박사

A STUDY ON HIGH PERFORMANCE NDIR GAS ANALYSIS USING NEW BPF APPLICATION FOR COMBUSTION EXHAUST GASES = 새로운 BPF를 적용한 굴뚝용 고성능 NDIR 가스 분석 연구

딘 브엉 2019년
논문상세정보
' A STUDY ON HIGH PERFORMANCE NDIR GAS ANALYSIS USING NEW BPF APPLICATION FOR COMBUSTION EXHAUST GASES = 새로운 BPF를 적용한 굴뚝용 고성능 NDIR 가스 분석 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • NDIR
  • Zero-drift
  • bandpass filter
  • coal-fired power plant
  • incineration plant
  • interference
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
103 0

0.0%

' A STUDY ON HIGH PERFORMANCE NDIR GAS ANALYSIS USING NEW BPF APPLICATION FOR COMBUSTION EXHAUST GASES = 새로운 BPF를 적용한 굴뚝용 고성능 NDIR 가스 분석 연구' 의 참고문헌

  • Zhu, F., Wang, L., 2014. Analysis on technology-economy and environment benefit of ultra-low emission from coal-fired power units. Environ. Prot. 42, 28–33.
  • Zhong, Z., Zheng, J., Zhu, M., Huang, Z., Zhang, Z., Jia, G., Wang, X., Bian, Y., Wang, Y., Li, N., 2018. Recent developments of anthropogenic air pollutant emission inventories in Guangdong province, China. Sci. Total Environ. 627, 1080–1092. https://doi.org/10.1016/j.scitotenv.2018.01.268
  • Zhao, Y., Pan, Y., Rutherford, J., Mitloehner, F.M., 2012. Estimation of the interference in Multi-Gas measurements using infrared photoacoustic analyzers. Atmosphere (Basel). https://doi.org/10.3390/atmos3020246
  • Zhao, Y., Hao, R., Wang, T., Yang, C., 2015. Follow-up research for integrative process of pre-oxidation and post-absorption cleaning flue gas: Absorption of NO2, NO and SO2. Chem. Eng. J. 273, 55–65. https://doi.org/10.1016/j.cej.2015.03.053
  • Yang, J., Zhou, J., Lv, Z., Wei, W., Song, H., 2015. A Real-Time Monitoring System of Industry Carbon Monoxide Based on Wireless Sensor Networks. Sensors 15, 29535–29546. https://doi.org/10.3390/s151129535
  • Yang, H.H., Lee, W.J., Chen, S.J., Lai, S.O., 1998. PAH emission from various industrial stacks. J. Hazard. Mater. https://doi.org/10.1016/S0304- 3894(98)00089-2
  • Xing, Y., Urasinska-Wojcik, B., Gardner, J.W., 2018. Plasmonic enhanced CMOS non-dispersive infrared gas sensor for acetone and ammonia detection, in: I2MTC 2018 - 2018 IEEE International Instrumentation and Measurement Technology Conference: Discovering New Horizons in Instrumentation and Measurement, Proceedings. https://doi.org/10.1109/I2MTC.2018.8409745
  • Worthington, B., 2005. 60 years of continuous improvement in NDIR gas analyzers, in: 50th Annual ISA Analysis Division Symposium - 50 Years of Analytical Solutions. pp. 95–107.
  • Wong, J.Y., Schell, M., 2011. Zero drift NDIR gas sensors. Sens. Rev. https://doi.org/10.1108/02602281111099116
  • Wong, J.Y., Anderson, R.L., 2012. Non-Dispersive Infrared Gas Measurement. Ifsa Publishing.
  • Wong, J.Y., 2014. Differential temperature source NDIR gas sensing methodology. U.S. Patent No. 8,866,085.
  • Wong, J.Y., 2012b. Super-miniaturized NDIR gas sensor. US8097856B2.
  • Wong, J.Y., 2012a. Intrinsically safe improved sensitivity NDIR gas sensor in a can. US8158946.
  • Wong, J.Y., 2007. Method for detecting a gas species using a super tube waveguide.
  • Willard, H.H., 1981. Instrumental methods of analysis. Van Nostrand.
  • White, J.U., 2008. Long Optical Paths of Large Aperture. J. Opt. Soc. Am. https://doi.org/10.1364/josa.32.000285
  • Warnke, D.F., Cederstrand, C.N., Keenan, C.A., 1982. Method and apparatus for negating measurement effects of interferent gases in non-dispersive infrared analyzers. US4355233A.
  • Wang, X.L., Watson, J.G., Chow, J.C., Kohl, S.D., Chen, L.W.A., Sodeman, D.A., Legge, A.H., Percy, K.E., 2012. Measurement of Real-World Stack Emissions with a Dilution Sampling System. Dev. Environ. Sci. https://doi.org/10.1016/B978-0-08-097760-7.00008-1
  • Wang, X., R djeg rd, H., Oelmann, B., Martin, H., Larsson, B., 2010. High performance CO2 measurement based on pressure modulation, in: Procedia Engineering. pp. 1208–1211. https://doi.org/10.1016/j.proeng.2010.09.329
  • Vietnam MONRE, 2016. National Technical Regulation on Domestic Solid Waste Incinerator. Vietnam.
  • Vietnam MONRE, 2009. National Technical Regulation on Industrial Emission of Inorganic Substances and Dusts. Vietnam.
  • US National Library of Medicine, 2019. PubChem [WWW Document]. URL https://pubchem.ncbi.nlm.nih.gov/
  • US NIST, 2016. NIST CHemistry Webbook.
  • US EPA, 2018. Managing Air Quality - Emissions Inventories.
  • US EPA, 1999. Nitrogen Oxides (NOx), Why and How They Are Controlled.
  • US EPA, 1996. Municipal Waste Combustion Summary Of The Requirements For Section 111(d)-129 State Plans For Implementing The Municipal Waste Combustor Emission Guidelines.
  • US EPA, 1995. Control and Pollution Prevention Options for Ammonia Emissions.
  • US EPA, 1993. Development of Ammonia CEMS Performance Specifications.
  • US EPA, 1990. Emission Factor Documentation for AP-42, Section 2.1.1, Municipal Waste Combustion.
  • Tanimoto, H., Sawa, Y., Matsueda, H., Yonemura, S., Wada, A., Mukai, H., Wang, T., Poon, S., Wong, A., Lee, G., Jung, J.Y., Kim, K.R., Lee, M., Lin, N.H., Wang, J.L., Ou-Yang, C.F., Wu, G.F., 2007. Evaluation of standards and methods for continuous measurements of carbon monoxide at ground-based sites in Asia. Pap. Meteorol. Geophys. 58, 85–93. https://doi.org/10.2467/mripapers.58.85
  • Tang, P., 2013. Non-dispersive infrared (NDIR) gas sensor.
  • Tan, Q., Tang, L., Yang, M., Xue, C., Zhang, W., Liu, J., Xiong, J., 2015. Three-gas detection system with IR optical sensor based on NDIR technology. Opt. Lasers Eng. 74, 103–108. https://doi.org/10.1016/j.optlaseng.2015.05.007
  • Sun, Y.W., Zeng, Y., Liu, W.Q., Xie, P.H., Chan, K.L., Li, X.X., Wang, S.M., Huang, S.H., 2012. Cross-interference correction and simultaneous multi-gas analysis based on infrared absorption. Chinese Phys. B 21. https://doi.org/10.1088/1674-1056/21/9/090701
  • Sun, Y.W., Liu, W.Q., Zeng, Y., Wang, S.M., Huang, S.H., Xie, P.H., Yu, X.M., 2011. Water vapor interference correction in a non dispersive infrared multigas analyzer. Chinese Phys. Lett. 28. https://doi.org/10.1088/0256- 307X/28/7/073302
  • Sun, Y.W., Liu, C., Chan, K.L., Xie, P.H., Liu, W.Q., Zeng, Y., Wang, S.M., Huang, S.H., Chen, J., Wang, Y.P., Si, F.Q., 2013. Stack emission monitoring using non-dispersive infrared spectroscopy with an optimized nonlinear absorption cross interference correction algorithm. Atmos. Meas. Tech. 6, 1993–2005. https://doi.org/10.5194/amt-6-1993-2013
  • Stuart, B.H., 2005. Infrared Spectroscopy: Fundamentals and Applications, Infrared Spectroscopy: Fundamentals and Applications. https://doi.org/10.1002/0470011149
  • Speeter, W., 1981. Non-dispersive infrared gas analyzer for testing gases containing water-vapor.
  • Sparks, L., 1997. Efficient line-by-line calculation of absorption coefficients to high numerical accuracy. J. Quant. Spectrosc. Radiat. Transf. 57, 631–650. https://doi.org/10.1016/S0022-4073(96)00154-9
  • Song, H.-O., 2018. A Study on Emission Characteristics of N2O in Greenhouse Gases generated by Municipal Solid Waste(MSW) Incinerators. Korea Polytechnic University.
  • Son, Y.-S., Lee, G., Kim, J.-C., Han, J.-S., 2013. Development of a Pretreatment System for the Analysis of Atmospheric Reduced Sulfur Compounds. Anal. Chem. 85, 10134–10141. https://doi.org/10.1021/ac401345e
  • Snakenborg, D., Mogensen, K.B., 2003. Optimization of signal-to-noise ration in absorbance detection by integration of microoptical components. Miniaturized Chem. Blochemlcal Anal. Syst.
  • Skoog, D.A., Holler, F.J., Crouch, S.R., 2007. Principles of Instrumental Analysis, International student edition. Thomson Brooks/Cole.
  • Sklorz, A., Jan en, S., Lang, W., 2012. Detection limit improvement for NDIR ethylene gas detectors using passive approaches. Sensors Actuators, B Chem. 175, 246–254. https://doi.org/10.1016/j.snb.2012.09.085
  • Simpson, T.J., 2004. Development of an Affordable, Portable and Versatile Infrared Gas Analyser: A Thesis Presented in Partial Fulfillment for the Degree of Master of Science in Chemistry at the University of Canterbury, Christchurch, New Zealand. University of Canterbury.
  • Seoul Metropolitan Goverment, 2019. Cleansys data of Seoul sity [WWW Document]. URL rrf.seoul.go.kr
  • Seo, J.-B., Jeon, S.-B., Choi, W.-J., Kim, J.-W., Lee, G.-H., Oh, K.-J., 2011. The absorption rate of CO2/SO2/NO2 into a blended aqueous AMP/ammonia solution. Korean J. Chem. Eng. 28, 170–177. https://doi.org/10.1007/s11814- 010-0332-2
  • Sebacher, D.I., 1977. gas filter correlation monitor for CO, CH4, and HCl.
  • Scholz, L., Perez, A.O., Knobelspies, S., W llenstein, J., Palzer, S., 2015. MID-IR led-based, photoacoustic CO2sensor, in: Procedia Engineering. https://doi.org/10.1016/j.proeng.2015.08.837
  • Sabat , N., Rubio, R., Calaza, C., Santander, J., Fonseca, L., Gr cia, I., Can , C., Moreno, M., Marco, S., 2005. Mirror electrostatic actuation of a mediuminfrared tuneable Fabry-Perot interferometer based on a surface micromachining process. Sensors Actuators A Phys. 123–124, 584–589. https://doi.org/10.1016/j.sna.2005.03.036
  • Rubio, R., Santander, J., Fonseca, L., Sabat , N., Gr cia, I., Can , C., Udina, S., Marco, S., 2007. Non-selective NDIR array for gas detection. Sensors Actuators, B Chem. 127, 69–73. https://doi.org/10.1016/j.snb.2007.07.003
  • Rubio, R., Santander, J., Fonollosa, J., Fonseca, L., Gr cia, I., Can , C., Moreno, M., Marco, S., 2006. Exploration of the metrological performance of a gas detector based on an array of unspecific infrared filters. Sensors Actuators, B Chem. 116, 183–191. https://doi.org/10.1016/j.snb.2006.03.018
  • Rouxel, J., Coutard, J.G., Gidon, S., Lartigue, O., Nicoletti, S., Parvitte, B., Vallon, R., Z ninari, V., Gli re, A., 2015. Development of a miniaturized differential photoacoustic gas sensor, in: Procedia Engineering. https://doi.org/10.1016/j.proeng.2015.08.650
  • Rogalski, A., 2011. Infrared Detectors, Second. ed. CRC Press Taylor&Francis Group.
  • QS 0202.4, 2014. National standard for level inspection of environmental measuring instruments: continuous automatic measuring instrument for CO emitted from a stack. Republic of Korea.
  • QS 0202.3, 2014. National standard for level inspection of environmental measuring instruments: continuous automatic measuring instrument for NOx emitted from a stack. Republic of Korea.
  • QM 0202.4, 2014. National standard for accuracy inspection of environmental measuring instruments: continuous automatic measuring instrument for CO emitted from a stack. Republic of Korea.
  • QM 0202.3, 2014. National standard for accuracy inspection of environmental measuring instruments: continuous automatic measuring instrument for NOx emitted from a stack. Republic of Korea.
  • Pohanish, R.P., 2012. Sittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens, Sittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens. https://doi.org/10.1016/C2009-0-64361-0
  • Platt, U., Stutz, J., 2008. Differential Absorption Spectroscopy, in: Differential Optical Absorption Spectroscopy. https://doi.org/10.1007/978-3-540-75776- 4_6
  • Peixto, J.P., Oort, A.H., 1984. Physics of climate. Rev. Mod. Phys. https://doi.org/10.1103/RevModPhys.56.365
  • Passaro, R.E., Williams, K., 1982. Non-dispersive infrared gas analyzer. 4346296.
  • Park, S., Choi, J.-H., Park, J., 2011. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case. Waste Manag. 31, 1765–1771. https://doi.org/10.1016/j.wasman.2011.03.010
  • Novelli, P.C., 1999. CO in the atmosphere: Measurement techniques and related issues. Chemosph. - Glob. Chang. Sci. 1, 115–126. https://doi.org/10.1016/S1465-9972(99)00013-6
  • National Research Council (US), 2000. Waste Incineration and Public Health. National Academies Press, Washington, D.C. https://doi.org/10.17226/5803
  • Mouret, G., Chen, W., Boucher, D., Bocquet, R., Mounaix, P., Lippens, D., 1999. Gas filter correlation instrument for air monitoring at submillimeter wavelengths. Opt. Lett. 24, 351. https://doi.org/10.1364/OL.24.000351
  • Mercier, J.A., Smith, M.W., Hunt, J.P., Ison, A.M., 2012. Modeling, sensor design, and performance predictions for gas filter correlation radiometers.
  • McLarnon, C.R., Steen, D., 2003. Combined SO2, NOx, PM, and Hg removal from coal fired boilers, in: Proc., Joint EPRI-DOE-EPA Combined Utility Air Pollutant Control Symp., The MEGA Symp., EPRI-DOE-EPA. Washington D.C.
  • Mayrw ger, J., Reichl, W., Krutzler, C., Jakoby, B., 2012. Measuring CO2concentration with a Fabry-Perot based bolometer using a glass plate as simple infrared filter, in: Sensors and Actuators, B: Chemical. pp. 143–147. https://doi.org/10.1016/j.snb.2011.03.039
  • Mayrw ger, J., Reichl, W., Krutzer, C., Jakoby, B., 2010. Gas monitoring with a Fabry-Perot based bolometer: Cross-sensitivity to water vapor, in: Procedia Engineering. pp. 1220–1223. https://doi.org/10.1016/j.proeng.2010.09.332
  • Mayrw ger, J., Reichl, W., Hauer, P., Krutzler, C., Jakoby, B., 2011. CO2 monitoring using a simple Fabry-Perot-based germanium bolometer, in: Sensors and Actuators, B: Chemical. pp. 245–250. https://doi.org/10.1016/j.snb.2009.12.038
  • Mao, X., Shen, T., Feng, X., 2017. Prediction of hourly ground-level PM2.5 concentrations 3 days in advance using neural networks with satellite data in eastern China. Atmos. Pollut. Res. 8, 1005–1015. https://doi.org/https://doi.org/10.1016/j.apr.2017.04.002
  • MacLeod, H.A., 2010. Thin-Film Optical Filter, Fourth Edi. ed. CRC Press Taylor&Francis Group.
  • Luft, K.F., 1976. Non-dispersive Infrared gas analysis device with triple layer receiver.
  • Liu, H., Liu, S., Xue, B., Lv, Z., Meng, Z., Yang, X., Xue, T., Yu, Q., He, K., 2018. Ground-level ozone pollution and its health impacts in China. Atmos. Environ. 173, 223–230. https://doi.org/https://doi.org/10.1016/j.atmosenv.2017.11.014
  • Liu, C., Beirle, S., Butler, T., Liu, J., Hoor, P., J ckel, P., Pozzer, A., Frankenberg, C., Lawrence, M.G., Lelieveld, J., Platt, U., Wagner, T., 2011. Application of SCIAMACHY and MOPITT CO total column measurements to evaluate model results over biomass burning regions and Eastern China. Atmos. Chem. Phys. 11, 6083–6114. https://doi.org/10.5194/acp-11-6083-2011
  • Licata, A., Hartenstein, H.U., Terracciano, L., 1997. Comparison of U.S. EPA and European Emission Standards for Combustion and Incineration Technologies. Columbia University.
  • Li, K., Yu, H., Qi, G., Feron, P., Tade, M., Yu, J., Wang, S., 2015. Rate-based modelling of combined SO 2 removal and NH 3 recycling integrated with an aqueous NH 3 -based CO 2 capture process. Appl. Energy 148, 66–77. https://doi.org/10.1016/j.apenergy.2015.03.060
  • Lessure, H.S., Simizu, S., Denes, L.J., Guzman, A.M., 1999. Non-dispersive infrared gas analyzer with interfering gas correction. US5886348A.
  • Lefohn, A.S., Malley, C.S., Simon, H., Wells, B., Xu, X., Zhang, L., Wang, T., 2017. Responses of human health and vegetation exposure metrics to changes in ozone concentration distributions in the European Union, United States, and China. Atmos. Environ. 152, 123–145. https://doi.org/https://doi.org/10.1016/j.atmosenv.2016.12.025
  • Lee, T.-J., Jeon, J.-S., Kim, S.-D., Kim, D.-S., 2010. A Comparative Study on PM 10 Source Contributions in a Seoul Metropolitan Subway Station Before/After Installing Platform Screen Doors. J. Korean Soc. Atmos. Environ. 26, 543–553. https://doi.org/10.5572/KOSAE.2010.26.5.543
  • Lee, S. Bin, 2006. A Study on Development of Integrated Analysis for Mercury Emitted from Power Plants. Inha University.
  • Lee, R., Kester, W., 2016. Complete Gas Sensor Circuit Using Nondispersive Infrared (NDIR). Analog Dialogue 50, 1–9.
  • Lee, D.-G., Lee, Y.-M., Jang, K.-W., Yoo, C., Kang, K.-H., Lee, J.-H., Jung, S.-W., Park, J.-M., Lee, S.-B., Han, J.-S., Hong, J.-H., Lee, S.-J., 2011. Korean National Emissions Inventory System and 2007 Air Pollutant Emissions. Asian J. Atmos. Environ. 5, 278–291. https://doi.org/10.5572/ajae.2011.5.4.278
  • Kuntz, M., H pfner, M., 1999. Efficient line-by-line calculation of absorption coefficients. J. Quant. Spectrosc. Radiat. Transf. 63, 97–114. https://doi.org/10.1016/S0022-4073(98)00140-X
  • Krakow, B., 1976. Infrared analyzer.
  • Korotcenkov, G., 2013. Handbook of Gas Sensor Materials, Integrated Analytical Systems. Springer New York, New York, NY. https://doi.org/10.1007/978-1- 4614-7165-3
  • Korea NIER, 2008. Integrated Pollution Prevention and Control Reference Document on the Best Available Techniques for Municipal Waste Incineration.
  • Korea MOE, 2018b. Manual for managing the total amount of air pollutants in the metropolitan area. Republic of Korea.
  • Korea MOE, 2018a. National emission standard for an Incineration plant. Republic of Korea.
  • Korea MOE, 2017. National emission standard for coal-fired power plant. Republic of Korea.
  • Kim, J.-C., Kim, K.-H., Armendariz, A., Al-Sheikhly, M., 2009. Electron Beam Irradiation for Mercury Oxidation and Mercury Emissions Control. J. Environ. Eng. https://doi.org/10.1061/(asce)ee.1943-7870.0000188
  • Kim, B.-U., Kim, O., Kim, H.C., Kim, S., 2016. Influence of fossil-fuel power plant emissions on the surface fine particulate matter in the Seoul Capital Area, South Korea. J. Air Waste Manage. Assoc. 66, 863–873. https://doi.org/10.1080/10962247.2016.1175392
  • Kai, K., Kurt, W., 2009. NDIR multigas analyzer. EP 1 482 301 B1.
  • Jones, R.C., 1953. Performance of Detectors for Visible and Infrared Radiation, in: Marton, L.B.T.-A. in E. and E.P. (Ed.), . Academic Press, pp. 1–96. https://doi.org/https://doi.org/10.1016/S0065-2539(08)60683-6
  • Jeon, W.-B., Lee, S.-H., Lee, H., Park, C., Kim, D.-H., Park, S.-Y., 2014. A study on high ozone formation mechanism associated with change of NOx/VOCs ratio at a rural area in the Korean Peninsula. Atmos. Environ. 89, 10–21. https://doi.org/https://doi.org/10.1016/j.atmosenv.2014.02.005
  • Jeon, E.-C., Myeong, S.-J., Jeong, J.-H., Lee, S.-H., Sa, J.-W., Roh, G.-H., Kim, K.- H., Bae, W.-S., 2007. Development of Emission Factors for Greenhouse Gas CO 2 ) from Anthracite Fired Power Plants in Korea. J. Korean Soc. Atmos. Environ. 23, 440–448. https://doi.org/10.5572/KOSAE.2007.23.4.440
  • Jay, K., Stieglitz, L., 1995. Identification and quantification of volatile organic components in emissions of waste incineration plants. Chemosphere. https://doi.org/10.1016/0045-6535(95)00021-Y
  • Japan MOE, 2015. Regulatory measures against air pollutants emitted from factories and business sites and the outline of regulation.
  • Jahnke, J.A., 2000. Continuous Emission monitoring, Second. ed. John Wiley & Sons, Inc., Toronto.
  • Ishida, K., Imaki, T., 1985. Non-dispersive infrared analyzer.
  • ISO 7935:1992, 1992. Stationary source emissions - Determination of the mass concentration of sulfur dioxide Performance characteristics of automated measuring methods.
  • ISO 21258:2010, 2010. Stationary source emissions - Determination of the mass concentration of dinitrogen monoxide (N2O) - Reference method: Nondispersive infrared method.
  • ISO 13199:2012, 2012. Stationary source emissions - Determination of total volatile organic compounds (TVOCs) in waste gases from non-combustion processes - Non-dispersive infrared analyser equipped with catalytic converter.
  • ISO 12039:2001, 2001. Stationary source emissions -- Determination of carbon monoxide, carbon dioxide and oxygen -- Performance characteristics and calibration of automated measuring systems.
  • ISO 10849:1996, 1996. Stationary source emissions - Determination of the mass concentration of nitrogen oxides -Performance characteristics of automated measuring systems. International Organization for Standardization.
  • IPCC, 2001. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.
  • ICAC, 2013. White paper:Monitoring of HCl.
  • Hwang, K.-L., Choi, S.-M., Kim, M.-K., Heo, J.-B., Zoh, K.-D., 2017. Emission of greenhouse gases from waste incineration in Korea. J. Environ. Manage. 196, 710–718. https://doi.org/10.1016/j.jenvman.2017.03.071
  • Hikmat H. Asadov, D.H.H.A., Islam M. Mirzabalayev, I.M.M., Davud Z. Aliyev, D.Z.A., Javid A. Agayev, J.A.A., Sima R. Azimova, S.R.A., Nabi A. Nabiyev, N.A.N., Sevinj N. Abdullayeva, and S.N.A., 2009. Synthesis of corrected multi-wavelength spectrometers for atmospheric trace gases. Chinese Opt. Lett. 7, 361–363. https://doi.org/10.3788/COL20090705.0361
  • Heusinkveld, B.G., Jacobs, A.F.G., Holtslag, A.A.M., 2008. Effect of open-path gas analyzer wetness on eddy covariance flux measurements: A proposed solution. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2008.05.010
  • Herriott, D.R., Schulte, H.J., 2008. Folded Optical Delay Lines. Appl. Opt. https://doi.org/10.1364/ao.4.000883
  • Herriott, D., Kogelnik, H., Kompfner, R., 2008. Off-Axis Paths in Spherical Mirror Interferometers. Appl. Opt. https://doi.org/10.1364/ao.3.000523
  • Heard, D.E., 2007. Analytical Techniques for Atmospheric Measurement, Analytical Techniques for Atmospheric Measurement. https://doi.org/10.1002/9780470988510
  • Harris, E., Zeyer, K., Kegel, R., M ller, B., Emmenegger, L., Mohn, J., 2015. Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland. Waste Manag. 35, 135–140. https://doi.org/10.1016/j.wasman.2014.10.016
  • Han, Y.-J., Kim, H.-W., Cho, S.-H., Kim, P.-R., Kim, W.-J., 2015. Metallic elements in PM2.5 in different functional areas of Korea: Concentrations and source identification. Atmos. Res. 153, 416–428. https://doi.org/https://doi.org/10.1016/j.atmosres.2014.10.002
  • Hallquist, M., Wenger, J.C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N.M., George, C., Goldstein, a. H., Hamilton, J.F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M.E., Jimenez, J.L., Kiendler-Scharr, a., Maenhaut, W., McFiggans, G., Mentel, T.F., Monod, a., Pr v t, a. S.H., Seinfeld, J.H., Surratt, J.D., Szmigielski, R., Wildt, J., 2009. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 9, 5155–5236. https://doi.org/10.5194/acp-9-5155-2009
  • HITRAN, 2017. High-resolution transmission molecular absorption database. Hussain, H., Kim, J., Yi, S., 2018. Characteristics and Temperature Compensation of Non-Dispersive Infrared (NDIR) Alcohol Gas Sensors According to Incident Light Intensity. Sensors 18, 2911. https://doi.org/10.3390/s18092911
  • Guo, H., Chen, K., Wang, P., Hu, J., Ying, Q., Gao, A., Zhang, H., 2019. Simulation of summer ozone and its sensitivity to emission changes in China. Atmos. Pollut. Res. https://doi.org/https://doi.org/10.1016/j.apr.2019.05.003
  • Granite, E.J., Pennline, H.W., 2002. Photochemical removal of mercury from flue gas. Ind. Eng. Chem. Res. https://doi.org/10.1021/ie020251b
  • Granite, E.J., King, W.P., Stanko, D.C., Pennline, H.W., 2008. Implications of mercury interactions with band-gap semiconductor oxides. Main Gr. Chem. 7, 227–237. https://doi.org/10.1080/10241220802630568
  • Gonz alez, F.J., 2006. Noise measurements on optical detectors. Rev. Mex. FI SICA 52, 550–554.
  • Friedman, B., Farmer, D.K., 2018. SOA and gas phase organic acid yields from the sequential photooxidation of seven monoterpenes. Atmos. Environ. 187, 335– 345. https://doi.org/https://doi.org/10.1016/j.atmosenv.2018.06.003
  • Fonseca, L., Rubio, R., Santander, J., Calaza, C., Sabat , N., Ivanov, P., Figueras, E., Gr cia, I., Can , C., Udina, S., Moreno, M., Marco, S., 2009. Qualitative and quantitative substance discrimination using a CMOS compatible non-specific NDIR microarray. Sensors Actuators B Chem. 141, 396–403. https://doi.org/10.1016/j.snb.2009.07.012
  • Fonollosa, J., Sol rzano, A., Jim nez-Soto, J.M., Oller-Moreno, S., Marco, S., 2016. Gas Sensor Array for Reliable Fire Detection. Procedia Eng. 168, 444–447. https://doi.org/https://doi.org/10.1016/j.proeng.2016.11.540
  • Fabinski, W., Rathke, C., 2008. Non-Dispersive Infrared Gas Analyzer.
  • Ezimand, K., Kakroodi, A.A., 2019. Prediction and spatio – Temporal analysis of ozone concentration in a metropolitan area. Ecol. Indic. 103, 589–598. https://doi.org/10.1016/j.ecolind.2019.04.059
  • Ewing, G.W., 1997. Analytical Instrumentation Handbook, Second Edition. Taylor & Francis.
  • European Commision, 2010. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control) (Recast).
  • Elder, W.L., Williams, K.G., Burough, W.G., 1980. Gas analyzer. 4233513.
  • ES 01305.1, 2016. Hydrogen Chloride in Flue Gas - Ion Chromatography.
  • ES 01303.1, 2016. Ammonia in Flue Gas - UV/VIS Spectrometry - Indophenol Method.
  • D’Amato, F., De Rosa, M., 2002. Tunable diode lasers and two-tone frequency modulation spectroscopy applied to atmospheric gas analysis. Opt. Lasers Eng. 37, 533–551. https://doi.org/10.1016/S0143-8166(01)00089-6
  • Dinh, T.V., Ahn, J.W., Choi, I.Y., Song, K.Y., Chung, C.H., Kim, J.C., 2017. Limitations of gas filter correlation: A case study on carbon monoxide nondispersive infrared analyzer. Sensors Actuators, B Chem. 243, 684–689. https://doi.org/10.1016/j.snb.2016.12.036
  • Dinh, T.-V., Choi, I.-Y., Son, Y.-S., Kim, J.-C., 2016. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sensors Actuators, B Chem. 231. https://doi.org/10.1016/j.snb.2016.03.040
  • Davis, W.R., 2000. Air Pollution Engineering Manual, 2nd Editio. ed. Air & Waste Management Association.
  • Cordero, R.R., Roth, P., Da Silva, L., 2005. Economic growth or environmental protection?: The false dilemma of the Latin-American countries. Environ. Sci. Policy 8, 392–398. https://doi.org/https://doi.org/10.1016/j.envsci.2005.04.005
  • Christensen, J., 1990b. The Briiel & Kjaer Photoacoustic Transducer System and its Physical Properties.
  • Christensen, J., 1990a. The Briiel & Kjaer Photoacoustic Transducer System and its Physical Properties. Bruel & Kjaer.
  • Chou, J., 1999. Hazardous Gas Monitors: A Practical Guide to Selection, Operation and Applications. Hazard. Gas Monit. A Pract. Guid. to Sel. Oper. Appl. https://doi.org/10.1002/hep.26040
  • Choe, S.-J., 2018. The study of operational characteristics and recovery of wasteheat energy in the municipal waste incinerating facility. Chonnam National University.
  • China MEP, 2011. Emisson standard of air pollutants for thermal power plants.
  • Chen, T., Su, G., Yuan, H., 2005. In situ gas filter correlation: photoacoustic CO detection method for fire warning. Sensors Actuators B Chem. 109, 233–237. https://doi.org/10.1016/j.snb.2004.12.055
  • Chan, K.L., Ning, Z., Westerdahl, D., Wong, K.C., Sun, Y.W., Hartl, A., Wenig, M.O., 2014. Dispersive infrared spectroscopy measurements of atmospheric CO2 using a Fabry-P rot interferometer sensor. Sci. Total Environ. 472, 27–35. https://doi.org/10.1016/j.scitotenv.2013.10.105
  • Cazes, J., 2005. Analytical Instrumentation Handbook, Ewing’s Analytical Instrumentation Handbook. https://doi.org/10.1021/ed082p1315
  • Burough, I.G., Creek, W., Williams, K.G., 1984. Non dispersive infrared analyzer. 4480190.
  • Bitter, R., Heffels, C., H rner, T., 2013. Non-Dispersive Infrared (NDIR) Dual Trace Gas Analyzer and Method for Determining a Concentration of a Measurement Gas Component in a Gas Mixture by the Gas Analyzer.
  • Araya, K., 1997. Apparatus for non-dispersive infrared analyzer. US5677534A.
  • Appel, D., Marzoratti, G.E., Nabar, S.H., Mouradian, R.F., 2009. Gas analyzer system.