박사

(A) study on application of blade coating process for scalable fabrication of perovskite solar cells

논문상세정보
' (A) study on application of blade coating process for scalable fabrication of perovskite solar cells' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Large-area solar cells
  • Scalable coating process
  • Solar module
  • perovskite
  • solar cells
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
220 0

0.0%

' (A) study on application of blade coating process for scalable fabrication of perovskite solar cells' 의 참고문헌

  • 90. Yang, I. S.; Sohn, M. R.; Do Sung, S.; Kim, Y. J.; Yoo, Y. J.; Kim, J.; Lee, W. I., Formation of pristine CuSCN layer by spray deposition method for efficient perovskite solar cell with extended stability. Nano Energy 2017, 32, 414-421
  • 9. Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray‐Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L., A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells. Angewandte Chemie 2014, 126 (37), 10056-10061.
  • 9. Niu, G.; Guo, X.; Wang, L., Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A 2015, 3 (17), 8970-8980.
  • 9. Li, Z.; Yang, M.; Park, J.-S.; Wei, S.-H.; Berry, J. J.; Zhu, K., Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials 2015, 28 (1), 284-292.
  • 9. Christians, J. A.; Fung, R. C.; Kamat, P. V., An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. Journal of the American Chemical Society 2013, 136 (2), 758- 764.
  • 89. Hou, Y.; Chen, W.; Baran, D.; Stubhan, T.; Luechinger, N. A.; Hartmeier, B.; Richter, M.; Min, J.; Chen, S.; Quiroz, C. O. R., Overcoming the interface losses in planar heterojunction perovskite‐based solar cells. Advanced materials 2016, 28 (25), 5112- 5120.
  • 88. Zhang, H.; Cheng, J.; Lin, F.; He, H.; Mao, J.; Wong, K. S.; Jen, A. K.-Y.; Choy, W. C., Pinhole-free and surface-nanostructured NiO x film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS nano 2015, 10 (1), 1503-1511.
  • 87. Ye, S.; Sun, W.; Li, Y.; Yan, W.; Peng, H.; Bian, Z.; Liu, Z.; Huang, C., CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano letters 2015, 15 (6), 3723-3728.
  • 86. Jeng, J. Y.; Chen, K. C.; Chiang, T. Y.; Lin, P. Y.; Tsai, T. D.; Chang, Y. C.; Guo, T. F.; Chen, P.; Wen, T. C.; Hsu, Y. J., Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar‐heterojunction hybrid solar cells. Advanced materials 2014, 26 (24), 4107-4113.
  • 85. Qin, P.; Tanaka, S.; Ito, S.; Tetreault, N.; Manabe, K.; Nishino, H.; Nazeeruddin, M. K.; Gr tzel, M., Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nature Communications 2014, 5, 3834.
  • 84. Christians, J. A.; Fung, R. C.; Kamat, P. V., An inorganic hole conductor for organolead halide perovskite solar cells. Improved hole conductivity with copper iodide. Journal of the American Chemical Society 2013, 136 (2), 758-764.
  • 83. Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.; Kim, H.-j.; Sarkar, A.; Nazeeruddin, M. K., Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature photonics 2013, 7 (6), 486.
  • 82. Jeon, N. J.; Lee, H. G.; Kim, Y. C.; Seo, J.; Noh, J. H.; Lee, J.; Seok, S. I., o-Methoxy Substituents in Spiro-OMeTAD for Efficient Inorganic–Organic Hybrid Perovskite Solar Cells. Journal of the American Chemical Society 2014, 136 (22), 7837-7840.
  • 81. Chen, J.-Y.; Chueh, C.-C.; Zhu, Z.; Chen, W.-C.; Jen, A. K.-Y., Low-temperature electrodeposited crystalline SnO2 as an efficient electron-transporting layer for conventional perovskite solar cells. Solar Energy Materials and Solar Cells 2017, 164, 47-55.
  • 80. Zhu, Z.; Bai, Y.; Liu, X.; Chueh, C. C.; Yang, S.; Jen, A. K. Y., Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron‐transporting layer. Advanced Materials 2016, 28 (30), 6478-6484.
  • 8. Liu, J.; Wu, Y.; Qin, C.; Yang, X.; Yasuda, T.; Islam, A.; Zhang, K.; Peng, W.; Chen, W.; Han, L., A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy & Environmental Science 2014, 7 (9), 2963-2967.
  • 8. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 1228604.
  • 8. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature materials 2014, 13 (9), 897.
  • 8. Abdelmageed, G.; Jewell, L.; Hellier, K.; Seymour, L.; Luo, B.; Bridges, F.; Zhang, J. Z.; Carter, S., Mechanisms for light induced degradation in MAPbI3 perovskite thin films and solar cells. Applied Physics Letters 2016, 109 (23), 233905.
  • 79. Anaraki, E. H.; Kermanpur, A.; Steier, L.; Domanski, K.; Matsui, T.; Tress, W.; Saliba, M.; Abate, A.; Gr tzel, M.; Hagfeldt, A.; Correa-Baena, J.-P., Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy & Environmental Science 2016, 9 (10), 3128-3134.
  • 78. Correa Baena, J. P.; Steier, L.; Tress, W.; Saliba, M.; Neutzner, S.; Matsui, T.; Giordano, F.; Jacobsson, T. J.; Srimath Kandada, A. R.; Zakeeruddin, S. M.; Petrozza, A.; Abate, A.; Nazeeruddin, M. K.; Gr tzel, M.; Hagfeldt, A., Highly efficient planar perovskite solar cells through band alignment engineering. Energy & Environmental Science 2015, 8 (10), 2928-2934.
  • 77. Su, T.-S.; Hsieh, T.-Y.; Hong, C.-Y.; Wei, T.-C., Electrodeposited Ultrathin TiO2 Blocking Layers for Efficient Perovskite Solar Cells. Scientific Reports 2015, 5, 16098.
  • 76. Fakharuddin, A.; Di Giacomo, F.; Palma, A. L.; Matteocci, F.; Ahmed, I.; Razza, S.; D’Epifanio, A.; Licoccia, S.; Ismail, J.; Di Carlo, A.; Brown, T. M.; Jose, R., Vertical TiO2 Nanorods as a Medium for Stable and High-Efficiency Perovskite Solar Modules. ACS Nano 2015, 9 (8), 8420-8429.
  • 75. Yella, A.; Heiniger, L.-P.; Gao, P.; Nazeeruddin, M. K.; Gr tzel, M., Nanocrystalline Rutile Electron Extraction Layer Enables Low-Temperature Solution Processed Perovskite Photovoltaics with 13.7% Efficiency. Nano Letters 2014, 14 (5), 2591-2596.
  • 74. Di Giacomo, F.; Zardetto, V.; D'Epifanio, A.; Pescetelli, S.; Matteocci, F.; Razza, S.; Di Carlo, A.; Licoccia, S.; Kessels, W. M.; Creatore, M., Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UVirradiated TiO2 scaffolds on plastic substrates. Advanced Energy Materials 2015, 5 (8), 1401808.
  • 73. Wu, Y.; Yang, X.; Chen, H.; Zhang, K.; Qin, C.; Liu, J.; Peng, W.; Islam, A.; Bi, E.; Ye, F., Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells. Applied Physics Express 2014, 7 (5), 052301.
  • 72. Qiu, W.; Paetzold, U. W.; Gehlhaar, R.; Smirnov, V.; Boyen, H.-G.; Tait, J. G.; Conings, B.; Zhang, W.; Nielsen, C. B.; McCulloch, I.; Froyen, L.; Heremans, P.; Cheyns, D., An electron beam evaporated TiO2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates. Journal of Materials Chemistry A 2015, 3 (45), 22824-22829.
  • 71. Chen, C.; Cheng, Y.; Dai, Q.; Song, H., Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications. Scientific Reports 2015, 5, 17684.
  • 70. Ke, W.; Fang, G.; Wang, J.; Qin, P.; Tao, H.; Lei, H.; Liu, Q.; Dai, X.; Zhao, X., Perovskite Solar Cell with an Efficient TiO2 Compact Film. ACS Applied Materials & Interfaces 2014, 6 (18), 15959-15965.
  • 7. You, J.; Hong, Z.; Yang, Y.; Chen, Q.; Cai, M.; Song, T.-B.; Chen, C.-C.; Lu, S.; Liu, Y.; Zhou, H., Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS nano 2014, 8 (2), 1674-1680.
  • 7. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348 (6240), 1234-1237.
  • 7. Qin, F.; Tong, J.; Ge, R.; Luo, B.; Jiang, F.; Liu, T.; Jiang, Y.; Xu, Z.; Mao, L.; Meng, W., Indium tin oxide (ITO)-free, top-illuminated, flexible perovskite solar cells. Journal of Materials Chemistry A 2016, 4 (36), 14017-14024.
  • 7. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
  • 69. Wang, Q.; Shao, Y.; Dong, Q.; Xiao, Z.; Yuan, Y.; Huang, J., Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy & Environmental Science 2014, 7 (7), 2359-2365.
  • 68. Jeng, J.-Y.; Chiang, Y.-F.; Lee, M.-H.; Peng, S.-R.; Guo, T.-F.; Chen, P.; Wen, T.-C., CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells. Advanced Materials 2013, 25 (27), 3727-3732.
  • 67. Liu, D.; Kelly, T. L., Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics 2013, 8, 133.
  • 66. Ke, W.; Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei, H.; Li, B.; Wan, J.; Yang, G.; Yan, Y., Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells. Journal of the American Chemical Society 2015, 137 (21), 6730-6733.
  • 65. Kim, H.-S.; Lee, J.-W.; Yantara, N.; Boix, P. P.; Kulkarni, S. A.; Mhaisalkar, S.; Grä tzel, M.; Park, N.-G., High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano letters 2013, 13 (6), 2412-2417.
  • 64. Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J., Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nature communications 2015, 6, 7747.
  • 63. Li, B.; Chen, Y.; Liang, Z.; Gao, D.; Huang, W., Interfacial engineering by using selfassembled monolayer in mesoporous perovskite solar cell. RSC Advances 2015, 5 (114), 94290-94295.
  • 62. Wang, Z.-K.; Gong, X.; Li, M.; Hu, Y.; Wang, J.-M.; Ma, H.; Liao, L.-S., Induced crystallization of perovskites by a perylene underlayer for high-performance solar cells. ACS nano 2016, 10 (5), 5479-5489.
  • 61. Gu, Z.; Zuo, L.; Larsen-Olsen, T. T.; Ye, T.; Wu, G.; Krebs, F. C.; Chen, H., Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates. Journal of Materials Chemistry A 2015, 3 (48), 24254-24260.
  • 60. Chen, Y.; Zhao, Y.; Liang, Z., Non-thermal annealing fabrication of efficient planar perovskite solar cells with inclusion of NH4Cl. Chemistry of Materials 2015, 27 (5), 1448-1451.
  • 6. Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H., Iodide management in formamidiniumlead- halide–based perovskite layers for efficient solar cells. Science 2017, 356 (6345), 1376-1379.
  • 6. Snaith, H. J., Perovskites: the emergence of a new era for low-cost, highefficiency solar cells. The Journal of Physical Chemistry Letters 2013, 4 (21), 3623-3630.
  • 6. Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T., CH3NH3Sn x Pb (1–x) I3 Perovskite solar cells covering up to 1060 nm. The journal of physical chemistry letters 2014, 5 (6), 1004- 1011.
  • 6. Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476.
  • 59. Zhao, Y.; Zhu, K., CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. The Journal of Physical Chemistry C 2014, 118 (18), 9412-9418.
  • 58. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338 (6107), 643-647.
  • 57. Moore, D. T.; Sai, H.; Tan, K. W.; Smilgies, D.-M.; Zhang, W.; Snaith, H. J.; Wiesner, U.; Estroff, L. A., Crystallization kinetics of organic–inorganic trihalide perovskites and the role of the lead anion in crystal growth. Journal of the American Chemical Society 2015, 137 (6), 2350-2358.
  • 56. Yu, H.; Wang, F.; Xie, F.; Li, W.; Chen, J.; Zhao, N., The Role of Chlorine in the Formation Process of “CH3NH3PbI3‐xClx” Perovskite. Advanced Functional Materials 2014, 24 (45), 7102-7108.
  • 55. Yantara, N.; Yanan, F.; Shi, C.; Dewi, H. A.; Boix, P. P.; Mhaisalkar, S. G.; Mathews, N., Unravelling the effects of Cl addition in single step CH3NH3PbI3 perovskite solar cells. Chemistry of Materials 2015, 27 (7), 2309-2314.
  • 54. Ding, B.; Gao, L.; Liang, L.; Chu, Q.; Song, X.; Li, Y.; Yang, G.; Fan, B.; Wang, M.; Li, C., Facile and scalable fabrication of highly efficient lead iodide perovskite thinfilm solar cells in air using gas pump method. ACS applied materials & interfaces 2016, 8 (31), 20067-20073.
  • 53. Li, X.; Bi, D.; Yi, C.; D coppet, J.-D.; Luo, J.; Zakeeruddin, S. M.; Hagfeldt, A.; Gr tzel, M., A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science 2016, 353 (6294), 58-62.
  • 52. Cotella, G.; Baker, J.; Worsley, D.; De Rossi, F.; Pleydell-Pearce, C.; Carnie, M.; Watson, T., One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications. Solar Energy Materials and Solar Cells 2017, 159, 362-369.
  • 51. Huang, F.; Dkhissi, Y.; Huang, W.; Xiao, M.; Benesperi, I.; Rubanov, S.; Zhu, Y.; Lin, X.; Jiang, L.; Zhou, Y., Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells. Nano Energy 2014, 10, 10-18.
  • 50. Gao, L.-L.; Li, C.-X.; Li, C.-J.; Yang, G.-J., Large-area high-efficiency perovskite solar cells based on perovskite films dried by the multi-flow air knife method in air. Journal of Materials Chemistry A 2017, 5 (4), 1548-1557.
  • 50. Abdi-Jalebi, M.; Dar, M. I.; Sadhanala, A.; Senanayak, S. P.; Giordano, F.; Zakeeruddin, S. M.; Grätzel, M.; Friend, R. H., Impact of a mesoporous titania– perovskite interface on the performance of hybrid organic–inorganic perovskite solar cells. The journal of physical chemistry letters 2016, 7 (16), 3264-3269.
  • 5. Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H., Iodide management in formamidiniumlead- halide–based perovskite layers for efficient solar cells. Science 2017, 356 (6345), 1376-1379.
  • 5. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348 (6240), 1234-1237.
  • 5. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature materials 2014, 13 (9), 897.
  • 5. Eperon, G. E.; Paterno, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J., Inorganic caesium lead iodide perovskite solar cells. Journal of Materials Chemistry A 2015, 3 (39), 19688-19695.
  • 49. Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347 (6221), 522-525.
  • 49. Kang, R.; Yeo, J.-S.; Lee, H. J.; Lee, S.; Kang, M.; Myoung, N.; Yim, S.-Y.; Oh, S.-H.; Kim, D.-Y., Exploration of fabrication methods for planar CH3NH3PbI3 perovskite solar cells. Nano Energy 2016, 27, 175-184.
  • 48. Liao, H. C.; Guo, P.; Hsu, C. P.; Lin, M.; Wang, B.; Zeng, L.; Huang, W.; Soe, C. M. M.; Su, W. F.; Bedzyk, M. J., Enhanced efficiency of hot‐cast large‐area planar perovskite solar cells/modules having controlled chloride incorporation. Advanced Energy Materials 2017, 7 (8), 1601660.
  • 48. Chen, J.; Xiong, Y.; Rong, Y.; Mei, A.; Sheng, Y.; Jiang, P.; Hu, Y.; Li, X.; Han, H., Solvent effect on the hole-conductor-free fully printable perovskite solar cells. Nano Energy 2016, 27, 130-137.
  • 47. Yin, M.; Xie, F.; Chen, H.; Yang, X.; Ye, F.; Bi, E.; Wu, Y.; Cai, M.; Han, L., Annealingfree perovskite films by instant crystallization for efficient solar cells. Journal of Materials Chemistry A 2016, 4 (22), 8548-8553.
  • 47. Lee, J.-W.; Dai, Z.; Lee, C.; Lee, H. M.; Han, T.-H.; De Marco, N.; Lin, O.; Choi, C. S.; Dunn, B.; Koh, J., Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells via Adduct Approach. Journal of the American Chemical Society 2018, 140 (20), 6317-6324.
  • 46. Zhou, Y.; Yang, M.; Wu, W.; Vasiliev, A. L.; Zhu, K.; Padture, N. P., Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for highperformance solar cells. Journal of Materials Chemistry A 2015, 3 (15), 8178-8184.
  • 46. Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G., Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. Journal of the American Chemical Society 2015, 137 (27), 8696-8699.
  • 45. Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray‐Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L., A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells. Angewandte Chemie International Edition 2014, 53 (37), 9898-9903.
  • 45. Wu, Y.; Xie, F.; Chen, H.; Yang, X.; Su, H.; Cai, M.; Zhou, Z.; Noda, T.; Han, L., Thermally Stable MAPbI3 Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm2 achieved by Additive Engineering. Adv Mater 2017, 29 (28).
  • 44. Yu, Y.; Yang, S.; Lei, L.; Cao, Q.; Shao, J.; Zhang, S.; Liu, Y., Ultrasmooth perovskite film via mixed anti-solvent strategy with improved efficiency. ACS applied materials & interfaces 2017, 9 (4), 3667-3676.
  • 44. Chen, C.-C.; Hong, Z.; Li, G.; Chen, Q.; Zhou, H.; Yang, Y., One-step, lowtemperature deposited perovskite solar cell utilizing small molecule additive. Journal of Photonics for Energy 2015, 5 (1).
  • 43. Ding, B.; Li, Y.; Huang, S.-Y.; Chu, Q.-Q.; Li, C.-X.; Li, C.-J.; Yang, G.-J., Material nucleation/growth competition tuning towards highly reproducible planar perovskite solar cells with efficiency exceeding 20%. Journal of Materials Chemistry A 2017, 5 (15), 6840-6848.
  • 43. Chen, Y.; Zhao, Y.; Liang, Z., Non-Thermal Annealing Fabrication of Efficient Planar Perovskite Solar Cells with Inclusion of NH4Cl. Chemistry of Materials 2015, 27 (5), 1448-1451.
  • 42. Jeon, Y. J.; Lee, S.; Kang, R.; Kim, J. E.; Yeo, J. S.; Lee, S. H.; Kim, S. S.; Yun, J. M.; Kim, D. Y., Planar heterojunction perovskite solar cells with superior reproducibility. Sci Rep 2014, 4, 6953.
  • 42. Guo, Y.; Shoyama, K.; Sato, W.; Matsuo, Y.; Inoue, K.; Harano, K.; Liu, C.; Tanaka, H.; Nakamura, E., Chemical pathways connecting lead (II) iodide and perovskite via polymeric plumbate (II) fiber. Journal of the American Chemical Society 2015, 137 (50), 15907-15914.
  • 41. Shi, Y.; Wang, X.; Zhang, H.; Li, B.; Lu, H.; Ma, T.; Hao, C., Effects of 4- tert-butylpyridine on perovskite formation and performance of solutionprocessed perovskite solar cells. Journal of Materials Chemistry A 2015, 3 (44), 22191-22198.
  • 41. Hu, Q.; Wu, H.; Sun, J.; Yan, D.; Gao, Y.; Yang, J., Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading. Nanoscale 2016, 8 (9), 5350-5357.
  • 40. Liang, P. W.; Liao, C. Y.; Chueh, C. C.; Zuo, F.; Williams, S. T.; Xin, X. K.; Lin, J.; Jen, A. K., Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv Mater 2014, 26 (22), 3748-54.
  • 40. Lee, K.; Kim, J.; Yu, H.; Lee, J. W.; Yoon, C.-M.; Kim, S. K.; Jang, J., A highly stable and efficient carbon electrode-based perovskite solar cell achieved via interfacial growth of 2D PEA2PbI4 perovskite. Journal of Materials Chemistry A 2018, 6 (47), 24560-24568.
  • 4. Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Gr tzel, M.; Mhaisalkar, S.; Sum, T. C., Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342 (6156), 344-347.
  • 4. Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & environmental science 2016, 9 (6), 1989-1997.
  • 4. Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517 (7535), 476.
  • 4. Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.; Kim, H.-j.; Sarkar, A.; Nazeeruddin, M. K., Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature photonics 2013, 7 (6), 486.
  • 39. Lee, J.-W.; Bae, S.-H.; Hsieh, Y.-T.; De Marco, N.; Wang, M.; Sun, P.; Yang, Y., A Bifunctional Lewis Base Additive for Microscopic Homogeneity in Perovskite Solar Cells. Chem 2017, 3 (2), 290-302.
  • 39. Ku, Z.; Rong, Y.; Xu, M.; Liu, T.; Han, H., Full printable processed mesoscopic CH 3 NH 3 PbI 3/TiO 2 heterojunction solar cells with carbon counter electrode. Scientific reports 2013, 3, 3132.
  • 38. Xiao, Z.; Dong, Q.; Bi, C.; Shao, Y.; Yuan, Y.; Huang, J., Solvent annealing of perovskite‐induced crystal growth for photovoltaic‐device efficiency enhancement. Advanced Materials 2014, 26 (37), 6503-6509.
  • 38. Mathies, F.; Eggers, H.; Richards, B. S.; Hernandez-Sosa, G.; Lemmer, U.; Paetzold, U. W., Inkjet-Printed Triple Cation Perovskite Solar Cells. ACS Applied Energy Materials 2018, 1 (5), 1834-1839.
  • 37. Li, S.-G.; Jiang, K.-J.; Su, M.-J.; Cui, X.-P.; Huang, J.-H.; Zhang, Q.-Q.; Zhou, X.-Q.; Yang, L.-M.; Song, Y.-L., Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells. Journal of Materials Chemistry A 2015, 3 (17), 9092-9097.
  • 37. Hu, L.; Kim, H. S.; Lee, J.-Y.; Peumans, P.; Cui, Y., Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS nano 2010, 4 (5), 2955-2963.
  • 36. Tait, J. G.; Manghooli, S.; Qiu, W.; Rakocevic, L.; Kootstra, L.; Jaysankar, M.; Masse de la Huerta, C. A.; Paetzold, U. W.; Gehlhaar, R.; Cheyns, D.; Heremans, P.; Poortmans, J., Rapid composition screening for perovskite photovoltaics via concurrently pumped ultrasonic spray coating. Journal of Materials Chemistry A 2016, 4 (10), 3792-3797.
  • 36. Chen, B.; Yang, M.; Zheng, X.; Wu, C.; Li, W.; Yan, Y.; Bisquert, J.; Garcia- Belmonte, G.; Zhu, K.; Priya, S., Impact of Capacitive Effect and Ion Migration on the Hysteretic Behavior of Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2015, 6 (23), 4693-4700.
  • 36. Botta, C.; Labille, J.; Auffan, M.; Borschneck, D.; Miche, H.; Cabi , M.; Masion, A.; Rose, J.; Bottero, J.-Y., TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: Structures and quantities. Environmental Pollution 2011, 159 (6), 1543-1550.
  • 35. Wang, J.; Liang, M.; Fang, Y.; Qiu, T.; Zhang, J.; Zhi, L., Rod‐coating: towards large‐area fabrication of uniform reduced graphene oxide films for flexible touch screens. Advanced Materials 2012, 24 (21), 2874-2878.
  • 35. Senocrate, A.; Acart rk, T.; Kim, G. Y.; Merkle, R.; Starke, U.; Gr tzel, M.; Maier, J., Interaction of oxygen with halide perovskites. Journal of Materials Chemistry A 2018, 6 (23), 10847-10855.
  • 35. Barrows, A. T.; Pearson, A. J.; Kwak, C. K.; Dunbar, A. D. F.; Buckley, A. R.; Lidzey, D. G., Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science 2014, 7 (9), 2944-2950.
  • 34. Schmidt, T. M.; Larsen‐Olsen, T. T.; Carl , J. E.; Angmo, D.; Krebs, F. C., Upscaling of perovskite solar cells: fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Advanced Energy Materials 2015, 5 (15).
  • 34. Schmidt, T. M.; Larsen‐Olsen, T. T.; Carl , J. E.; Angmo, D.; Krebs, F. C., Upscaling of perovskite solar cells: fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Advanced Energy Materials 2015, 5 (15), 1500569.
  • 34. Mohamad Noh, M. F.; Arzaee, N. A.; Safaei, J.; Mohamed, N. A.; Kim, H. P.; Mohd Yusoff, A. R.; Jang, J.; Mat Teridi, M. A., Eliminating oxygen vacancies in SnO2 films via aerosol-assisted chemical vapour deposition for perovskite solar cells and photoelectrochemical cells. Journal of Alloys and Compounds 2019, 773, 997-1008.
  • 33. Hwang, K.; Jung, Y. S.; Heo, Y. J.; Scholes, F. H.; Watkins, S. E.; Subbiah, J.; Jones, D. J.; Kim, D. Y.; Vak, D., Toward large scale roll‐to‐roll production of fully printed perovskite solar cells. Advanced materials 2015, 27 (7), 1241-1247.
  • 33. Heo, Y.-J.; Kim, J.-E.; Weerasinghe, H.; Angmo, D.; Qin, T.; Sears, K.; Hwang, K.; Jung, Y.-S.; Subbiah, J.; Jones, D. J., Printing-friendly sequential deposition via intra-additive approach for roll-to-roll process of perovskite solar cells. Nano Energy 2017, 41, 443-451.
  • 33. Ali, F.; Pham, N. D.; Bradford, H. J.; Khoshsirat, N.; Ostrikov, K.; Bell, J. M.; Wang, H.; Tesfamichael, T., Tuning the Amount of Oxygen Vacancies in Sputter‐Deposited SnOx films for Enhancing the Performance of Perovskite Solar Cells. ChemSusChem 2018, 11 (18), 3096-3103.
  • 32. Luo, B.; Naghadeh, S. B.; Allen, A. L.; Li, X.; Zhang, J. Z., Peptide‐Passivated Lead Halide Perovskite Nanocrystals Based on Synergistic Effect between Amino and Carboxylic Functional Groups. Advanced Functional Materials 2017, 27 (6), 1604018.
  • 32. Gu, Z.; Zuo, L.; Larsen-Olsen, T. T.; Ye, T.; Wu, G.; Krebs, F. C.; Chen, H., Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates. Journal of Materials Chemistry A 2015, 3 (48), 24254-24260.
  • 32. Deng, Y.; Peng, E.; Shao, Y.; Xiao, Z.; Dong, Q.; Huang, J., Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy & Environmental Science 2015, 8 (5), 1544-1550.
  • 31. Zuo, C.; Vak, D.; Angmo, D.; Ding, L.; Gao, M., One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy 2018, 46, 185- 192.
  • 31. Yang, Z.; Chueh, C. C.; Zuo, F.; Kim, J. H.; Liang, P. W.; Jen, A. K. Y., Highperformance fully printable perovskite solar cells via blade‐coating technique under the ambient condition. Advanced Energy Materials 2015, 5 (13), 1500328.
  • 31. Bai, S.; Jin, Y.; Liang, X.; Ye, Z.; Wu, Z.; Sun, B.; Ma, Z.; Tang, Z.; Wang, J.; W rfel, U., Ethanedithiol Treatment of Solution‐Processed ZnO Thin Films: Controlling the Intragap States of Electron Transporting Interlayers for Efficient and Stable Inverted Organic Photovoltaics. Advanced energy materials 2015, 5 (5), 1401606.
  • 30. Li, Z.; Klein, T. R.; Kim, D. H.; Yang, M.; Berry, J. J.; van Hest, M. F.; Zhu, K., Scalable fabrication of perovskite solar cells. Nature Reviews Materials 2018, 3 (4), 18017.
  • 30. Ciro, J.; Mej a-Escobar, M. A.; Jaramillo, F., Slot-die processing of flexible perovskite solar cells in ambient conditions. Solar Energy 2017, 150, 570-576.
  • 30. Ahn, N.; Kwak, K.; Jang, M. S.; Yoon, H.; Lee, B. Y.; Lee, J.-K.; Pikhitsa, P. V.; Byun, J.; Choi, M., Trapped charge-driven degradation of perovskite solar cells. Nature Communications 2016, 7, 13422.
  • 3. Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; Garc a de Arquer, F. P.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y.; Fan, F.; Li, P.; Quan, L. N.; Zhao, Y.; Lu, Z.-H.; Yang, Z.; Hoogland, S.; Sargent, E. H., Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355 (6326), 722-726.
  • 3. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342 (6156), 341-344.
  • 3. Leyden, M. R.; Jiang, Y.; Qi, Y., Chemical vapor deposition grown formamidinium perovskite solar modules with high steady state power and thermal stability. Journal of Materials Chemistry A 2016, 4 (34), 13125-13132.
  • 3. Heo, J. H.; Song, D. H.; Han, H. J.; Kim, S. Y.; Kim, J. H.; Kim, D.; Shin, H. W.; Ahn, T. K.; Wolf, C.; Lee, T. W.; Im, S. H., Planar CH3NH3PbI3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate. Adv Mater 2015, 27 (22), 3424-30.
  • 29. Wang, P.; Zhao, J.; Liu, J.; Wei, L.; Liu, Z.; Guan, L.; Cao, G., Stabilization of organometal halide perovskite films by SnO2 coating with inactive surface hydroxyl groups on ZnO nanorods. Journal of Power Sources 2017, 339, 51-60.
  • 29. Qin, T.; Huang, W.; Kim, J.-E.; Vak, D.; Forsyth, C.; McNeill, C. R.; Cheng, Y.- B., Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy 2017, 31, 210-217.
  • 29. Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y., A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345 (6194), 295-298.
  • 28. Zhang, X.; Qin, J.; Xue, Y.; Yu, P.; Zhang, B.; Wang, L.; Liu, R., Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Scientific Reports 2014, 4, 4596.
  • 28. Kim, J.-E.; Jung, Y.-S.; Heo, Y.-J.; Hwang, K.; Qin, T.; Kim, D.-Y.; Vak, D., Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition. Solar Energy Materials and Solar Cells 2018, 179, 80-86.
  • 28. Kim, D. H.; Whitaker, J. B.; Li, Z.; van Hest, M. F.; Zhu, K., Outlook and challenges of perovskite solar cells toward terawatt-scale photovoltaic module technology. Joule 2018, 2 (8), 1437-1451.
  • 27. Park, S. Y.; Baek, M. Y.; Ju, Y.; Kim, D. H.; Moon, C. S.; Noh, J. H.; Jung, H. S., Simultaneous Ligand Exchange Fabrication of Flexible Perovskite Solar Cells using Newly Synthesized Uniform Tin Oxide Quantum Dots. The journal of physical chemistry letters 2018, 9 (18), 5460-5467.
  • 27. Jung, Y. S.; Hwang, K.; Heo, Y. J.; Kim, J. E.; Lee, D.; Lee, C. H.; Joh, H. I.; Yeo, J. S.; Kim, D. Y., One-Step Printable Perovskite Films Fabricated under Ambient Conditions for Efficient and Reproducible Solar Cells. ACS Appl Mater Interfaces 2017, 9 (33), 27832-27838.
  • 27. Jung, E. H.; Jeon, N. J.; Park, E. Y.; Moon, C. S.; Shin, T. J.; Yang, T.-Y.; Noh, J. H.; Seo, J., Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 2019, 567 (7749), 511-515.
  • 26. Zhu, Z.; Bai, Y.; Liu, X.; Chueh, C.-C.; Yang, S.; Jen, A. K.-Y., Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO2 Nanocrystals as the Robust Electron-Transporting Layer. Advanced Materials 2016, 28 (30), 6478-6484.
  • 26. Yang, M.; Li, Z.; Reese, M. O.; Reid, O. G.; Kim, D. H.; Siol, S.; Klein, T. R.; Yan, Y.; Berry, J. J.; van Hest, M. F., Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nature Energy 2017, 2 (5), 17038.
  • 26. Cotella, G.; Baker, J.; Worsley, D.; De Rossi, F.; Pleydell-Pearce, C.; Carnie, M.; Watson, T., One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications. Solar Energy Materials and Solar Cells 2017, 159, 362-369.
  • 25. Yang, D.; Yang, R.; Wang, K.; Wu, C.; Zhu, X.; Feng, J.; Ren, X.; Fang, G.; Priya, S.; Liu, S. F., High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO 2. Nature communications 2018, 9 (1), 3239.
  • 25. Li, S.-G.; Jiang, K.-J.; Su, M.-J.; Cui, X.-P.; Huang, J.-H.; Zhang, Q.-Q.; Zhou, X.-Q.; Yang, L.-M.; Song, Y.-L., Inkjet printing of CH 3 NH 3 PbI 3 on a mesoscopic TiO 2 film for highly efficient perovskite solar cells. Journal of Materials Chemistry A 2015, 3 (17), 9092-9097.
  • 25. Heo, J. H.; Lee, M. H.; Jang, M. H.; Im, S. H., Highly efficient CH 3 NH 3 PbI 3− x Cl x mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. Journal of Materials Chemistry A 2016, 4 (45), 17636-17642.
  • 24. Zhu, M.; Liu, W.; Ke, W.; Clark, S.; Secor, E. B.; Song, T.-B.; Kanatzidis, M. G.; Li, X.; Hersam, M. C., Millisecond-pulsed photonically-annealed tin oxide electron transport layers for efficient perovskite solar cells. Journal of Materials Chemistry A 2017, 5 (46), 24110-24115.
  • 24. Razza, S.; Di Giacomo, F.; Matteocci, F.; Cina, L.; Palma, A. L.; Casaluci, S.; Cameron, P.; D'epifanio, A.; Licoccia, S.; Reale, A., Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process. Journal of Power Sources 2015, 277, 286-291.
  • 24. Priyadarshi, A.; Haur, L. J.; Murray, P.; Fu, D.; Kulkarni, S.; Xing, G.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G., A large area (70 cm 2) monolithic perovskite solar module with a high efficiency and stability. Energy & Environmental Science 2016, 9 (12), 3687-3692.
  • 23. Yang, M.; Li, Z.; Reese, M. O.; Reid, O. G.; Kim, D. H.; Siol, S.; Klein, T. R.; Yan, Y.; Berry, J. J.; van Hest, M. F., Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nature Energy 2017, 2, 17038.
  • 23. Jiang, Q.; Chu, Z.; Wang, P.; Yang, X.; Liu, H.; Wang, Y.; Yin, Z.; Wu, J.; Zhang, X.; You, J., Planar‐Structure Perovskite Solar Cells with Efficiency beyond 21%. Advanced Materials 2017, 29 (46), 1703852.
  • 23. Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H., Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science 2015, 8 (5), 1602-1608.
  • 22. Razza, S.; Di Giacomo, F.; Matteocci, F.; Cina, L.; Palma, A. L.; Casaluci, S.; Cameron, P.; D'epifanio, A.; Licoccia, S.; Reale, A., Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process. Journal of Power Sources 2015, 277, 286-291.
  • 22. Deng, Y.; Wang, Q.; Yuan, Y.; Huang, J., Vividly colorful hybrid perovskite solar cells by doctor-blade coating with perovskite photonic nanostructures. Materials Horizons 2015, 2 (6), 578-583.
  • 22. Anaraki, E. H.; Kermanpur, A.; Steier, L.; Domanski, K.; Matsui, T.; Tress, W.; Saliba, M.; Abate, A.; Gr tzel, M.; Hagfeldt, A., Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy & Environmental Science 2016, 9 (10), 3128-3134.
  • 21. Xiao, C.; Wang, C.; Ke, W.; Gorman, B. P.; Ye, J.; Jiang, C.-S.; Yan, Y.; Al- Jassim, M. M., Junction Quality of SnO2-Based Perovskite Solar Cells Investigated by Nanometer-Scale Electrical Potential Profiling. ACS applied materials & interfaces 2017, 9 (44), 38373-38380.
  • 21. Tang, S.; Deng, Y.; Zheng, X.; Bai, Y.; Fang, Y.; Dong, Q.; Wei, H.; Huang, J., Composition Engineering in Doctor‐Blading of Perovskite Solar Cells. Advanced Energy Materials 2017, 7 (18).
  • 21. Matteocci, F.; Razza, S.; Di Giacomo, F.; Casaluci, S.; Mincuzzi, G.; Brown, T.; D'Epifanio, A.; Licoccia, S.; Di Carlo, A., Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process. Physical Chemistry Chemical Physics 2014, 16 (9), 3918-3923.
  • 20. Seo, J.; Park, S.; Chan Kim, Y.; Jeon, N. J.; Noh, J. H.; Yoon, S. C.; Seok, S. I., Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy & Environmental Science 2014, 7 (8), 2642-2646.
  • 20. Mallajosyula, A. T.; Fernando, K.; Bhatt, S.; Singh, A.; Alphenaar, B. W.; Blancon, J.-C.; Nie, W.; Gupta, G.; Mohite, A. D., Large-area hysteresis-free perovskite solar cells via temperature controlled doctor blading under ambient environment. Applied Materials Today 2016, 3, 96-102.
  • 20. Ke, W.; Zhao, D.; Cimaroli, A. J.; Grice, C. R.; Qin, P.; Liu, Q.; Xiong, L.; Yan, Y.; Fang, G., Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells. Journal of Materials Chemistry A 2015, 3 (47), 24163-24168.
  • 2. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
  • 2. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater 2014, 13 (9), 897-903.
  • 2. Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science 2014, 7 (3), 982-988.
  • 2. Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G., Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. Journal of the American Chemical Society 2015, 137 (27), 8696-8699.
  • 19. Yang, Z.; Chueh, C. C.; Zuo, F.; Kim, J. H.; Liang, P. W.; Jen, A. K. Y., Highperformance fully printable perovskite solar cells via blade‐coating technique under the ambient condition. Advanced Energy Materials 2015, 5 (13).
  • 19. Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu, J.; Zhang, X.; You, J., Enhanced electron extraction using SnO 2 for highefficiency planar-structure HC (NH 2) 2 PbI 3-based perovskite solar cells. Nature Energy 2017, 2 (1), 16177.
  • 19. Chart, N. E., NREL Efficiency Chart. 2017.
  • 18. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., Highperformance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348 (6240), 1234-1237.
  • 18. Dong, Q.; Shi, Y.; Zhang, C.; Wu, Y.; Wang, L., Energetically favored formation of SnO2 nanocrystals as electron transfer layer in perovskite solar cells with high efficiency exceeding 19%. Nano Energy 2017, 40, 336-344.
  • 18. Deng, Y.; Peng, E.; Shao, Y.; Xiao, Z.; Dong, Q.; Huang, J., Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy & Environmental Science 2015, 8 (5), 1544-1550.
  • 17. Kim, Y. C.; Jeon, N. J.; Noh, J. H.; Yang, W. S.; Seo, J.; Yun, J. S.; Ho‐Baillie, A.; Huang, S.; Green, M. A.; Seidel, J., Beneficial effects of PbI2 incorporated in organolead halide perovskite solar cells. Advanced Energy Materials 2016, 6 (4), 1502104.
  • 17. Hu, Q.; Wu, H.; Sun, J.; Yan, D.; Gao, Y.; Yang, J., Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading. Nanoscale 2016, 8 (9), 5350-5357.
  • 17. Baena, J. P. C.; Steier, L.; Tress, W.; Saliba, M.; Neutzner, S.; Matsui, T.; Giordano, F.; Jacobsson, T. J.; Kandada, A. R. S.; Zakeeruddin, S. M., Highly efficient planar perovskite solar cells through band alignment engineering. Energy & Environmental Science 2015, 8 (10), 2928-2934.
  • 16. Ma, J.; Yang, G.; Qin, M.; Zheng, X.; Lei, H.; Chen, C.; Chen, Z.; Guo, Y.; Han, H.; Zhao, X., MgO Nanoparticle Modified Anode for Highly Efficient SnO2‐ Based Planar Perovskite Solar Cells. Advanced Science 2017, 4 (9), 1700031.
  • 16. Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476.
  • 16. Back, H.; Kim, J.; Kim, G.; Kim, T. K.; Kang, H.; Kong, J.; Lee, S. H.; Lee, K., Interfacial modification of hole transport layers for efficient large-area perovskite solar cells achieved via blade-coating. Solar Energy Materials and Solar Cells 2016, 144, 309-315.
  • 15. Kim, J. H.; Williams, S. T.; Cho, N.; Chueh, C. C.; Jen, A. K. Y., Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Blade‐Coating. Advanced Energy Materials 2015, 5 (4).
  • 15. Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y., Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society 2013, 136 (2), 622-625.
  • 15. Byranvand, M. M.; Kim, T.; Song, S.; Kang, G.; Ryu, S. U.; Park, T., p‐Type CuI Islands on TiO2 Electron Transport Layer for a Highly Efficient Planar‐ Perovskite Solar Cell with Negligible Hysteresis. Advanced Energy Materials 2018, 8 (5), 1702235.
  • 14. Liu, X.; Xia, X.; Cai, Q.; Cai, F.; Yang, L.; Yan, Y.; Wang, T., Efficient planar heterojunction perovskite solar cells with weak hysteresis fabricated via bar coating. Solar Energy Materials and Solar Cells 2017, 159, 412-417.
  • 14. Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501 (7467), 395.
  • 14. Giordano, F.; Abate, A.; Baena, J. P. C.; Saliba, M.; Matsui, T.; Im, S. H.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Hagfeldt, A.; Graetzel, M., Enhanced electronic properties in mesoporous TiO 2 via lithium doping for high-efficiency perovskite solar cells. Nature communications 2016, 7, 10379.
  • 14. Arora, N.; Dar, M. I.; Hinderhofer, A.; Pellet, N.; Schreiber, F.; Zakeeruddin, S. M.; Gr tzel, M., Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 2017, 358 (6364), 768-771.
  • 13. Luo, J.; Xia, J.; Yang, H.; Chen, L.; Wan, Z.; Han, F.; Malik, H. A.; Zhu, X.; Jia, C., Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid. Energy & Environmental Science 2018.
  • 13. Jung, M.; Kim, Y. C.; Jeon, N. J.; Yang, W. S.; Seo, J.; Noh, J. H.; Il Seok, S., Thermal Stability of CuSCN Hole Conductor‐Based Perovskite Solar Cells. ChemSusChem 2016, 9 (18), 2592-2596.
  • 13. Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gr tzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499 (7458), 316.
  • 13. Barrows, A. T.; Pearson, A. J.; Kwak, C. K.; Dunbar, A. D.; Buckley, A. R.; Lidzey, D. G., Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science 2014, 7 (9), 2944-2950.
  • 12. Maniarasu, S.; Korukonda, T. B.; Manjunath, V.; Ramasamy, E.; Ramesh, M.; Veerappan, G., Recent advancement in metal cathode and hole-conductor-free perovskite solar cells for low-cost and high stability: A route towards commercialization. Renewable and Sustainable Energy Reviews 2018, 82, 845- 857.
  • 12. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
  • 12. Das, S.; Yang, B.; Gu, G.; Joshi, P. C.; Ivanov, I. N.; Rouleau, C. M.; Aytug, T.; Geohegan, D. B.; Xiao, K., High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. Acs Photonics 2015, 2 (6), 680-686.
  • 12. Cao, J.; Wu, B.; Chen, R.; Wu, Y.; Hui, Y.; Mao, B. W.; Zheng, N., Efficient, Hysteresis‐Free, and Stable Perovskite Solar Cells with ZnO as Electron‐ Transport Layer: Effect of Surface Passivation. Advanced Materials 2018, 30 (11), 1705596.
  • 11. Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y., Interface engineering of highly efficient perovskite solar cells. Science 2014, 345 (6196), 542-546.
  • 11. Pattanasattayavong, P.; Yaacobi‐Gross, N.; Zhao, K.; Ndjawa, G. O. N.; Li, J.; Yan, F.; O'Regan, B. C.; Amassian, A.; Anthopoulos, T. D., Hole‐transporting transistors and circuits based on the transparent inorganic semiconductor copper (I) thiocyanate (CuSCN) processed from solution at room temperature. Advanced Materials 2013, 25 (10), 1504-1509.
  • 11. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E., Lead iodide perovskite sensitized allsolid- state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports 2012, 2, 591.
  • 11. Hwang, K.; Jung, Y. S.; Heo, Y. J.; Scholes, F. H.; Watkins, S. E.; Subbiah, J.; Jones, D. J.; Kim, D. Y.; Vak, D., Toward Large Scale Roll‐to‐Roll Production of Fully Printed Perovskite Solar Cells. Advanced Materials 2015, 27 (7), 1241- 1247.
  • 10. Yang, J.; Siempelkamp, B. D.; Liu, D.; Kelly, T. L., Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS nano 2015, 9 (2), 1955-1963.
  • 10. Snaith, H. J., Perovskites: The Emergence of a New Era for Low-Cost, High- Efficiency Solar Cells. The Journal of Physical Chemistry Letters 2013, 4 (21), 3623-3630.
  • 10. O'Regan, B.; Schwartz, D. T.; Zakeeruddin, S. M.; Gr tzel, M., Electrodeposited Nanocomposite n–p Heterojunctions for Solid‐State Dye‐Sensitized Photovoltaics. Advanced Materials 2000, 12 (17), 1263-1267.
  • 10. Moon, S.-J.; Yum, J.-H.; L fgren, L.; Walter, A.; Sansonnens, L.; Benkhaira, M.; Nicolay, S.; Bailat, J.; Ballif, C., Laser-scribing patterning for the production of organometallic halide perovskite solar modules. IEEE Journal of Photovoltaics 2015, 5 (4), 1087-1092.
  • 1. Sani, F.; Shafie, S.; Lim, H.; Musa, A., Advancement on lead-free organic-inorganic halide perovskite solar cells: A review. Materials 2018, 11 (6), 1008.
  • 1. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports 2012, 2, 591.
  • 1. Gr tzel, M., The light and shade of perovskite solar cells. Nature materials 2014, 13 (9), 838.
  • 1. Bi, D.; Tress, W.; Dar, M. I.; Gao, P.; Luo, J.; Renevier, C.; Schenk, K.; Abate, A.; Giordano, F.; Correa Baena, J.-P.; Decoppet, J.-D.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Gr tzel, M.; Hagfeldt, A., Efficient luminescent solar cells based on tailored mixed-cation perovskites. Science Advances 2016, 2 (1), e1501170.