elastic modulus and resonance behavior of boron nitride nanotubes. Applied Physics Letters 84, 2527-2529(2004).
  • A. Muzaffar, M. B. Ahamed, K. Deshmukh, & J. A Thirumalai, Review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renewable and Sustainable Energy Reviews 101, 123-145(2019).
  • A. Mondal, S. Maiti, S. Mahanty & A. Baran Panda, Large-scale synthesis of porous NiCo2O4 and rGO–NiCo2O4 hollow-spheres with superior electrochemical performance as a faradaic electrode. Journal of Materials Chemistry A 5, 16854-16864 (2017).
  • A. Jafari, A. A. Khatibi, M. M. Mashhadi & Ghazavizadeh, A. On the parameters influencing the effective properties of a piezoelectric nanocomposite film employing FEM. Journal of Composite Materials 47, 1987-2003 (2013).
  • A. Furlan, J. Lu, L. Hultman, U. Jansson & M. Magnuson, Crystallization characteristics and chemical bonding properties of nickel carbide thin film nanocomposites. Journal of Physics: Condensed Matter 26, 415501(2014).