박사

하이브리드 수중 글라이더 시스템의 최적시간 궤적 및 강건 적응 제어 = Time-optimal trajectory and robust adaptive control for hybrid underwater glider

논문상세정보
' 하이브리드 수중 글라이더 시스템의 최적시간 궤적 및 강건 적응 제어 = Time-optimal trajectory and robust adaptive control for hybrid underwater glider' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • backstepping
  • hybrid underwater glider
  • robust adaptive control
  • sliding-mode control
  • time-optimal trajectory
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
35 0

0.0%

' 하이브리드 수중 글라이더 시스템의 최적시간 궤적 및 강건 적응 제어 = Time-optimal trajectory and robust adaptive control for hybrid underwater glider' 의 참고문헌

  • 수중 글라이더를 이용한 동해 횡단 사례 보고
  • Z. Su, M. Zhou, F. Han, Y. Zhu, D. Song, and T. Guo, "Attitude control of underwater glider combined reinforcement learning with active disturbance rejection control," Journal of Marine Science and Technology, pp. 1-19, 2018.
  • Z. Huang, Y. Liu, H. Zheng, S. Wang, J. Ma, and Y. Liu, "A selfsearching optimal ADRC for the pitch angle control of an underwater thermal glider in the vertical plane motion," Ocean Engineering, vol. 159, pp. 98-111, 2018.
  • Y. Wang, Y. Zhang, M. Zhang, Z. Yang, and Z. Wu, "Design and flight performance of hybrid underwater glider with controllable wings," International Journal of Advanced Robotic Systems, pp. 1-12, 2017.
  • U. Latifa, T. W. O. Putri, B. R. Trilaksono, and E. M. I. Hidayat, "Modelling, identification, and simulation of autonomous underwater glider in longitudinal plane for control purpose," in 2017 2nd International Conference on Control and Robotics Engineering (ICCRE), 2017, pp. 140-144.
  • T200 thruster. Available: https://www.bluerobotics.com/store/thrusters/t100-t200- thrusters/t200-thruster/
  • T. W. O. Putri, U. Latifa, R. Bambang, and E. M. I. Hidayat, "Modelling and Identification of Underwater Glider for Heading Angle Correction," International Journal of Modeling and Optimization, vol. 7, pp. 65-69, 2017.
  • T. I. Fossen, Guidance and control of ocean vehicles. New York: Wiley, 1994.
  • S.-K. Jeong, H.-S. Choi, J.-H. Bae, S.-S. You, H. S. Kang, S.-J. Lee, J.-Y. Kim, D.-H. Kim, and Y.-K. Lee, "Design and control of high speed unmanned underwater glider," INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, vol. 3, pp. 273-279, 2016.
  • S. Wang, C. Xie, Y. Wang, L. Zhang, W. Jie, and S. J. Hu, "Harvesting of PEM fuel cell heat energy for a thermal engine in an underwater glider," Journal of power sources, vol. 169, pp. 338-346, 2007.
  • S. Phoemsapthawee, M. Le Boulluec, J.-M. Laurens, and F. o. Deniset, "Numerical Study on Hydrodynamic Behavior of an Underwater Glider," in International Conference on Offshore Mechanics and Arctic Engineering, 2011, pp. 521-526.
  • S. Peng, C. Yang, S. Fan, S. Zhang, P. Wang, and Y. Chen, "Hybrid underwater glider for underwater docking: modeling and performance evaluation," Marine Technology Society Journal, pp. 112-124, 2014.
  • S. D., G. T., W. H., C. Z., and Z. L., "Pitch angle active disturbance rejection control with model compensation for underwater glider," in Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science, 2017.
  • S. A. Jenkins, D. E. Humphreys, J. Sherman, J. Osse, C. Jones, N. Leonard, J. Graver, R. Bachmayer, T. Clem, and P. Carroll, "Underwater glider system study," 2003.
  • P. Bhatta and N. E. Leonard, “Nonlinear gliding stability and control for vehicles with hydrodynamic forcing,” Automatica, vol. 44, pp. 1240–1250, 2008.
  • N. A. A. Hussain, T. M. Chung, M. R. Arshad, R. Mohd-Mokhtar, and M. Z. Abdullah, "Design of an underwater glider platform for shallow-water applications," International Journal of Intelligent Defence Support Systems, vol. 3, pp. 186-206, 2010.
  • M. Y. Javaid, M. Ovinis, F. B. M. Hashim, A. Maimun, Y. M. Ahmed, and B. Ullah, "Effect of wing form on the hydrodynamic characteristics and dynamic stability of an underwater glider," International Journal of Naval Architecture and Ocean Engineering, vol. 9, pp. 382-389, 2017.
  • M. Nakamura, W. Koterayama, M. Inada, K. Marubayashi, T. Hyodo, H. Yoshimura, and Y. Morii, "Disk-type underwater glider for virtual mooring and field experiment," International Journal of Offshore Polar Engineering, vol. 19, 2009.
  • M. Mat-Noh, M. R. Arshad, and R. Mohd-Mokhtar, "Nonlinear control of autonomous underwater glider based on super-twisting sliding mode control (STSMC)," in 2017 7th IEEE International Conference on System Engineering and Technology (ICSET), 2017, pp. 71-76.
  • M. Mat-Noh, M. R. Arshad, R. Mohd-Mokhtar, and Q. Khan, "Backstepping integral sliding mode control (BISMC) application in a nonlinear autonomous underwater glider," in 2017 IEEE 7th International Conference on Underwater System Technology: Theory and Applications (USYS), 2017, pp. 1-6.
  • M. Chyba, T. Haberkorn, R. N. Smith, and S. K. Choi, "Design and implementation of time efficient trajectories for autonomous underwater vehicles," Ocean Engineering, vol. 35, pp. 63-76, 2008.
  • M. Chyba, N. E. Leonard, and E. D. Sontag, "Time-Optimal Control for Underwater Vehicles," IFAC Proceedings Volumes, vol. 33, pp. 117-122, 2000.
  • M. B. Loc, H.-S. Choi, S.-S. You, and T. N. Huy, "Time optimal trajectory design for unmanned underwater vehicle," Ocean Engineering, vol. 89, pp. 69-81, 2014.
  • M. Arima, N. Ichihashi, and Y. Miwa, "Modelling and motion simulation of an underwater glider with independently controllable main wings," in Oceans 2009-Europe, 2009, pp. 1-6.
  • L. Lapierre and B. Jouvencel, "Robust Nonlinear Path-Following Control of an AUV," IEEE Journal of Oceanic Engineering, vol. 33, pp. 89-102, 2008.
  • K. Isa, M. R. Arshad, and S. Ishak, "A hybrid-driven underwater glider model, hydrodynamics estimation, and an analysis of the motion control," Ocean Engineering, vol. 81, pp. 111-129, 2014.
  • K. D. Do, Z. P. Jiang, and J. Pan, "Robust adaptive path following of underactuated ships," Automatica, vol. 40, pp. 929-944, 2004.
  • K. D. Do, J. Pan, and Z. P. Jiang, "Robust and adaptive path following for underactuated autonomous underwater vehicles," Ocean Engineering, vol. 31, pp. 1967-1997, 2004.
  • K. Asakawa, T. Hyakudome, Y. Ishihara, and M. Nakamura, "Heading-control tests of an underwater glider for virtual mooring," in OCEANS 2015 - Genova, 2015, pp. 1-4.
  • K. Asakawa, K. Watari, M. Nakamura, and T. Hyakudome, "Pitch Control Performance of an Underwater Glider for Long-term Virtual Mooring," in The Twenty-fourth International Ocean and Polar Engineering Conference, Busan, Korea, 2014, p. 7.
  • J. Sherman, R. E. Davis, W. Owens, and J. Valdes, "The autonomous underwater glider" Spray"," IEEE Journal of Oceanic Engineering, vol. 26, pp. 437-446, 2001.
  • J. Pablo Orozco Muniz and T. Salgado Jimenez, "VBS design and modelling for a coastal underwater glider," in OCEANS 2018 MTS/IEEE Charleston, 2018, pp. 1-7.
  • J. Cao, J. Cao, B. Yao, and L. Lian, "Dynamics and adaptive fuzzy turning control of an underwater glider," in OCEANS 2015 - Genova, 2015, pp. 1-7.
  • J. Busquets-Mataix, J. V. Busquets-Mataix, and D. Busquets-Mataix, "Combined Gas-Fluid Buoyancy System for Improved Attitude and Maneuverability Control for Application in Underwater Gliders," IFAC-PapersOnLine, vol. 48, pp. 281-287, 2015.
  • I. Abraham and J. Yi, "Model predictive control of buoyancy propelled autonomous underwater glider," in 2015 American Control Conference (ACC), 2015, pp. 1181-1186.
  • I. Abbasi, S. S. A. Ali, M. Ovinis, and W. Naeem, "Adaptive identification of underwater glider using U-model for depth and pitch control under hydrodynamic disturbances," Jurnal Teknologi pp. 113- 118, 2015.
  • H. Sang, Y. Zhou, X. Sun, and S. Yang, "Heading tracking control with an adaptive hybrid control for under actuated underwater glider," ISA Transactions, vol. 80, pp. 554-563, 2018.
  • F. Tatone, M. Vaccarini, and S. Longhi, "Modeling and Attitude Control of an Autonomous Underwater Glider," IFAC Proceedings Volumes, vol. 42, pp. 217-222, 2009.
  • F. Rezazadegan, K. Shojaei, F. Sheikholeslam, and A. Chatraei, "A novel approach to 6-DOF adaptive trajectory tracking control of an AUV in the presence of parameter uncertainties," Ocean Engineering, vol. 107, pp. 246-258, 2015.
  • F. Liu, Y. Wang, W. Niu, Z. Ma, and Y. Liu, "Hydrodynamic performance analysis and experiments of a hybrid underwater glider with different layout of wings," in OCEANS 2014 - TAIPEI, 2014, pp. 1-5.
  • F. Leccese, M. Cagnetti, S. Giarnetti, E. Petritoli, I. Luisetto, S. Tuti, R. urović-Pejčev, T. orđević, A. Tomašević, V. Bursić, V. Arenella, P. Gabriele, A. Pecora, L. Maiolo, E. D. Francesco, G. S. Spagnolo, R. Quadarella, L. Bozzi, and C. Formisano, "A Simple Takagi-Sugeno Fuzzy Modelling Case Study for an Underwater Glider Control System," in 2018 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), 2018, pp. 262-267.
  • E. O. Rogers, J. Genderson, W. S. Smith, G. F. Denny, and P. J. Farley, "Underwater acoustic glider," in IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, 2004, pp. 2241-2244.
  • D. Song, L. Yao, Z. Wang, and L. Han, "Pitching Angle Control Method of Underwater Glider Based on Motion Compensation," in 2015 International Conference on Computational Intelligence and Communication Networks (CICN), 2015, pp. 1548-1551.
  • D. C. Webb, P. J. Simonetti, and C. P. Jones, "SLOCUM: An underwater glider propelled by environmental energy," IEEE Journal of oceanic engineering, vol. 26, pp. 447-452, 2001.
  • C. Yang, S. Peng, and S. Fan, "Performance and stability analysis for ZJU Glider," Marine Technology Society Journal, pp. 88-103, 2014.
  • C. Sun, B. Song, and P. Wang, "Parametric geometric model and shape optimization of an underwater glider with blended-wing-body," International Journal of Naval Architecture and Ocean Engineering, vol. 7, pp. 995-1006, 2015.
  • C. A. Woolsey and N. E. Leonard, "Moving mass control for underwater vehicles," in Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), 2002, pp. 2824-2829 vol.4.
  • B. Rhoads, I. Mezić, and A. C. Poje, "Minimum time heading control of underpowered vehicles in time-varying ocean currents," Ocean Engineering, vol. 66, pp. 12-31, 2013.
  • B. R. Page, S. Ziaeefard, A. J. Pinar, and N. Mahmoudian, "Highly Maneuverable Low-Cost Underwater Glider: Design and Development," IEEE Robotics and Automation Letters, vol. 2, pp. 344-349, 2017.
  • B. Claus, R. Bachmayer, and C. D. Williams, "Development of an auxiliary propulsion module for an autonomous underwater glider," Journal of Engineering for the Maritime Environment, pp. 255-266, 2010.
  • B. Claus, Bachmayer, R., & Cooney, L., "Analysis and development of a buoyancy-pitch based depth control algorithm for a hybrid underwater glider," in IEEE/OES Autonomous Underwater Vehicles, 2012, pp. 1-6.
  • B. Claus and R. Bachmayer, "Energy optimal depth control for long range underwater vehicles with applications to a hybrid underwater glider," Journal Autonomous Robots, vol. 40, pp. 1307-1320, 2016.
  • A. Wolek, J. Burns, C. Woolsey, J. Quenzer, L. Techy, and K. Morgansen, "A maneuverable, pneumatic underwater glider," in 2012 Oceans, 2012, pp. 1-7.
  • A. Alvarez, A. Caffaz, A. Caiti, G. Casalino, L. Gualdesi, A. Turetta, and R. Viviani, "Folaga: A low-cost autonomous underwater vehicle combining glider and AUV capabilities," Ocean Engineering, vol. 36, pp. 24-38, 2009.