박사

Investigation of NiO thin films for improving photovoltaic performance of the perovskite solar cells

Zhao, Xing 2019년
논문상세정보
' Investigation of NiO thin films for improving photovoltaic performance of the perovskite solar cells' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Potassium
  • nio
  • oxygen partial pressure
  • perovskite solar cells
  • thermal stability
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
216 0

0.0%

' Investigation of NiO thin films for improving photovoltaic performance of the perovskite solar cells' 의 참고문헌

  • (4.9) Zhao, X.; Chen, J.; Park, N.-G. Importance of Oxygen Partial Pressure in Annealing NiO Film for High Efficiency Inverted Perovskite Solar Cells. Sol. RRL 2019, 1800339.
  • (4.8) Barsoum, M. W. Fundamentals of Ceramics; B Cantor, Goringe, M. J., Eds.; Institute of Physics Publishing: Bristol, UK, 2003.
  • (4.7) Gupta, P.; Dutta, T.; Mal, S.; Narayan, J. Controlled P-type to N-type Conductivity Transformation in NiO Thin Films by Ultraviolet-Laser Irradiation. Journal of Applied Physics 2012, 111, 013706.
  • (4.6) Zhao, X.; Kim, H.-S.; Seo, J.-Y.; Park, N.-G. Effect of Selective Contacts on the Thermal Stability of Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 7148–7153.
  • (4.5) Carley, A. F.; Jackson, S. D.; O’Shea, J. N.; Roberts, M. W. The Formation and Characterization of Ni3+—an X-Ray Photoelectron Spectroscopic Investigation of Potassium-Doped Ni(110)–O. Surf. Sci. Lett. 1999, 440, L868–L874.
  • (4.4) Yang, M.; Pu, H.; Zhou, Q.; Zhang, Q. Transparent P-Type Conducting KDoped NiO Films Deposited by Pulsed Plasma Deposition. Thin Solid Films 2012, 520, 5884–5888.
  • (4.35) Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale 2011, 3, 4088.
  • (4.34) Zhao, P.; Yin, W.; Kim, M.; Han, M.; Song, Y. J.; Ahn, T. K.; Jung, H. S. Improved Carriers Injection Capacity in Perovskite Solar Cells by Introducing A-Site Interstitial Defects. J. Mater. Chem. A 2017, 5, 7905–7911.
  • (4.33) Teo, S.; Guo, Z.; Xu, Z.; Zhang, C.; Kamata, Y.; Hayase, S.; Ma, T. The Role of Lanthanum in a Nickel Oxide-Based Inverted Perovskite Solar Cell for Efficiency and Stability Improvement. ChemSusChem 2019, 12, 518–526.
  • (4.32) R hr, J. A.; Moia, D.; Haque, S. A.; Kirchartz, T.; Nelson, J. Exploring the Validity and Limitations of the Mott-Gurney Law for Charge-Carrier Mobility Determination of Semiconducting Thin-Films. J. Phys. Condens. Matter 2018, 30.
  • (4.31) Islam, M. B.; Yanagida, M.; Shirai, Y.; Nabetani, Y.; Miyano, K. NiOx Hole Transport Layer for Perovskite Solar Cells with Improved Stability and Reproducibility. ACS Omega 2017, 2, 2291–2299.
  • (4.30) Miyakoshi, A.; Ueno, A.; Ichikawa, M. XPS and TPD Characterization of Manganese-Substituted Iron-Potassium Oxide Catalysts Which Are Selective for Dehydrogenation of Ethylbenzene into Styrene. Appl. Catal. A Gen. 2001, 219, 249–258.
  • (4.3) Chen, W.; Wu, Y.; Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Gr tzel, M.; Han, L. Efficient and Stable Large-Area Perovskite Solar Cells with Inorganic Charge Extraction Layers. Science. 2015, 350, 944– 948.
  • (4.29) Biesinger, M. C.; Payne, B. P.; Lau, L. W. M.; Gerson, A.; Smart, R. S. C. XRay Photoelectron Spectroscopic Chemical State Quantification of Mixed Nickel Metal, Oxide and Hydroxide Systems. Surf. Interface Anal. 2009, 41, 324–332.
  • (4.28) Ratcliff, E. L.; Meyer, J.; Steirer, K. X.; Garcia, A.; Berry, J. J.; Ginley, D. S.; Olson, D. C.; Kahn, A.; Armstrong, N. R. Evidence for Near-Surface NiOOH Species in Solution-Processed NiOx Selective Interlayer Materials: Impact on Energetics and the Performance of Polymer Bulk Heterojunction Photovoltaics. Chem. Mater. 2011, 23, 4988–5000.
  • (4.27) Grosvenor, A. P.; Biesinger, M. C.; Smart, R. S. C.; McIntyre, N. S. New Interpretations of XPS Spectra of Nickel Metal and Oxides. Surf. Sci. 2006, 600, 1771–1779.
  • (4.26) Davidson, A.; Tempere, J. F.; Che, M.; Roulet, H.; Dufour, G. Spectroscopic Studies of Nickel(II) and Nickel(III) Species Generated upon Thermal Treatments of Nickel/Ceria-Supported Materials. J. Phys. Chem. 1996, 100, 4919–4929.
  • (4.25) Wang, Y.; Ghanbaja, J.; Bruy re, S.; Boulet, P.; Soldera, F.; Horwat, D.; M cklich, F.; Pierson, J. F. Local Heteroepitaxial Growth to Promote the Selective Growth Orientation, Crystallization and Interband Transition of Sputtered NiO Thin Films. CrystEngComm 2016, 18, 1732–1739.
  • (4.24) Jang, W. L.; Lu, Y. M.; Hwang, W. S.; Hsiung, T. L.; Wang, H. P. Point Defects in Sputtered NiO Films. Appl. Phys. Lett. 2009, 94, 1–4.
  • (4.23) Swegle, J. W.; Grady, D. E. Shock Viscosity and the Prediction of Shock Wave Rise Times. J. Appl. Phys. 1985, 58, 692–701.
  • (4.22) Zhang, J. Y.; Li, W. W.; Hoye, R. L. Z.; MacManus-Driscoll, J. L.; Budde, M.; Bierwagen, O.; Wang, L.; Du, Y.; Wahila, M. J.; Piper, L. F. J.; Lee, T. L.; Edwards, H. J.; Dhanak, V. R.; Zhang, K. H. L. Electronic and Transport Properties of Li-Doped NiO Epitaxial Thin Films. J. Mater. Chem. C 2018, 6, 2275–2282.
  • (4.21) Liu, J.; Hanson, M. P.; Peters, J. A.; Wessels, B. W. Magnetism and Mn Clustering in (In,Mn)Sb Magnetic Semiconductors. ACS Appl. Mater. Interfaces 2015, 7, 24159–24167.
  • (4.20) Manders, J. R.; Tsang, S. W.; Hartel, M. J.; Lai, T. H.; Chen, S.; Amb, C. M.; Reynolds, J. R.; So, F. Solution-Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells. Adv. Funct. Mater. 2013, 23, 2993–3001.
  • (4.2) Dutta, T.; Gupta, P.; Gupta, A.; Narayan, J. Effect of Li Doping in NiO Thin Films on Its Transparent and Conducting Properties and Its Application in Heteroepitaxial P-n Junctions. J. Appl. Phys. 2010, 108, 083715.
  • (4.19) Chen, W.; Zhou, Y.; Chen, G.; Wu, Y.; Tu, B.; Liu, F.; Huang, L.; Ng, A. M. C.; Djurišić, A. B.; He, Z. Alkali Chlorides for the Suppression of the Interfacial Recombination in Inverted Planar Perovskite Solar Cells. Adv. Energy Mater. 2019, 1803872.
  • (4.18) Wang, Q.; Chueh, C. C.; Zhao, T.; Cheng, J.; Eslamian, M.; Choy, W. C. H.; Jen, A. K. Y. Effects of Self-Assembled Monolayer Modification of Nickel Oxide Nanoparticles Layer on the Performance and Application of Inverted Perovskite Solar Cells. ChemSusChem 2017, 10, 3794–3803.
  • (4.17) Bai, Y.; Chen, H.; Xiao, S.; Xue, Q.; Zhang, T.; Zhu, Z.; Li, Q.; Hu, C.; Yang, Y.; Hu, Z.; et al. Effects of a Molecular Monolayer Modification of NiO Nanocrystal Layer Surfaces on Perovskite Crystallization and Interface Contact toward Faster Hole Extraction and Higher Photovoltaic Performance. Adv. Funct. Mater. 2016, 2950–2958.
  • (4.16) He, J.; Xiang, Y.; Zhang, F.; Lian, J.; Hu, R.; Zeng, P.; Song, J.; Qu, J. Improvement of Red Light Harvesting Ability and Open Circuit Voltage of Cu:NiOx based p-i-n Planar Perovskite Solar Cells Boosted by Cysteine Enhanced Interface Contact. Nano Energy 2018, 45, 471–479.
  • (4.15) Hietzschold, S.; Hillebrandt, S.; Ullrich, F.; Bombsch, J.; Rohnacher, V.; Ma, S.; Liu, W.; K hn, A.; Jaegermann, W.; Pucci, A.; Kowalsky, W.; Mankel, E.; Beck, S.; Lovrincic, R. Functionalized Nickel Oxide Hole Contact Layers: Work Function versus Conductivity. ACS Appl. Mater. Interfaces 2017, 9, 39821– 39829.
  • (4.14) Hou, Y.; Chen, W.; Baran, D.; Stubhan, T.; Luechinger, N. A.; Hartmeier, B.; Richter, M.; Min, J.; Chen, S.; Quiroz, C. O. R.; Li, N.; Zhang, H.; Heumueller, T.; Matt, G. J.; Osvet, A.; Forberich, K.; Zhang, Z. G.; Li, Y.; Winter, B.; Schweizer, P.; Spiecker, E.; Brabec, C. J. Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells. Adv. Mater. 2016, 28, 5112–5120.
  • (4.13) Nie, W.; Tsai, H.; Blancon, J. C.; Liu, F.; Stoumpos, C. C.; Traore, B.; Kepenekian, M.; Durand, O.; Katan, C.; Tretiak, S.; Crochet, J.; Ajayan, P. M.; Kanatzidis, M.; Even, J.; Mohite, A. D. Critical Role of Interface and Crystallinity on the Performance and Photostability of Perovskite Solar Cell on Nickel Oxide. Adv. Mater. 2018, 30, 1–9.
  • (4.12) Li, G.; Jiang, Y.; Deng, S.; Tam, A.; Xu, P.; Wong, M.; Kwok, H. S. Overcoming the Limitations of Sputtered Nickel Oxide for High-Efficiency and Large-Area Perovskite Solar Cells. Adv. Sci. 2017, 1700463.
  • (4.11) Chen, W.; Liu, F. Z.; Feng, X. Y.; Djurišić, A. B.; Chan, W. K.; He, Z. B. Cesium Doped NiOx as an Efficient Hole Extraction Layer for Inverted Planar Perovskite Solar Cells. Adv. Energy Mater. 2017, 1700722.
  • (4.10) Jung, J. W.; Chueh, C. C.; Jen, A. K. Y. A Low-Temperature, Solution- Processable, Cu-Doped Nickel Oxide Hole-Transporting Layer via the Combustion Method for High-Performance Thin-Film Perovskite Solar Cells. Adv. Mater. 2015, 27, 7874–7880.
  • (4.1) Romeijn, F. C.; Haaijman, P. W.; Oosterhout, G. W. Van. Controlled-Valency Semiconductors. Philips Res. Rep. 1950, 5, 173–187.
  • (3.9) Jung, J. W.; Chueh, C. C.; Jen, A. K. Y. A Low-Temperature, Solution- Processable, Cu-Doped Nickel Oxide Hole-Transporting Layer via the Combustion Method for High-Performance Thin-Film Perovskite Solar Cells. Adv. Mater. 2015, 27, 7874–7880.
  • (3.8) Kim, J.; Lee, H.; Kim, H. P.; Lin, T.; Kanwat, A.; Mohd Yusoff, A. R. bin; Jang, J. Effects of UV-Ozone Irradiation on Copper Doped Nickel Acetate and Its Applicability to Perovskite Solar Cells. Nanoscale 2016, 8, 9287-9292.
  • (3.7) Li, Y.-H.; Lu, X.; Wang, R.; Ma, Y.-Y.; Duhm, S.; Fung, M.-K. Cu-Doped Nickel Oxide Prepared Using a Low-Temperature Combustion Method as a Hole- Injection Layer for High-Performance OLEDs. J. Mater. Chem. C 2017, 5, 11751–11757.
  • (3.6) Chen, W.; Wu, Y.; Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Gr tzel, M.; Han, L. Efficient and Stable Large-Area Perovskite Solar Cells with Inorganic Charge Extraction Layers. Science. 2015, 350, 944– 948.
  • (3.5) Qiu, Z.; Gong, H.; Zheng, G.; Yuan, S.; Zhang, H.; Zhu, X.; Zhou, H.; Cao, B. Enhanced Physical Properties of Pulsed Laser Deposited NiO Films via Annealing and Lithium Doping for Improving Perovskite Solar Cell Efficiency. J. Mater. Chem. C 2017, 5, 7084–7094.
  • (3.4) Ratcliff, E. L.; Meyer, J.; Steirer, K. X.; Garcia, A.; Berry, J. J.; Ginley, D. S.; Olson, D. C.; Kahn, A.; Armstrong, N. R. Evidence for Near-Surface NiOOH Species in Solution-Processed NiOx Selective Interlayer Materials: Impact on Energetics and the Performance of Polymer Bulk Heterojunction Photovoltaics. Chem. Mater. 2011, 23, 4988–5000.
  • (3.3) Jang, W.-L.; Lu, Y-M., Hwang, W.-S.; Hsiung, T.-L.; Wang, H. P. Point Defects in Sputtered NiO Films. Applied Physics Letters 2009, 94, 062103.
  • (3.23) Zhu, Z.; Bai, Y.; Zhang, T.; Liu, Z.; Long, X.; Wei, Z.; Wang, Z.; Zhang, L.; Wang, J.; Yan, F.; Yang, S. High-Performance Hole-Extraction Layer of Sol- Gel-Processed NiO Nanocrystals for Inverted Planar Perovskite Solar Cells. Angew. Chemie - Int. Ed. 2014, 53, 12571–12575.
  • (3.22) Zhu, Z.; Bai, Y.; Liu, X.; Chueh, C.-C.; Yang, S.; Jen, A. K.-Y. Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO2 Nanocrystals as the Robust Electron-Transporting Layer. Adv. Mater. 2016, 28, 6478–6484.
  • (3.21) J.Nelson. The Physics of Solar Cells; Imperial College Press, 2003.
  • (3.20) Lee, J. W.; Kim, S. G.; Bae, S. H.; Lee, D. K.; Lin, O.; Yang, Y.; Park, N. G. The Interplay between Trap Density and Hysteresis in Planar Heterojunction Perovskite Solar Cells. Nano Lett. 2017, 17, 4270–4276.
  • (3.2) Romeijn, F. C.; Haaijman, P. W.; Oosterhout, G. W. Van. Controlled-Valency Semiconductors. Philips Res.Rep. 1950, 5, 173–187.
  • (3.19) Li, C.; Wang, F.; Xu, J.; Yao, J.; Zhang, B.; Zhang, C.; Xiao, M.; Dai, S.; Li, Y.; Tan, Z. Efficient Perovskite/Fullerene Planar Heterojunction Solar Cells with Enhanced Charge Extraction and Suppressed Charge Recombination. Nanoscale 2015, 7, 9771–9778.
  • (3.18) Grosvenor, A. P.; Biesinger, M. C.; Smart, R. S. C.; McIntyre, N. S. New Interpretations of XPS Spectra of Nickel Metal and Oxides. Surf. Sci. 2006, 600, 1771–1779.
  • (3.17) Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730.
  • (3.16) A.Many; G.Rakavy. Theory of Transient Space-Charge-Limited Currents in Solids in the Presence of Trapping. Phys. Review 1962, 126.
  • (3.15) Zhang, J. Y.; Li, W. W.; Hoye, R. L. Z.; MacManus-Driscoll, J. L.; Budde, M.; Bierwagen, O.; Wang, L.; Du, Y.; Wahila, M. J.; Piper, L. F. J.; Lee, T. L.; Edwards, H. J.; Dhanak, V. R.; Zhang, K. H. L. Electronic and Transport Properties of Li-Doped NiO Epitaxial Thin Films. J. Mater. Chem. C 2018, 6, 2275–2282.
  • (3.14) Keraudy, J.; Ferrec, A.; Richard-plouet, M.; Hamon, J.; Goullet, A.; Jouan, P. Nitrogen Doping on NiO by Reactive Magnetron Sputtering: A New Pathway to Dynamically Tune the Optical and Electrical Properties. Appl. Surf. Sci. 2017, 409, 77–84.
  • (3.13) Guo, Y.; Yin, X.; Liu, J.; Yang, Y.; Chen, W.; Que, M.; Que, W.; Gao, B. Annealing Atmosphere Effect on Ni States in the Thermal-Decomposed NiOx films for Perovskite Solar Cell Application. Electrochim. Acta 2018, 282, 81– 88.
  • (3.12) Niu, G.; Wang, S.; Li, J.; Li, W.; Wang, L. Oxygen Doping in Nickel Oxide for Highly Efficient Planar Perovskite Solar Cells. J. Mater. Chem. A 2018, 6, 4721– 4728.
  • (3.11) Chen, W.; Liu, F. Z.; Feng, X. Y.; Djurišić, A. B.; Chan, W. K.; He, Z. B. Cesium Doped NiOx as an Efficient Hole Extraction Layer for Inverted Planar Perovskite Solar Cells. Adv. Energy Mater. 2017, 1700722.
  • (3.10) Li, G.; Jiang, Y.; Deng, S.; Tam, A.; Xu, P.; Wong, M.; Kwok, H. S. Overcoming the Limitations of Sputtered Nickel Oxide for High-Efficiency and Large-Area Perovskite Solar Cells. Adv. Sci. 2017, 1700463.
  • (3.1) Barsoum, M. W. Fundamentals of Ceramics; B Cantor, Goringe, M. J., Eds.; Institute of Physics Publishing: Bristol, UK, 2003.
  • (2.9) Liu, J.; Wu, Y.; Qin, C.; Yang, X.; Yasuda, T.; Islam, A.; Zhang, K.; Peng, W.; Chen, W.; Han, L. A Dopant-Free Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells. Energy Environ. Sci. 2014, 7, 2963–2967.
  • (2.8) Malinauskas, T.; Tomkute-Luksiene, D.; Sens, R.; Daskeviciene, M.; Send, R.; Wonneberger, H.; Jankauskas, V.; Bruder, I.; Getautis, V. Enhancing Thermal Stability and Lifetime of Solid-State Dye-Sensitized Solar Cells via Molecular Engineering of the Hole-Transporting Material Spiro-OMeTAD. ACS Appl. Mater. Interfaces 2015, 7, 11107–11116.
  • (2.7) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Gr tzel, M.; Park, N.-G. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591.
  • (2.6) Zhao, X.; Park, N.-G. Stability Issues on Perovskite Solar Cells. Photonics 2015, 2, 1139–1151.
  • (2.5) Li, X.; Tschumi, M.; Han, H.; Babkair, S. S.; Alzubaydi, R. A.; Ansari, A. A.; Habib, S. S.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Gr tzel, M. Outdoor Performance and Stability under Elevated Temperatures and Long-Term Light Soaking of Triple-Layer Mesoporous Perovskite Photovoltaics. Energy Technol. 2015, 3, 551–555.
  • (2.4) Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J. Overcoming Ultraviolet Light Instability of Sensitized TiO₂ with Meso- Superstructured Organometal Tri-Halide Perovskite Solar Cells. Nat. Commun. 2013, 4, 2885.
  • (2.3) Bella, F.; Griffini, G.; Correa-Baena, J.-P.; Saracco, G.; Gr tzel, M.; Hagfeldt, A.; Turri, S.; Gerbaldi, C. Improving Efficiency and Stability of Perovskite Solar Cells with Photocurable Fluoropolymers. Science 2016, 354, 203-206.
  • (2.22) Zhao, X.; Kim, H.-S.; Seo, J.-Y.; Park, N.-G. Effect of Selective Contacts on the Thermal Stability of Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 7148–7153.
  • (2.21) Ahn, N.; Son, D. Y.; Jang, I. H.; Kang, S. M.; Choi, M.; Park, N. G. Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. J. Am. Chem. Soc. 2015, 137, 8696–8699.
  • (2.20) A.Many; G.Rakavy. Theory of Transient Space-Charge-Limited Currents in Solids in the Presence of Trapping. Phys. Rewiew 1962, 126 (6).
  • (2.2) Cheng, Y.-B.; Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J.; Bach, U.; Spiccia, L. Degradation Observations of Encapsulated Planar CH3NH3PbI3 Perovskite Solar Cells at High Temperatures and Humidity. J. Mater. Chem. A 2015, 3, 8139–8147.
  • (2.19) Chiu, F. A Review on Conduction Mechanisms in Dielectric Films. Adv. Mater. Sci. Eng. 2014, 2014, 578168.
  • (2.18) Dualeh, A.; Gao, P.; Seok, S. Il; Nazeeruddin, M. K.; Gr tzel, M. Thermal Behavior of Methylammonium Lead-Trihalide Perovskite Photovoltaic Light Harvesters. Chem. Mater. 2014, 26, 6160-6164.
  • (2.17) Meng L.; You, J.; Yang, Y. Addressing The Stability Issue of Perovskite Solar Cells For Commercial Applications. Nat. Commun. 2018, 9, 5265.
  • (2.16) Manders, J. R.; Tsang, S. W.; Hartel, M. J.; Lai, T. H.; Chen, S.; Amb, C. M.; Reynolds, J. R.; So, F. Solution-Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells. Adv. Funct. Mater. 2013, 23, 2993–3001.
  • (2.15) Liu, S.; Liu, R.; Chen, Y.; Ho, S.; Kim, J. H.; So, F. Nickel Oxide Hole Injection/Transport Layers for Efficient Solution-Processed Organic Light- Emitting Diodes. Chem. Mater. 2014, 26, 4528–4534.
  • (2.14) Chen, W.; Wu, Y.; Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Gr tzel, M.; Han, L. Efficient and Stable Large-Area Perovskite Solar Cells with Inorganic Charge Extraction Layers. Science 2015, 350, 944– 948.
  • (2.13) Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G. Recent Progress in Electron Transport Layers for Efficient Perovskite Solar Cells. J. Mater. Chem. A 2016, 4, 3970–3990.
  • (2.12) Wang, K.-C.; Jeng, J.-Y.; Shen, P.-S.; Chang, Y.-C.; Diau, E. W.-G.; Tsai, C.-H.; Chao, T.-Y.; Hsu, H.-C.; Lin, P.-Y.; Chen, P.; Guo, T.-F.; Wen, T.-C. P-Type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells. Sci. Rep. 2014, 4, 4756.
  • (2.11) Kim, C.; Ryu, S.; Seo, J.; Seok, S. I. Il; Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Il. High-Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange. Science 2015, 348, 1234– 1237.
  • (2.10) Shirayama, M.; Kato, M.; Miyadera, T.; Sugita, T.; Fujiseki, T.; Hara, S.; Kadowaki, H.; Murata, D.; Chikamatsu, M.; Fujiwara, H. Degradation Mechanism of CH3NH3PbI3 Perovskite Materials upon Exposure to Humid Air. J. Appl. Phys. 2016, 119, 115501.
  • (2.1) Habisreutinger, S. N.; Leijtens, T.; Eperon, G. E.; Stranks, S. D.; Nicholas, R. J.; Snaith, H. J. Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells. Nano Lett. 2014, 14, 5561–5568.
  • (1.9) Park, N.-G. Perovskite Solar Cells: An Emerging Photovoltaic Technology. Mater. Today 2015, 18, 65–72.
  • (1.8) Shannon, R. D. Revised Effective Ionic Radii in Halides and Chalcogenides. Acta Cryst. 1976, A32, 751–767.
  • (1.7) Li, C.; Lu, X.; Ding, W.; Feng, L.; Gao, Y.; Guo, Z. Formability of ABX3 (X = F, Cl, Br, I) Halide Perovskites. Acta Crystallogr. Sect. B Struct. Sci. 2008, 64, 702–707.
  • (1.6) Goldschmidt, V. M. Die Gesetze Der Krystallochemie. Naturwissenschaften 1926, 14, 477–485.
  • (1.51) Romeijn, F. C.; Haaijman, P. W.; Oosterhout, G. W. Van. Controlled-Valency Semiconductors. Philips Res.Rep. 1950, 5, 173–187.
  • (1.50) Zhang, J.; Luo, H.; Xie, W.; Lin, X.; Hou, X.; Zhou, J.; Huang, S.; Ou-Yang, W.; Sun, Z.; Chen, X. Efficient and Ultraviolet Durable Planar Perovskite Solar Cells via a Ferrocenecarboxylic Acid Modified Nickel Oxide Hole Transport Layer. Nanoscale 2018.
  • (1.5) Glazer, A. M. The Classification of Tilted Octahedra in Perovskites. Acta Crystallogr. Sect. B Struct. Sci. 2002, 28, 3384–3392.
  • (1.49) Manders, J. R.; Tsang, S. W.; Hartel, M. J.; Lai, T. H.; Chen, S.; Amb, C. M.; Reynolds, J. R.; So, F. Solution-Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells. Adv. Funct. Mater. 2013, 23, 2993–3001.
  • (1.48) You, J.; Meng, L.; Song, T.-B.; Guo, T.-F.; Yang, Y. (Michael); Chang, W.-H.; Hong, Z.; Chen, H.; Zhou, H.; Chen, Q.; et al. Improved Air Stability of Perovskite Solar Cells via Solution-Processed Metal Oxide Transport Layers. Nat. Nanotech. 2016, 11, 75–81.
  • (1.47) Peng, H.; Sun, W.; Li, Y.; Ye, S.; Rao, H.; Yan, W.; Zhou, H.; Bian, Z.; Huang, C. Solution Processed Inorganic V2Ox as Interfacial Function Materials for Inverted Planar-Heterojunction Perovskite Solar Cells with Enhanced Efficiency. Nano Res. 2016, 9, 2960–2971.
  • (1.46) Ye, S.; Sun, W.; Li, Y.; Yan, W.; Peng, H.; Bian, Z.; Liu, Z.; Huang, C. CuSCNBased Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. Nano Lett. 2015, 15, 3723-3728.
  • (1.45) Schreiber, F.; Gr tzel, M.; Zakeeruddin, S. M.; Pellet, N.; Dar, M. I.; Arora, N.; Hinderhofer, A. Perovskite Solar Cells with CuSCN Hole Extraction Layers Yield Stabilized Efficiencies Greater than 20%. Science. 2017, 358, 768–771.
  • (1.44) Christians, J. A.; Fung, R. C. M.; Kamat, P. V. An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide. J. Am. Chem. Soc. 2014, 136, 758–764.
  • (1.43) Rao, H.; Ye, S.; Sun, W.; Yan, W.; Li, Y.; Peng, H.; Liu, Z.; Bian, Z.; Li, Y.; Huang, C. A 19.0% Efficiency Achieved in CuOx-Based Inverted CH3NH3PbI3- xClx Solar Cells by an Effective Cl Doping Method. Nano Energy 2016, 27, 51– 57.
  • (1.42) Chen, W.; Zhou, Y.; Chen, G.; Wu, Y.; Tu, B.; Liu, F.; Huang, L.; Ng, A. M. C.; Djurišić, A. B.; He, Z. Alkali Chlorides for the Suppression of the Interfacial Recombination in Inverted Planar Perovskite Solar Cells. Adv. Energy Mater. 2019, 1803872.
  • (1.41) Park, J. H.; Seo, J.; Park, S.; Shin, S. S.; Kim, Y. C.; Jeon, N. J.; Shin, H. W.; Ahn, T. K.; Noh, J. H.; Yoon, S. C.; et al. Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured P-Type NiO Electrode Formed by a Pulsed Laser Deposition. Adv. Mater. 2015, 27, 4013–4019.
  • (1.40) Chen, W.; Wu, Y.; Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Gr tzel, M.; et al. Efficient and Stable Large-Area Perovskite Solar Cells with Inorganic Charge Extraction Layers. Science. 2015, 350, 944–948.
  • (1.4) NREL. Best Research-Cell Efficiencies Chart. 20190416 version.
  • (1.39) Jung, J. W.; Chueh, C. C.; Jen, A. K. Y. A Low-Temperature, Solution- Processable, Cu-Doped Nickel Oxide Hole-Transporting Layer via the Combustion Method for High-Performance Thin-Film Perovskite Solar Cells. Adv. Mater. 2015, 27, 7874–7880.
  • (1.38) Zhao, X.; Kim, H.-S.; Seo, J.-Y.; Park, N.-G. Effect of Selective Contacts on the Thermal Stability of Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 7148–7153.
  • (1.37) You, J.; Hong, Z.; Yang, Y. M.; Chen, Q.; Cai, M.; Song, T.; Chen, C.; Lu, S.; Liu, Y.; Zhou, H.; et al. Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano 2014, 8, 1674–1680.
  • (1.36) Hu, Q.; Rezaee, E.; Dong, Q.; Shan, H.; Chen, Q.; Wang, L.; Liu, B.; Pan, J.-H.; Xu, Z.-X. P3HT/Phthalocyanine Nanocomposites as Efficient Hole- Transporting Materials for Perovskite Solar Cells. Sol. RRL 2018, 3, 1800264.
  • (1.35) Jung, E. H.; Jeon, N. J.; Park, E. Y.; Moon, C. S.; Shin, T. J.; Yang, T.-Y.; Noh, J. H.; Seo, J. Efficient, Stable and Scalable Perovskite Solar Cells Using Poly(3- Hexylthiophene). Nature 2019, 567, 511–515.
  • (1.34) Bi, D.; Yang, L.; Boschloo, G.; Hagfeldt, A.; Johansson, E. M. J. Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells. J. Phys. Chem. Lett. 2013, 4, 1532–1536.
  • (1.33) Abrusci, A.; Stranks, S. D.; Docampo, P.; Yip, H. L.; Jen, A. K. Y.; Snaith, H. J. High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers. Nano Lett. 2013, 13, 3124–3128.
  • (1.32) Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. Il. Compositional Engineering of Perovskite Materials for High-Performance Solar Cells. Nature 2015, 517, 476–480.
  • (1.31) Bi, D.; Boschloo, G.; Schwarzm ller, S.; Yang, L.; Johansson, E. M. J.; Hagfeldt, A. Efficient and Stable CH3NH3PbI3-Sensitized ZnO Nanorod Array Solid-State Solar Cells. Nanoscale 2013, 5, 11686–11691.
  • (1.30) Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Enhanced Electron Extraction Using SnO2 for High- Efficiency Planar-Structure HC(NH2)2PbI3-Based Perovskite Solar Cells. Nat. Energy 2016, 2, 16177.
  • (1.3) Lewis, N. S. Toward Cost-Effective Solar Energy Use. Science. 2007, 315, 798– 801.
  • (1.29) Singh, R.; Singh, P. K.; Bhattacharya, B.; Rhee, H. W. Review of Current Progress in Inorganic Hole-Transport Materials for Perovskite Solar Cells. Appl. Mater. Today 2019, 14, 175–200.
  • (1.28) Hu, L.; Peng, J.; Wang, W.; Xia, Z.; Yuan, J.; Lu, J. Sequential Deposition of CH3NH3PbI3 on Planar NiO Film for Efficient Planar Perovskite Solar Cells. ACS Photonics 2014, 1, 547–553.
  • (1.27) Wang, K.-C.; Jeng, J.-Y.; Shen, P.-S.; Chang, Y.-C.; Diau, E. W.-G.; Tsai, C.-H.; Chao, T.-Y.; Hsu, H.-C.; Lin, P.-Y.; Chen, P.; et al. P-Type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells. Sci. Rep. 2014, 4, 4756.
  • (1.26) Yao, K.; Li, F.; He, Q.; Wang, X.; Jiang, Y.; Huang, H.; Jen, A. K. Y. A Copper- Doped Nickel Oxide Bilayer for Enhancing Efficiency and Stability of Hysteresis-Free Inverted Mesoporous Perovskite Solar Cells. Nano Energy 2017, 40, 155–162.
  • (1.25) Zhang, H.; Wang, H.; Zhu, H.; Chueh, C. C.; Chen, W.; Yang, S.; Jen, A. K. Y. Low-Temperature Solution-Processed CuCrO2 Hole-Transporting Layer for Efficient and Photostable Perovskite Solar Cells. Adv. Energy Mater. 2018, 1702762.
  • (1.24) Zhao, X.; Chen, J.; Park, N.-G. Importance of Oxygen Partial Pressure in Annealing NiO Film for High Efficiency Inverted Perovskite Solar Cells. Sol. RRL 2019, 1800339.
  • (1.23) Lin, M. Y.; Lee, C. Y.; Shiu, S. C.; Wang, I. J.; Sun, J. Y.; Wu, W. H.; Lin, Y. H.; Huang, J. S.; Lin, C. F. Sol-Gel Processed CuOx Thin Film as an Anode Interlayer for Inverted Polymer Solar Cells. Org. Electron. 2010, 11, 1828–1834.
  • (1.22) Zhang, H.; Wang, H.; Chen, W.; Jen, A. K. Y. CuGaO2: A Promising Inorganic Hole-Transporting Material for Highly Efficient and Stable Perovskite Solar Cells. Adv. Mater. 2017, 29, 1–8.
  • (1.21) Chen, W.-Y.; Deng, L.-L.; Dai, S.-M.; Wang, X.; Tian, C.-B.; Zhan, X.-X.; Xie, S.-Y.; Huang, R.-B.; Zheng, L.-S. Low-Cost Solution-Processed Copper Iodide as an Alternative to PEDOT:PSS Hole Transport Layer for Efficient and Stable Inverted Planar Heterojunction Perovskite Solar Cells. J. Mater. Chem. A 2015, 3, 19353–19359.
  • (1.20) Ye, S.; Sun, W.; Li, Y.; Yan, W.; Peng, H.; Bian, Z.; Liu, Z.; Huang, C. CuSCNBased Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. Nano Lett. 2015, 15, 3723–3728.
  • (1.2) Hoffert, M. I.; Hoffert, M. I.; Caldeira, K.; Benford, G.; Criswell, D. R.; Green, C.; Herzog, H.; Jain, A. K.; Kheshgi, H. S.; Lackner, K. S.; et al. Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet. Science. 2008, 981, 981–988.
  • (1.19) Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gr tzel, M. Sequential Deposition as A Route to High-Performance Perovskite-Sensitized Solar Cells. Nature 2013, 499, 316–319.
  • (1.18) Li, M.-H.; Shen, P.-S.; Wang, K.-C.; Guo, T.-F.; Chen, P. Inorganic P-Type Contact Materials for Perovskite-Based Solar Cells. J. Mater. Chem. A 2015, 3, 9011–9019.
  • (1.17) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. 10.9%- Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643–647.
  • (1.16) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591.
  • (1.15) Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale 2011, 3, 4088.
  • (1.14) A. Kojima; K. Teshima; Y. Shirai; T. Miyasaka. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.
  • (1.13) Brian,O’Regan; Gr tzelt, M. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353, 737–740.
  • (1.12) Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-Hole Diffusion Lengths Exceeding Trihalide Perovskite Absorber. Science 2013, 342, 341–344.
  • (1.11) Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Gr tzel, M.; Mhaisalkar, S.; Sum, T. C. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 2013, 342, 344–347.
  • (1.10) Wei, Q.; Zi, W.; Yang, Z.; Yang, D.; Photoelectric Performance and Stability Comparison of MAPbI3 and FAPbI3 Perovskite Solar Cells. Solar Energy, 2018, 174, 933-939.
  • (1.1) Chu, S.; Majumdar, A. Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488, 294–303.