박사

Modeling and stability analysis of power system frequency response considering demand response and virtual inertia

논문상세정보
' Modeling and stability analysis of power system frequency response considering demand response and virtual inertia' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • demand response
  • load-frequency control
  • steady-state error
  • system frequency response
  • virtual inertia
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
28 0

0.0%

' Modeling and stability analysis of power system frequency response considering demand response and virtual inertia' 의 참고문헌

  • ‘IEEE Guide for the Application of Protective Relays Used for Abnormal Frequency Load Shedding and Restoration’IEEE Std C37117-2007, 2007, pp. 1– 55.
  • Zhong, Q.-C., Weiss, G.: ‘Synchronverters: Inverters That Mimic Synchronous Generators’IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 1259–1267.
  • Zaman, M.S., Bukhari, S.B.A., Haider, R., Hazazi, K.M., Kim, C.H., Ashraf, H.M.: ‘Demand Response Augmented Control with Load Restore Capabilities for Frequency Regulation of an RES-Integrated Power System’, in ‘2018 International Conference on Electrical Engineering (ICEE)’ 2018 International Conference on Electrical Engineering (ICEE), (2018), pp. 1–5
  • Van, T.V., Visscher, K., Diaz, J., et al.: ‘Virtual synchronous generator: An element of future grids’, in ‘Innovative Smart Grid Technologies Conference Europe (ISGT Europe), 2010 IEEE PES’ (IEEE, 2010), pp. 1–7
  • Terzija, V.V.: ‘Adaptive underfrequency load shedding based on the magnitude of the disturbance estimation’IEEE Trans. Power Syst., 2006, 21, (3), pp. 1260–1266.
  • Tamrakar, U., Shrestha, D., Maharjan, M., Bhattarai, B.P., Hansen, T.M., Tonkoski, R.: ‘Virtual Inertia: Current Trends and Future Directions’Appl. Sci., 2017, 7, (7), p. 654.
  • Stein, K., Tun, M., Musser, K., Rocheleau, R.: ‘Evaluation of a 1 MW, 250 kWhr Battery Energy Storage System for Grid Services for the Island of Hawaii’Energies, 2018, 11, (12), p. 3367.
  • Sondhi, S., Hote, Y.V.: ‘Fractional order PID controller for load frequency control’Energy Convers. Manag., 2014, 85, pp. 343–353.
  • Shariatzadeh, F., Mandal, P., Srivastava, A.K.: ‘Demand response for sustainable energy systems: A review, application and implementation strategy’Renew. Sustain. Energy Rev., 2015, 45, pp. 343–350.
  • Shahid, K., Altin, M., Mikkelsen, L.M., L venstein Olsen, R., Iov, F.: ‘ICT Based Performance Evaluation of Primary Frequency Control Support from Renewable Power Plants in Smart Grids’Energies, 2018, 11, (6), p. 1329.
  • Saadat, H.: ‘Power system analysis’ (McGraw-Hill, 1999)
  • Rezaei, N., Kalantar, M.: ‘Smart microgrid hierarchical frequency control ancillary service provision based on virtual inertia concept: An integrated demand response and droop controlled distributed generation framework’Energy Convers. Manag., 2015, 92, pp. 287–301.
  • Rahmani, M., Sadati, N.: ‘Hierarchical optimal robust load-frequency control for power systems’IET Gener. Transm. Amp Distrib., 2012, 6, (4), pp. 303–312.
  • Pourmousavi, S.A., Nehrir, M.H.: ‘Real-Time Central Demand Response for Primary Frequency Regulation in Microgrids’IEEE Trans. Smart Grid, 2012, 3, (4), pp. 1988–1996.
  • Pourmousavi, S.A., Nehrir, M.H.: ‘Introducing Dynamic Demand Response in the LFC Model’IEEE Trans. Power Syst., 2014, 29, (4), pp. 1562–1572.
  • Pieroni, T., Dotta, D.: ‘Identification of the Most Effective Point of Connection for Battery Energy Storage Systems Focusing on Power System Frequency Response Improvement’Energies, 2018, 11, (4), p. 763.
  • Ogata, K.: ‘Modern control engineering’ (Prentice-Hall, 2010, 5th ed)
  • Nisar, A., Thomas, M.S.: ‘Comprehensive Control for Microgrid Autonomous Operation With Demand Response’IEEE Trans. Smart Grid, 2017, 8, (5), pp. 2081–2089.
  • Muhammad Saeed Uz Zaman, Syed Bukhari, Khalid Hazazi, Zunaib Haider, Raza Haider, Chul-Hwan Kim: ‘Frequency Response Analysis of a Single-Area Power System with a Modified LFC Model Considering Demand Response and Virtual Inertia’Energies, 2018, 11, (4), p. 787.
  • Ma, Y., Cao, W., Yang, L., Wang, F.(, Tolbert, L.M.: ‘Virtual Synchronous Generator Control of Full Converter Wind Turbines With Short-Term Energy Storage’IEEE Trans. Ind. Electron., 2017, 64, (11), pp. 8821–8831.
  • Lu, Z., Guo, K., Yan, G., He, L.: ‘Optimal Dispatch of Power System Integrated with Wind Power Considering Virtual Generator Units of Demand Response and Carbon Trading’Dianli Xitong ZidonghuaAutomation Electr. Power Syst., 2017, 41, (15), pp. 58–65.
  • Li, C., Xu, J., Zhao, C.: ‘A Coherency-Based Equivalence Method for MMC Inverters Using Virtual Synchronous Generator Control’IEEE Trans. Power Deliv., 2016, 31, (3), pp. 1369–1378.
  • Kundur, P.: ‘Power System Stability and Control’ (McGraw-Hill Education, 1994)
  • Khooban, M.H.: ‘Secondary Load Frequency Control of Time-Delay Stand-Alone Microgrids With Electric Vehicles’IEEE Trans. Ind. Electron., 2018, 65, (9), pp. 7416–7422.
  • Khamsi, M.A., Kirk, W.A.: ‘An Introduction to Metric Spaces and Fixed Point Theory’ (John Wiley & Sons, 2011)
  • Kerdphol, T., Rahman, F., Mitani, Y., Hongesombut, K., K feoğlu, S.: ‘Virtual Inertia Control-Based Model Predictive Control for Microgrid Frequency Stabilization Considering High Renewable Energy Integration’Sustainability, 2017, 9, (5), p. 773.
  • Karapanos, V., de Haan, S., Zwetsloot, K.: ‘Testing a virtual synchronous generator in a real time simulated power system’, in ‘Proc. Int. Conf. on Power Systems Transients (IPST)’ (2011)
  • Hussain, A., Bui, V.-H., Kim, H.-M.: ‘Impact Analysis of Demand Response Intensity and Energy Storage Size on Operation of Networked Microgrids’Energies, 2017, 10, (7), p. 882.
  • Huang, H., Li, F.: ‘Sensitivity Analysis of Load-Damping Characteristic in Power System Frequency Regulation’IEEE Trans. Power Syst., 2013, 28, (2), pp. 1324– 1335.
  • Hoseinzadeh, B., Leth, B.: ‘Centralized coordination of emergency control and protection system using online outage sensitivity index’Electr. Power Syst. Res., 2018, 163, pp. 413–422.
  • Hirase, Y., Abe, K., Sugimoto, K., Sakimoto, K., Bevrani, H., Ise, T.: ‘A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids’Appl. Energy, 2018, 210, pp. 699–710.
  • Haider, Z.M., Mehmood, K.K., Rafique, M.K., Khan, S.U., Lee, S.-J., Kim, C.- H.: ‘Water-filling algorithm based approach for management of responsive residential loads’J. Mod. Power Syst. Clean Energy, 2018, 6, (1), pp. 118–131.
  • Guha, D., Roy, P.K., Banerjee, S.: ‘Multi-verse optimisation: a novel method for solution of load frequency control problem in power system’IET Gener. Transm. Amp Distrib., 2017, 11, (14), pp. 3601–3611.
  • Gholamrezaie, V., Dozein, M.G., Monsef, H., Wu, B.: ‘An Optimal Frequency Control Method Through a Dynamic Load Frequency Control (LFC) Model Incorporating Wind Farm’IEEE Syst. J., 2018, 12, (1), pp. 392–401.
  • Dorf, R.C., Bishop, R.H.: ‘Modern control systems’ (Pearson, 2010, 12th ed)
  • Delavari, A., Kamwa, I.: ‘Virtual inertia-based load modulation for power system primary frequency regulation’, in ‘2017 IEEE Power Energy Society General Meeting’ 2017 IEEE Power Energy Society General Meeting, (2017), pp. 1–5
  • Chen, Y., Hesse, R., Turschner, D., Beck, H.P.: ‘Improving the grid power quality using virtual synchronous machines’, in ‘2011 International Conference on Power Engineering, Energy and Electrical Drives’ 2011 International Conference on Power Engineering, Energy and Electrical Drives, (2011), pp. 1–6
  • Chang-Chien, L.-R., Wu, Y.-S., Cheng, J.-S.: ‘Online estimation of system parameters for artificial intelligence applications to load frequency control’IET Gener. Transm. Amp Distrib., 2011, 5, (8), pp. 895–902.
  • Bevrani, H.: ‘Virtual Inertia-Based Frequency Control’, in Bevrani, H. (Ed.): ‘Robust Power System Frequency Control’ (Springer International Publishing, 2014), pp. 349–376
  • Bevrani, H.: ‘Robust Power System Frequency Control’ (Springer International Publishing, 2014)
  • Anderson, P.M., Mirheydar, M.: ‘An adaptive method for setting underfrequency load shedding relays’IEEE Trans. Power Syst., 1992, 7, (2), pp. 647–655.
  • Anderson, P.M., Mirheydar, M.: ‘A low-order system frequency response model’IEEE Trans. Power Syst., 1990, 5, (3), pp. 720–729.
  • Anderson, P.M., Fouad, A.A.: ‘Power system control and stability’ (John Wiley & Sons, 2008)
  • Amjady, N., Fallahi, F.: ‘Determination of frequency stability border of power system to set the thresholds of under frequency load shedding relays’Energy Convers. Manag., 2010, 51, (10), pp. 1864–1872.
  • Albu, M., Nechifor, A., Creanga, D.: ‘Smart storage for active distribution networks estimation and measurement solutions’, in ‘2010 IEEE Instrumentation Measurement Technology Conference Proceedings’ 2010 IEEE Instrumentation Measurement Technology Conference Proceedings, (2010), pp. 1486–1491
  • Albu, M., Calin, M., Federenciuc, D., Diaz, J.: ‘The measurement layer of the Virtual Synchronous Generator operation in the field test’, in ‘2011 IEEE International Workshop on Applied Measurements for Power Systems (AMPS)’ 2011 IEEE International Workshop on Applied Measurements for Power Systems (AMPS), (2011), pp. 85–89
  • Aik, D.L.H.: ‘A general-order system frequency response model incorporating load shedding: analytic modeling and applications’IEEE Trans. Power Syst., 2006, 21, (2), pp. 709–717.
  • Abbasi, E.: ‘Coordinated primary control reserve by flexible demand and wind power through ancillary service–centered virtual power plant’Int. Trans. Electr. Energy Syst., no date, 27, (12), p. e2452.