박사

박막공정용 증착원료물질의 진공에서의 열물성 측정 = Thermophysical property measurements under vacuum of source materials used in thin film vapor deposition

심섭 2019년
논문상세정보
' 박막공정용 증착원료물질의 진공에서의 열물성 측정 = Thermophysical property measurements under vacuum of source materials used in thin film vapor deposition' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Organic small molecule
  • TEMAHf
  • alq3
  • deposition-source materials
  • higk-k dielectrics
  • long-term thermal stability
  • npb
  • organic light-emitting diodes metal-organic precursor
  • phase transition
  • thermophysical property
  • thin film deposition
  • vacuum
  • vapor pressure
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
119 0

0.0%

' 박막공정용 증착원료물질의 진공에서의 열물성 측정 = Thermophysical property measurements under vacuum of source materials used in thin film vapor deposition' 의 참고문헌

  • de Moraes I. R., Scholz S., L ssem B., and Leo K. (2012), ‘Chemical degradation processes of highly stable red phosphorescent organic light emitting diodes’, Organic Electronics, 13, 1900-1907
  • de Kruif C. G. and Oonk H. A. J. (1973), ‘The determination of enthalpies of sublimation by means of thermal conductivity manometers’, Chemie Ingenieur Technik, 45, 455-461
  • Wang Z. B., Helander M. G., Qiu J., Puzzo D. P., Greiner M. T., Hudson Z. M., Wang S., Liu Z. W. and Lu Z. H. (2011), ‘Unlocking the full potential of organic light-emitting diodes on flexible plastic’, Nature Photonics, 5, 753-757
  • Wang G. F., Tao X. M., and Huang H. M. (2007), ‘Influence of the deposition temperature on the structure and performance of tris(8-hydroxyquinoline) aluminum based flexible organic light-emitting devices’, Applied Surface Science, 253, 4463-4466.
  • Vyavahare O. (2009), ‘Fabrication and Characterization of Organic Light Emitting Diodes for Display Applications’ master’s thesis, Rochester Institute of Technology
  • Uoyama H., Goushi K., Shizu K., Nomura H., and Adachi C. (2012), ‘Highly Efficient Organic Light-emitting Diodes From Delayed Fluorescence’, Nature, 492, 234-238
  • Tsujioka T., Hamada Y., and Takahashi H. (2000), ‘Operating current mode dependence of luminescence properties of rubrene-doped yellow organic light emitting diodes’, Japanese Journal of Applied Physics, 39, 3463-3465
  • Tsujimura T. (2012), ‘OLED DISPLAYS: Fundamentals and Applications’, Singapore: John Wiley & Sons, Inc.
  • Tsugita K., Edura T., Yahiro M., and Adachi C. (2013), ‘Formation of high-purity organic thin films by gas flow deposition and the effect of impurities on device characteristics’, Displays, 34, 418-422.
  • Thangaraju K., Kumar J., Amaladass P., Mohanakrishnan A. K., and Narayanan V. (2006), ‘Study on photoluminescence from tris-(8-hydroxyquinoline)aluminum thin films and influence of light’, Applied Physics Letters, 89, 082106
  • Tang C. W. and VanSlyke S. A. (1987), ‘Organic electroluminescent diodes’, Applied Physics Letters, 51, 913-915
  • Suzuki F., Kubo S., Fukushima T., and Kaji H. (2018), ‘Effects of Structural and Energetic Disorders on Charge Transports in Crystal and Amorphous Organic Layers’, Scientific Reports, 8, 5203
  • Song W., So S. K., Moulder J., Qiu Y., Zhu Y., and Cao L. (2001), ‘Study on the interaction between Ag and tris(8-hydroxyquinoline)aluminum using x-ray photoelectron spectroscopy’, Surface and Interface Analysis, 32, 70-73
  • Soltzberg L. J., Slinker J. D., Flores-Torres S., Bernards D. A., Malliaras G. G., Abrua H. D., Kim J., Friend R. H., Kaplan M. D., and Goldberg V. (2006), ‘Identification of a quenching species in ruthenium tris-bipyridine electroluminescent devices’, Journal of the American Chemical Society, 128, 7761-7764
  • So F. and Kondakov D. (2010), ‘Degradation Mechanisms in Small‐Molecule and Polymer Organic Light‐Emitting Diodes’, Advanced Materials, 22, 3762-3777
  • Sivasubramaniam V., Brodkorb F., Hanning S., Loebl H. P., van Elsbergen V., Boerner H., Scherf U., and Kreyenschmidt M. (2009), ‘Fluorine cleavage of the light blue heteroleptic triplet emitter FIrpic’, Journal of Fluorine Chemistry, 130, 640-649.
  • Sivasubramaniam V., Brodkorb F., Hanning S., Buttler O., Loebl H. P., van Elsbergen V., Boerner H., Scherf U., and Kreyenschmidt M. (2009), ‘Degradation of HTL layers during device operation in PhOLEDs’, Solid State Sciences, 11, 1933-1940.
  • Shim S., Kim J. -T., Shin E. -J., Chung N. -K., Ko M. K., Kwon O., and Yun J. -Y. (2016), ‘Phase behaviors of NPB molecule under vacuum’, Materials Research Bulletin, 82, 67-70.
  • Shen J., Wang D., Langlois E., Barrow W. A., Green P. J., Tang C. W., and Shi J. (2000), ‘Degradation mechanisms in organic light emitting diodes’, Synthetic Metals, 111-112, 233-236
  • Serra P. and Piqu A. (2018), ‘Laser Printing of Functional Materials: 3D Microfabrication, Electronics and Biomedicine’ Weinheim: Wiley-VCH
  • Seifert R., de Moraes I. R., Scholz S., Gather M. C., L ssem B., and Leo K. (2013), ‘Chemical degradation mechanisms of highly efficient blue phosphorescent emitters used for organic light emitting diodes’, Organic Electronics, 14, 115-123
  • Scott J. C. and Malliaras G. G. (1999), ‘Charge injection and recombination at the metal–organic interface’, Chemical Physics Letters, 299, 115-119
  • Scholz S., Kondakov D., Lüssem B. R., and Leo K. (2015), ‘Degradation Mechanisms and Reactions in Organic Light-Emitting Devices’, Chemical Reviews, 115, 8449-8503.
  • Schmidbauer S., Hohenleutner A., and K nig B. (2013), ‘Studies on the photodegradation of red, green and blue phosphorescent OLED emitters’, Beilstein Journal of Organic Chemistry, 9, 2088-2096
  • Schmidbauer S., Hohenleutner A., and K nig B. (2013), ‘Chemical Degradation in Organic Light‐Emitting Devices: Mechanisms and Implications for the Design of New Materials’, Advanced Materials, 25, 2114-2129
  • Santos L. M. N. B. F., Lima L. M. S. S., Lima C. F. R. A. C., Magalh es F. D., Torres M. C., Schr der B., da Silva M. A. V. R. (2011), ‘New Knudsen effusion apparatus with simultaneous gravimetric and quartz crystal microbalance mass loss detection’, The Journal of Chemical Thermodynamics, 43, 834-843
  • Santos L. M. N. B. F., Ferreira Ana I. M. C. L., Štejfa V., Rodrigues A. S. M. C., Rocha M. A. A. Torres M. C., Tavares F. M. S., and Carpinteiro F. S. (2018), ‘Development of the Knudsen effusion methodology for vapour pressure measurements of low volatile liquids and solids based on a quartz crystal microbalance’, The Journal of Chemical Thermodynamics, 126, 171-186
  • Sabbah R., Xu-wu A., Chickos J. S., Planas Leitao M. L., Roux M. V., and Torres L. A. (1999), ‘Reference materials for calorimetry and differential thermal analysis’, Thermochimica Acta, 331, 93-204
  • Price D. M. and Hawkins M. (1998), ‘Calorimetry of two disperse dyes using thermogravimetry’, Thermochimica Acta, 315, 19-24
  • Price D. M. (2015), ‘A fit of the vapours’, Thermochimica Acta, 622, 44-50
  • Popovic Z. D., Aziz H., Hu N. -X., Ioannidis A., and dos Anjos P. N. M. (2001), ‘Simultaneous electroluminescence and photoluminescence aging studies of tris(8-hydroxyquinoline)aluminum-based organic light-emitting devices’, Journal of Applied Physics, 89, 4673-4675
  • Pope M. and Swenberg C. E. (1999), ‘Electronic Processes in Organic Crystals and Polymers. second edition’ N.Y: Oxford Science Publications.
  • Parthasarathy G., Shen C., Kahn A., and Forrest S. R. (2001), ‘Lithium doping of semiconducting organic charge transport materials’ Journal of Applied Physics, 89, 4986-4992.
  • Parker I. D., Cao Y., and Yang C. Y. (1999), ‘Lifetime and degradation effects in polymer light-emitting diodes’, Journal of Applied Physics, 85, 2441-2447
  • Papadimitrakopoulos F., Zhang X. -M., Thomsen D. L., and Higginson K. A. (1996), ‘A chemical failure mechanism for aluminum(III) 8-hydroxyquinoline light-emitting devices’ Chemistry of Materials, 8, 1363-1365
  • Pangr c J., Fulem M., Hulicius E., Melichar K., Šimeček T., Růžička K., Mor vek P., Růžička V., and Rushworth S. A. (2008), ‘Vapor pressure of germanium precursors’, Journal of Crystal Growth, 310, 4720-4723
  • Pangr c J., Fulem M., Hulicius E., Melichar K., Šimeček T., Růžička K., Mor vek P., Ružička V., and Rushworth S.A. (2008), ‘Vapor pressure of germanium precursors’, Journal of Crystal Growth, 310, 4720-4723
  • O’Brien D. F., Burrows P. E., Forrest S. R., Koene B. E., Loy D. E., and Thompson M. E. (1998), ‘Hole transporting materials with high glass transition temperatures for use in organic light-emitting devices’, Advanced Materials, 10, 1108-1112
  • Nelson S. F., Lin Y.-Y., Gundlach D. J., and Jackson T. N. (1998), ‘Temperature-independent transport in high mobility pentacene transistors’, Applied Physics Letters, 72, 1854-1856
  • Murawski C., Leo K., and Gather M. C. (2013), ‘Efficiency Roll-Off in Organic Light-Emitting Diodes’, Advanced Materials, 25, 6801-6827.
  • Murano S., Gilge K., Ammann M., and Werner A. (2014), ‘30.3:Invited Paper: AMOLED Manufacturing - Challenges and Solutions from a Material Makers Perspective’, SID International Symposium Digest of Technical Papers, 45, 403-406.
  • Monte M. J. S., Santos L. M. N. B. F., Fulem M., Fonseca J. M. S., and Sousa C. A. D. (2006), ‘New Static Apparatus and Vapor Pressure of Reference Materials: Naphthalene, Benzoic Acid, Benzophenone, and Ferrocene’, Journal of Chemical & Engineering Data, 512, 757-766
  • Momodu D. Y., Tong T., Zebaze Kana M. G., Chioh A. V., and Soboyejo W. O. (2014), ‘Adhesion and degradation of organic and hybrid organic-inorganic light-emitting devices’, Journal of Applied Physics, 115, 084504
  • Meerheim R., Walzer K., Pfeiffer M., and Leo K. (2006), ‘Ultrastable and efficient red organic light emitting diodes with doped transport layers’. Applied Physics Letters, 89, 061111
  • Meerheim R., Scholz S., Olthof S., Schwartz G., Reineke S., Walzer K., and Leo K. (2008), ‘Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices’, Journal of Applied Physics, 104, 014510
  • Mayorga S. (n.d.), ‘VERSUM LAB NOTES: Establishing thermal stability of CVD and ALD precursors’, Retrieved June 1, 2019, from VERSUM MATERIALS, Web site: https://www.versummaterials.com/resource-center/versum-lab-notes/establishing-ther mal-stability-cvd-ald-precursors/
  • Malliaras G. G. and Scott J. C. (1998), ‘The roles of injection and mobility in organic light emitting diodes’, Journal of Applied Physics, 83, 5399-5403
  • Mahnel T., Štejfa V., Maryška M., Fulem M., and Růžička, K. (2019), ‘Reconciled thermophysical data for anthracene’, Journal of Chemical Thermodynamics, 129, 61-72
  • Luo Y., Aziz H., Xu G., and Popovic Z. D. (2007), ‘Similar roles of electrons and holes in luminescence degradation of organic light-emitting devices’, Chemistry of Materials, 19, 2079-2083
  • Luo Y., Aziz H., Popovic Z. D., and Xu G. (2007) ‘Degradation mechanisms in organic light-emitting devices: Metal migration model versus unstable tris(8-hydroxyquinoline)aluminum cationic model’, Journal of Applied Physics, 101, 034510.
  • Lu J., Jin Y., Ding J., Tao Y., and Day M. (2006), ‘High-efficiency multilayer polymeric blue light-emitting diodes using boronate esters as cross-linking linkages’, Journal of Materials Chemistry, 16, 593-601
  • Lee T. and Lin M. S. (2007), ‘Sublimation Point Depression of Tris(8-hydroxyquinoline)aluminum(III) (Alq3) by Crystal Engineering’, Crystal Growth & Design, 7, 1803-1810.
  • Lee T. and Chang S. C. (2009), ‘Sublimation Point Depression of Small-Molecule Semiconductors by Sonocrystallization’, Crystal Growth & Design, 9, 2674-2684.
  • Lee T. -W., Kim M. -G., Kim S. Y., Park S. H., Kwon O., Noh T., and Oh T. -S. (2006), ‘Hole-transporting interlayers for improving the device lifetime in the polymer light-emitting diodes’, Applied Physics Letters, 89, 123505
  • Lee S. T., Gao Z. Q., and Hung L. S. (1999), ‘Metal diffusion from electrodes in organic light-emitting diodes’, Applied Physics Letters, 75, 1404-1406
  • Lee P. -T., Chang T. -Y., and Chen S. -Y. (2008), ‘Tuning of the electrical characteristics of organic bistable devices by varying the deposition rate of Alq3 thin film’, Organic Electronics, 9, 916-920.
  • Lee C. H., Kim M. J., Han S. -P., Lee Y. -S., Kang S. K., Song J. H., Je J. T., Oh H. -Y., Kim Y. -J. (2010), ‘Crystal structures of anti- and syn-9,10-di(1-naphthyl)anthracene and isomerization in solid state’, Tetrahedron, 66 3360-3364.
  • Langmuir I. (1913), ‘The Vapor Pressure of Metallic Tungsten’, Physical Review, 2, 329-342
  • Kumar S., Shukla V. K., and Tripathi A. (2005), ‘Ellipsometric investigations on the light induced effects on tris(8-hydroxyquinoline)aluminum (Alq3)’, Thin Solid Films, 477, 240-243
  • Kondakov D. Y., Sandifer J. R., Tang C. W., and Young R. H. (2003), ‘Nonradiative recombination centers and electrical aging of organic light-emitting diodes: Direct connection between accumulation of trapped charge and luminance loss’, Journal of Applied Physics, 93, 1108-1119
  • Kondakov D. Y., Lenhart W. C., and Nichols W. F. (2007), ‘Operational degradation of organic light-emitting diodes: Mechanism and identification of chemical products’, Journal of Applied Physics, 101, 024512
  • Kondakov D. Y. and Young R. H. (2010), ‘Variable sensitivity of organic light-emitting diodes to operation-induced chemical degradation: Nature of the antagonistic relationship between lifetime and efficiency’, Journal of Applied Physics, 108, 074513
  • Kondakov D. Y. (2008), ‘Role of chemical reactions of arylamine hole transport materials in operational degradation of organic light-emitting diodes’, Journal of Applied Physics, 104, 084520
  • Ko S. H. (2011), ‘Organic Light Emitting Diode - Material, Process and Devices’ London: IntechOpen
  • Kim J. -T., Shim S., Shin J. -S., Kang S. W., Yun J. -Y., and Kwon O. (2014), ‘Phase transition characteristics under vacuum of 9,10-di(2-naphthyl)anthracene for organic light-emitting diodes’, Journal of Vacuum Science & Technology A, 32, 020601.
  • Ketkar S. (n.d.), ‘VERSUM LAB NOTES: Assay means purity, right?’, Retrieved June 1, 2019, from VERSUM MATERIALS, Web site: https://www.versummaterials.com/resource-center/versum-lab-notes/assay-means-puri ty-right/
  • Kalyuzhny G., Buda M., McNeill J., Barbara P., and Bard A. J. (2003), ‘Stability of thin-flm solid-state electroluminescent devices based on tris(2,2-bipyridine)ruthenium(ii) complexes’, Journal of the American Chemical Society, 125, 6272-6283
  • Kalyuzhny G., Buda M., McNeill J., Barbara P., and Bard A. J. (2003), ‘Stability of thin-film solid-state electroluminescent devices based on tris(2,2-bipyridine)ruthenium(ii) complexes’, Journal of the American Chemical Society, 125, 6272-6283
  • Iwamoto M., Kwon Y.-S., and Lee T. (2011), ‘Nanoscale Interface for Organic Electronics’, Singapore: World Scientific Publishing
  • Gilge K., Werner A., and Murano S. (2014), ‘Applying OLEDs in a Manufacturing Process’, Information Display, 30, 30-34
  • Gaj M. P. (2016), ‘High-Performance Organic Light-Emitting Diodes for Flexible and Wearable Electronics’, doctoral dissertation, Georgia Institute of Technology
  • Fulem M., Růžička K., Růžička V., Šimeček T., Hulicius E., Pangr c J., Becker J., Koch J., and Salzmann A. (2005), ‘Vapor Pressure of Di-tert-butylsilane’, Journal of Chemical & Engineering Data, 50, 1613-1615
  • Fulem M., Růžička K., Růžička V., Hulicius E., Šimeček T., Pangr c J., Rushworth S. A., and Smith L. M. (2004), ‘Measurement of vapour pressure of In-based metalorganics for MOVPE’, Journal of Crystal Growth, 272, 42-46
  • Fulem M., Růžička K., Růžička V., Hulicius E., Šimeček T., Melichar K., Pangr c J., Rushworth S. A., and Smith L. M. (2003), ‘Vapor pressure of metal organic precursors’ Journal of Crystal Growth, 248, 99-107
  • Fulem M., Růžička K., Růžička V., Hulicius E., Šimecek T., Melichar K., Pangr c J., Rushworth S.A., and Smith L.M. (2003), ‘Vapor pressure of metal organic precursors’, Journal of Crystal Growth, 248, 99-107
  • Fulem M., Růžička K., Růžička V. Šimeček T. Hulicius E., and Pangr c J. (2006), ‘Vapour pressure measurement of metal organic precursors used for MOVPE’, The Journal of Chemical Thermodynamics, 38, 312-322
  • Fulem M., Růžička K., Růžička V. Šimeček T. Hulicius E., and Pangr c J. (2004), ‘Vapour pressure and heat capacities of metal organic precursors, Y(thd)3 and Zr(thd)4’, Journal of Crystal Growth, 264, 192-200
  • Fulem M., Mor vek P., Pangr c J., Hulicius E., Šimeček T., Růžička K., Růžička V., Kozyrkin B., and Shatunov V. (2010), ‘Vapor pressure of trimethyl antimony and tert-butyldimethylantimony’, Journal of Chemical & Engineering Data, 2010, 55, 362-365
  • Fukushima T. and Kaji H. (2012), ‘Green- and blue-emitting tris(8-hydroxyquinoline) aluminum(III) (Alq3) crystalline polymorphs: Preparation and application to organic light-emitting diodes’, Organic Electronics, 13, 2985-2990.
  • Fujimoto H., Yahiro M., Yukiwaki S., Kusuhara K., Nakamura N., Suekane T., Wei H., Imanishi K., Inada K., and Adachi C. (2016), ‘Influence of material impurities in the hole-blocking layer on the lifetime of organic light-emitting diodes’, Applied Physics Letters, 109, 243302.
  • Fishchuk I. I., Kadashchuk A., Hoffmann S. T. Athanasopoulos, S., Genoe J., B ssler H., and K hler A. (2013), ‘Unified description for hopping transport in organic semiconductors including both energetic disorder and polaronic contributions’, Physical Review B, 88, 125202
  • Endo A., Sato K., Yoshimura K., Kai T., Kawada A., Miyazaki H., and Adachi C. (2011), ‘Efficient Up-conversion of Triplet Excitons into a Singlet State and its Application for Organic Light Emitting Diodes’, Applied Physics Letters, 98, 083302
  • Endo A., Ogasawara M., Takahashi A. Yokoyama D., Kato Y., and Adachi C. (2009), ‘Thermally Activated Delayed Fluorescence from Sn4+-Porphyrin Complexes and Their Application to Organic Light Emitting Diodes - A Novel Mechanism for Electroluminescence’, Advanced Materials, 47, 4802-4806
  • Emtage P. R. and O’Dwyer J. J. (1966), ‘Richardson-Schottky Effect in Insulators’, Physical Review Letters, 16, 356-358
  • Deaton J. C., Huo S., Lussier B. B., Brown C. T., Garnett J. C., Blondell D. B., and Landry M. R. (2012), ‘Vapor Pressures of Homo- and Heteroleptic Orthometalated Complexes of Iridium’, SID International Symposium Digest of Technical Papers, 37, 939-941
  • Davids P. S., Campbell I. H., and Smith D. L. (1997), ‘Device model for single carrier organic diodes’, Journal of Applied Physics, 82, 6319
  • Coropceanu V., Cornil J., da Silva Filho D. A., Olivier Y., Silbey R., and Br das J. -L. (2007), ‘Charge Transport in Organic Semiconductors’, Chemical Reviews, 107, 926-952
  • Cester A., Bari D., Framarin J., Wrachien N., Meneghesso G., Xia S., Adamovich V., and Brown J.J. (2010), ‘Thermal and electrical stress effects of electrical and optical characteristics of Alq3/NPD OLED’, Microelectronics Reliability, 50, 1866-1870
  • Cao Y., Kim C., Forrest S. R., and Soboyejo W. (2005), ‘Effects of dust particles and layer properties on organic electronic devices fabricated by stamping’, Journal of Applied Physics, 98, 033713
  • Cai Y. (2010), ‘Organic light emitting diodes (OLEDs) and OLED-based structurally integrated optical sensors’, doctoral dissertation, Iowa State University
  • Burrows P. E., Bulovic V., Forrest S. R., Sapochak L. S., McCarty D. M., and Thompson M. E. (1994), ‘Reliability and degradation of organic light emitting devices’, Applied Physics Letters, 65, 2922-2924
  • Biswas S., Shalev O., and Shtein M. (2013), ‘Thin-Film Growth and Patterning Techniques for Small Molecular Organic Compounds Used in Optoelectronic Device Applications’, Annual Review of Chemical and Biomolecular Engineering, 4, 289-317
  • Birnstock J., Canzler T., Hofmann M., Lux A., Murano S., Wellmann P., and Werner A. (2007), ‘PIN OLEDs improved structures and materials to enhance device lifetime and ease mass production’, SID Symposium Digest of Technical Papers, 38, 1193-1196
  • Becker H., Bach I., Holbach M., Schwaiger J., and Spreitzer H. (2010), ‘5.1: Purity of OLED-Materials and the Implication on Device-Performance’, SID International Symposium Digest of Technical Papers, 41, 39-42
  • Baranoff E., Su rez S., Bugnon P., Barolo C., Buscaino R., Scopelliti R., Zuppiroli L., Graetzel M. and Nazeeruddin M. K. (2008), ‘Sublimation Not an Innocent Technique: A Case of Bis-Cyclometalated Iridium Emitter for OLED’, Inorganic Chemistry, 47, 6575-6577.
  • Baldo M. A., Thompson M. E., and Forrest S. R. (2000), ‘High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer’, Nature, 403, 750–753
  • Baldo M. A., O'Brien D. F., You Y., Shoustikov A., Sibley S., Thompson M. E., and Forrest S. R. (1998), ‘Highly efficient phosphorescent emission from organic electroluminescent devices’, Nature, 395, 151–154
  • Aziz H., Popovic Z. D., Hu N. -X., Hor A. -M., and Xu G. (1999), ‘Degradation mechanism of small molecule-based organic light-emitting devices’, Science, 283, 1900-1902
  • Aziz H. and Popovic Z. D. (2004), ‘Degradation Phenomena in Small-Molecule Organic Light-Emitting Devices’, Chemistry of Materials, 16, 4522-4532
  • Anderson J. D., McDonald E. M., Lee P. A., Anderson M. L., Ritchie E. L., Hall H. K., Hopkins T., Mash E. A., Wang J., Padias A., Thayumanavan S., Barlow S., Marder S. R., Jabbour G. E., Shaheen S., Kippelen B., Peyghambarian N., Wightman R. M., and Armstrong N. R. (1998), ‘Electrochemistry and electrogenerated chemiluminescence processes of the components of aluminum quinolate triarylamine, and related organic light-emitting diodes’, Journal of the American Chemical Society, 120, 9646-9655
  • Ambrose D., Lawrenson I. J., and Sprake C. H. S. (1975), ‘The vapour pressure of naphthalene’, The Journal of Chemical Thermodynamics, 7, 1173-1176.