박사

Generation of human oligodendrocyte progenitor cells through differentiation and direct reprogramming = 분화 및 교차분화 기술을 통한 희소돌기아교 전구세포 확립

YUN, WONJIN 2019년
논문상세정보
' Generation of human oligodendrocyte progenitor cells through differentiation and direct reprogramming = 분화 및 교차분화 기술을 통한 희소돌기아교 전구세포 확립' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Differentiation
  • reprogramming
  • stem cells
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
217 0

0.0%

' Generation of human oligodendrocyte progenitor cells through differentiation and direct reprogramming = 분화 및 교차분화 기술을 통한 희소돌기아교 전구세포 확립' 의 참고문헌

  • Zhu, S., Ambasudhan, R., Sun, W., Kim, H.J., Talantova, M., Wang, X., Zhang, M., Zhang, Y., Laurent, T., Parker, J., et al. (2014). Small molecules enable OCT4- mediated direct reprogramming into expandable human neural stem cells. Cell Res 24, 126-129.
  • Zhou, Q., and Anderson, D.J. (2002). The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61-73.
  • Zheng, J., Choi, K.A., Kang, P.J., Hyeon, S., Kwon, S., Moon, J.H., Hwang, I., Kim, Y.I., Kim, Y.S., Yoon, B.S., et al. (2016). A combination of small molecules directly reprograms mouse fibroblasts into neural stem cells. Biochemical and biophysical research communications 476, 42-48.
  • Yun, W., Hong, W., Son, D., Liu, H.W., Kim, S.S., Park, M., Kim, I.Y., Kim, D.S., Song, G., and You, S. (2019). Generation of Anterior Hindbrain-Specific, Glial- Restricted Progenitor-Like Cells from Human Pluripotent Stem Cells. Stem Cells Dev.
  • Yang, N., Zuchero, J.B., Ahlenius, H., Marro, S., Ng, Y.H., Vierbuchen, T., Hawkins, J.S., Geissler, R., Barres, B.A., and Wernig, M. (2013). Generation of oligodendroglial cells by direct lineage conversion. Nat Biotechnol 31, 434-439.
  • Yamashita, T., Miyamoto, Y., Bando, Y., Ono, T., Kobayashi, S., Doi, A., Araki, T., Kato, Y., Shirakawa, T., Suzuki, Y., et al. (2017). Differentiation of oligodendrocyte progenitor cells from dissociated monolayer and feeder-free cultured pluripotent stem cells. PLoS One 12, e0171947.
  • Xue, H., Wu, S., Papadeas, S.T., Spusta, S., Swistowska, A.M., MacArthur, C.C., Mattson, M.P., Maragakis, N.J., Capecchi, M.R., Rao, M.S., et al. (2009). A targeted neuroglial reporter line generated by homologous recombination in human embryonic stem cells. Stem cells (Dayton, Ohio) 27, 1836-1846.
  • Windrem, M.S., Osipovitch, M., Liu, Z., Bates, J., Chandler-Militello, D., Zou, L., Munir, J., Schanz, S., McCoy, K., Miller, R.H., et al. (2017). Human iPSC Glial Mouse Chimeras Reveal Glial Contributions to Schizophrenia. Cell Stem Cell 21, 195-208 e196.
  • Wang, S., Bates, J., Li, X., Schanz, S., Chandler-Militello, D., Levine, C., Maherali, N., Studer, L., Hochedlinger, K., Windrem, M., et al. (2013). Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12, 252-264.
  • Wang, J., Pol, S.U., Haberman, A.K., Wang, C., O'Bara, M.A., and Sim, F.J. (2014). Transcription factor induction of human oligodendrocyte progenitor fate and differentiation. Proc Natl Acad Sci U S A 111, E2885-2894.
  • Turrero Garcia, M., and Harwell, C.C. (2017). Radial glia in the ventral telencephalon. FEBS Lett 591, 3942-3959.
  • Trounson, A., and McDonald, C. (2015). Stem Cell Therapies in Clinical Trials: Progress and Challenges. Cell Stem Cell 17, 11-22.
  • Theunissen T.W, van Oosten A.L, Castelo-Branco G, et al. (2011). Nanog overcomes reprogramming barriers and induces pluripotency in minimal conditions. Curr Biol 21, 65-71.
  • Thakurela, S., Garding, A., Jung, R.B., Muller, C., Goebbels, S., White, R., Werner, H.B., and Tiwari, V.K. (2016). The transcriptome of mouse central nervous system myelin. Sci Rep 6, 25828.
  • Tang, Y., Yu, P., and Cheng, L. (2017). Current progress in the derivation and therapeutic application of neural stem cells. Cell Death Dis 8, e3108.
  • Takahashi, K., Yamanaka, S., 2006. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 126, 663–676.
  • Tailor, J., Kittappa, R., Leto, K., Gates, M., Borel, M., Paulsen, O., Spitzer, S., Karadottir, R.T., Rossi, F., Falk, A., et al. (2013). Stem Cells Expanded from the Human Embryonic Hindbrain Stably Retain Regional Specification and High Neurogenic Potency. The Journal of Neuroscience 33, 12407-12422.
  • Tada M, Takahama Y, Abe K, et al. (2001). Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11, 1553-1558.
  • Szabo, E., Rampalli, S., Risue o, R.M., Schnerch, A., Mitchell, R., Fiebig-Comyn, A., Levadoux-Martin, M., and Bhatia, M. (2010). Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468, 521.
  • Stacpoole, S.R., Spitzer, S., Bilican, B., Compston, A., Karadottir, R., Chandran, S., and Franklin, R.J. (2013). High yields of oligodendrocyte lineage cells from human embryonic stem cells at physiological oxygen tensions for evaluation of translational biology. Stem Cell Reports 1, 437-450.
  • Sim, F.J., McClain, C.R., Schanz, S.J., Protack, T.L., Windrem, M.S., and Goldman, S.A. (2011). CD140a identifies a population of highly myelinogenic, migrationcompetent and efficiently engrafting human oligodendrocyte progenitor cells. Nature Biotechnology 29, 934.
  • Sgaier, S.K., Millet, S., Villanueva, M.P., Berenshteyn, F., Song, C., and Joyner, A.L. (2005). Morphogenetic and Cellular Movements that Shape the Mouse Cerebellum: Insights from Genetic Fate Mapping. Neuron 45, 27-40.
  • Scolding, N.J., Pasquini, M., Reingold, S.C., and Cohen, J.A. (2017). Cell-based therapeutic strategies for multiple sclerosis. Brain : a journal of neurology 140, 2776- 2796.
  • Rowitch, D.H. (2004). Glial specification in the vertebrate neural tube. Nat Rev Neurosci 5, 409-419.
  • Rossi, F., and Cattaneo, E. (2002). Neural stem cell therapy for neurological diseases: dreams and reality. Nature Reviews Neuroscience 3, 401.
  • Rosenberg, A.B., Roco, C.M., Muscat, R.A., Kuchina, A., Sample, P., Yao, Z., Gray, L., Peeler, D.J., Mukherjee, S., Chen, W., et al. (2018). Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science.
  • Ring, K.L., Tong, L.M., Balestra, M.E., Javier, R., Andrews-Zwilling, Y., Li, G., Walker, D., Zhang, W.R., Kreitzer, A.C., and Huang, Y. (2012). Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11, 100-109.
  • Renner, M., Lancaster, M.A., Bian, S., Choi, H., Ku, T., Peer, A., Chung, K., and Knoblich, J.A. (2017). Self-organized developmental patterning and differentiation in cerebral organoids. EMBO J 36, 1316-1329.
  • Radzisheuskaya, A., Le Bin Chia, G., dos Santos, R.L., Theunissen, T.W., Castro, L.F.C., Nichols, J., and Silva, J.C.R. (2013). A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages. Nature Cell Biology 15, 579.
  • Pozniak, C.D., Langseth, A.J., Dijkgraaf, G.J., Choe, Y., Werb, Z., and Pleasure, S.J. (2010). Sox10 directs neural stem cells toward the oligodendrocyte lineage by decreasing Suppressor of Fused expression. Proc Natl Acad Sci U S A 107, 21795- 21800.
  • Pol, S.U., Polanco, J.J., Seidman, R.A., O'Bara, M.A., Shayya, H.J., Dietz, K.C., and Sim, F.J. (2017). Network-Based Genomic Analysis of Human Oligodendrocyte Progenitor Differentiation. Stem Cell Reports 9, 710-723.
  • Podbielska, M., Banik, N.L., Kurowska, E., and Hogan, E.L. (2013). Myelin Recovery in Multiple Sclerosis: The Challenge of Remyelination. Brain Sciences 3, 1282-1324.
  • Pinto, L., and Gotz, M. (2007). Radial glial cell heterogeneity--the source of diverse progeny in the CNS. Prog Neurobiol 83, 2-23.
  • Piao, J., Major, T., Auyeung, G., Policarpio, E., Menon, J., Droms, L., Gutin, P., Uryu, K., Tchieu, J., Soulet, D., et al. (2015). Human embryonic stem cell-derived oligodendrocyte progenitors remyelinate the brain and rescue behavioral deficits following radiation. Cell Stem Cell 16, 198-210.
  • Park, J., Lee, J.H., Yoon, B.S., Jun, E.K., Lee, G., Kim, I.Y., and You, S. (2018). Additive effect of bFGF and selenium on expansion and paracrine action of human amniotic fluid-derived mesenchymal stem cells. Stem cell research & therapy 9, 293.
  • Pan G, Thomson J.A. (2007). Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res 17,42-49.
  • Orentas, D.M., Hayes, J.E., Dyer, K.L., and Miller, R.H. (1999). Sonic hedgehog signaling is required during the appearance of spinal cord oligodendrocyte precursors. Development (Cambridge, England) 126, 2419-2429.
  • Niwa, H., Miyazaki, J., and Smith, A.G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24, 372-376.
  • Nery, S., Wichterle, H., and Fishell, G. (2001). Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development (Cambridge, England) 128, 527-540.
  • Najm, F.J., Madhavan, M., Zaremba, A., Shick, E., Karl, R.T., Factor, D.C., Miller, T.E., Nevin, Z.S., Kantor, C., Sargent, A., et al. (2015). Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature 522, 216.
  • Najm, F.J., Lager, A.M., Zaremba, A., Wyatt, K., Caprariello, A.V., Factor, D.C., Karl, R.T., Maeda, T., Miller, R.H., and Tesar, P.J. (2013). Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat Biotechnol 31, 426-433.
  • Mukherjee-Clavin, B., Mi, R., Kern, B., Choi, I.Y., Lim, H., Oh, Y., Lannon, B., Kim, K.J., Bell, S., Hur, J.K., et al. (2019). Comparison of three congruent patient-specific cell types for the modelling of a human genetic Schwann-cell disorder. Nature Biomedical Engineering.
  • Moon, J.H., Heo, J.S., Kim, J.S., Jun, E.K., Lee, J.H., Kim, A., Kim, J., Whang, K.Y., Kang, Y.K., Yeo, S., et al. (2011). Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. Cell Res 21, 1305-1315.
  • Moon J.H, Heo J.S, Kim JS., et al. (2011). Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. Cell Res 21, 1305-1315.
  • Montserrat, N., Nivet, E., Sancho-Martinez, I., Hishida, T., Kumar, S., Miquel, L., Cortina, C., Hishida, Y., Xia, Y., Esteban, C.R., et al. (2013). Reprogramming of human fibroblasts to pluripotency with lineage specifiers. Cell Stem Cell 13, 341-350.
  • Mitsui K, Tokuzawa Y, Itoh H, et al. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631-642.
  • Mitchell, R.R., Szabo, E., Benoit, Y.D., Case, D.T., Mechael, R., Alamilla, J., Lee, J.H., Fiebig-Comyn, A., Gillespie, D.C., and Bhatia, M. (2014). Activation of neural cell fate programs toward direct conversion of adult human fibroblasts into tri-potent neural progenitors using OCT-4. Stem cells and development 23, 1937-1946.
  • Malatesta, P., Appolloni, I., and Calzolari, F. (2008). Radial glia and neural stem cells. Cell Tissue Res 331, 165-178.
  • Lukovic, D., Diez Lloret, A., Stojkovic, P., Rodriguez-Martinez, D., Perez Arago, M.A., Rodriguez-Jimenez, F.J., Gonzalez-Rodriguez, P., Lopez-Barneo, J., Sykova, E., Jendelova, P., et al. (2017). Highly Efficient Neural Conversion of Human Pluripotent Stem Cells in Adherent and Animal-Free Conditions. Stem Cells Transl Med 6, 1217-1226.
  • Lu, Q.R., Yuk, D., Alberta, J.A., Zhu, Z., Pawlitzky, I., Chan, J., McMahon, A.P., Stiles, C.D., and Rowitch, D.H. (2000). Sonic hedgehog--regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25, 317-329.
  • Lu, J., Zhong, X., Liu, H., Hao, L., Huang, C.T., Sherafat, M.A., Jones, J., Ayala, M., Li, L., and Zhang, S.C. (2016). Generation of serotonin neurons from human pluripotent stem cells. Nat Biotechnol 34, 89-94.
  • Lu, J., Liu, H., Huang, C.T., Chen, H., Du, Z., Liu, Y., Sherafat, M.A., and Zhang, S.C. (2013). Generation of integration-free and region-specific neural progenitors from primate fibroblasts. Cell Rep 3, 1580-1591.
  • Li, W., Sun, W., Zhang, Y., Wei, W., Ambasudhan, R., Xia, P., Talantova, M., Lin, T., Kim, J., Wang, X., et al. (2011). Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proc Natl Acad Sci U S A 108, 8299-8304.
  • Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357-359.
  • Lancaster, M.A., Renner, M., Martin, C.A., Wenzel, D., Bicknell, L.S., Hurles, M.E., Homfray, T., Penninger, J.M., Jackson, A.P., and Knoblich, J.A. (2013). Cerebral organoids model human brain development and microcephaly. Nature 501, 373-379.
  • Kuzdas-Wood, D., Stefanova, N., Jellinger, K.A., Seppi, K., Schlossmacher, M.G., Poewe, W., and Wenning, G.K. (2014). Towards translational therapies for multiple system atrophy. Prog Neurobiol 118, 19-35.
  • Kokovay, E., Shen, Q., and Temple, S. (2008). The incredible elastic brain: how neural stem cells expand our minds. Neuron 60, 420-429.
  • Koch, P., Opitz, T., Steinbeck, J.A., Ladewig, J., and Brustle, O. (2009). A rosettetype, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci U S A 106, 3225-3230.
  • Kim, Y.J., Lim, H., Li, Z., Oh, Y., Kovlyagina, I., Choi, I.Y., Dong, X., and Lee, G. (2014). Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor. Cell Stem Cell 15, 497- 506.
  • Kim, J.B., Lee, H., Arauzo-Bravo, M.J., Hwang, K., Nam, D., Park, M.R., Zaehres, H., Park, K.I., and Lee, S.J. (2015). Oct4-induced oligodendrocyte progenitor cells enhance functional recovery in spinal cord injury model. Embo j 34, 2971-2983.
  • Kim, D.S., Lee, D.R., Kim, H.S., Yoo, J.E., Jung, S.J., Lim, B.Y., Jang, J., Kang, H.C., You, S., Hwang, D.Y., et al. (2012). Highly pure and expandable PSA-NCAMpositive neural precursors from human ESC and iPSC-derived neural rosettes. PLoS One 7, e39715.
  • Kim J.B, Greber B, Arauzo-Bravo M..J, et al. (2009). Direct reprogramming of human neural stem cells by OCT4. Nature 461, 649-643.
  • Kessaris, N., Fogarty, M., Iannarelli, P., Grist, M., Wegner, M., and Richardson, W.D. (2006). Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 9, 173-179.
  • Joubert, L., Foucault, I., Sagot, Y., Bernasconi, L., Duval, F., Alliod, C., Frossard, M.J., Pescini Gobert, R., Curchod, M.L., Salvat, C., et al. (2010). Chemical inducers and transcriptional markers of oligodendrocyte differentiation. Journal of neuroscience research 88, 2546-2557.
  • Jaenisch R, Young R. (2008). Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008; 132(4):567-82
  • Iwamoto, K., Bundo, M., Yamada, K., Takao, H., Iwayama-Shigeno, Y., Yoshikawa, T., and Kato, T. (2005). DNA methylation status of SOX10 correlates with its downregulation and oligodendrocyte dysfunction in schizophrenia. J Neurosci 25, 5376-5381.
  • Hu, B.Y., Du, Z.W., Li, X.J., Ayala, M., and Zhang, S.C. (2009). Human oligodendrocytes from embryonic stem cells: conserved SHH signaling networks and divergent FGF effects. Development (Cambridge, England) 136, 1443-1452.
  • Howard, B.M., Zhicheng, M., Filipovic, R., Moore, A.R., Antic, S.D., and Zecevic, N. (2008). Radial glia cells in the developing human brain. Neuroscientist 14, 459- 473.
  • Hashimoto, R., Hori, K., Owa, T., Miyashita, S., Dewa, K., Masuyama, N., Sakai, K., Hayase, Y., Seto, Y., Inoue, Y.U., et al. (2016). Origins of oligodendrocytes in the cerebellum, whose development is controlled by the transcription factor, Sox9. Mech Dev 140, 25-40.
  • Gorris, R., Fischer, J., Erwes, K.L., Kesavan, J., Peterson, D.A., Alexander, M., Nothen, M.M., Peitz, M., Quandel, T., Karus, M., et al. (2015). Pluripotent stem cellderived radial glia-like cells as stable intermediate for efficient generation of human oligodendrocytes. Glia 63, 2152-2167.
  • Goldman, S.A., Nedergaard, M., and Windrem, M.S. (2012). Glial progenitor cell166 based treatment and modeling of neurological disease. Science 338, 491-495.
  • Garcia-Leon, J.A., Kumar, M., Boon, R., Chau, D., One, J., Wolfs, E., Eggermont, K., Berckmans, P., Gunhanlar, N., de Vrij, F., et al. (2018). SOX10 Single Transcription Factor-Based Fast and Efficient Generation of Oligodendrocytes from Human Pluripotent Stem Cells. Stem Cell Reports 10, 655-672.
  • Gage, F.H., and Temple, S. (2013). Neural stem cells: generating and regenerating the brain. Neuron 80, 588-601.
  • Furusho, M., Kaga, Y., Ishii, A., Hebert, J.M., and Bansal, R. (2011). Fibroblast growth factor signaling is required for the generation of oligodendrocyte progenitors from the embryonic forebrain. J Neurosci 31, 5055-5066.
  • Franklin, R.J.M., and ffrench-Constant, C. (2017). Regenerating CNS myelin — from mechanisms to experimental medicines. Nature Reviews Neuroscience 18, 753.
  • Franklin, R.J. (2008). Remyelination in the CNS: from biology to therapy. Nature Reviews Neuroscience 9, 839-855.
  • Filippi, M., Bar-Or, A., Piehl, F., Preziosa, P., Solari, A., Vukusic, S., and Rocca, M.A. (2018). Multiple sclerosis. Nature Reviews Disease Primers 4, 43.
  • Falk, A., Koch, P., Kesavan, J., Takashima, Y., Ladewig, J., Alexander, M., Wiskow, O., Tailor, J., Trotter, M., Pollard, S., et al. (2012). Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLoS One 7, e29597.
  • Elkabetz, Y., Panagiotakos, G., Al Shamy, G., Socci, N.D., Tabar, V., and Studer, L. (2008). Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 22, 152-165.
  • Ehrlich, M., Mozafari, S., Glatza, M., Starost, L., Velychko, S., Hallmann, A.-L., Cui, Q.-L., Schambach, A., Kim, K.-P., Bachelin, C., et al. (2017). Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proceedings of the National Academy of Sciences 114, E2243- E2252.
  • Douvaras, P., and Fossati, V. (2015). Generation and isolation of oligodendrocyte progenitor cells from human pluripotent stem cells. Nat Protoc 10, 1143-1154.
  • Douvaras, P., Wang, J., Zimmer, M., Hanchuk, S., O'Bara, M.A., Sadiq, S., Sim, F.J., Goldman, J., and Fossati, V. (2014). Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Reports 3, 250-259.
  • Dehghan, S., Hesaraki, M., Soleimani, M., Mirnajafi-Zadeh, J., Fathollahi, Y., and Javan, M. (2016). Oct4 transcription factor in conjunction with valproic acid accelerates myelin repair in demyelinated optic chiasm in mice. Neuroscience 318, 178-189.
  • Conti, L., and Cattaneo, E. (2010). Neural stem cell systems: physiological players or in vitro entities? Nat Rev Neurosci 11, 176-187.
  • Boyer L.A, Lee T.I., Cole M.F, et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947-956.
  • Bagley, J.A., Reumann, D., Bian, S., Levi-Strauss, J., and Knoblich, J.A. (2017). Fused cerebral organoids model interactions between brain regions. Nat Methods 14, 743-751.