박사

Effects of Hot Melt Extruded Zinc and Copper on Their Bioavailability and Performance in Pigs and Broilers

김민주 2019년
논문상세정보
' Effects of Hot Melt Extruded Zinc and Copper on Their Bioavailability and Performance in Pigs and Broilers' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Bioavailability
  • Broilers
  • Growth performance
  • Hot melt extrusion
  • Pigs
  • copper
  • zinc
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
581 0

0.0%

' Effects of Hot Melt Extruded Zinc and Copper on Their Bioavailability and Performance in Pigs and Broilers' 의 참고문헌

  • Świątkiewicz, S., A. Arczewska-Włosek and D. Jozefiak. 2014. The efficacy of organic minerals in poultry nutrition: review and implications of recent studies. Worlds Poult. Sci. J. 70(3): 475-486.
  • Zhou, W., E. T. Kornegay, M. D. Lindemann, J. W. G. M. Swinkels, M. K. Welten and E. A. Wong. 1994. Stimulation of growth by intravenous injection of copper in weanling pigs. J. Anim. Sci. 72(9): 2395-2403.
  • Zhao, J., R. B. Shirley, M. Vazquez-Anon, J. J. Dibner, J. D. Richards, P. Fisher, T. Hampton, K. D. Christensen, J. P. Allard and A. F. Giesen. 2010. Effects ofchelated trace minerals on growth performance, breast meat yield, and footpad health in commercial meat broilers. J. Appl. Poult. Res. 19(4): 365-372.
  • Zhao, J., G. Allee, G. Gerlemann, L. Ma, M. I. Gracia, D. Parker, M. Vazquez-Anon and R. J. Harrell. 2014. Effects of a chelated copper as growth promoter on performance and carcass traits in pigs. Asian-Australas. J. Anim. Sci. 27(7): 965.
  • Zhao, C. Y., S. X. Tan, X. Y. Xiao, X. S. Qiu, J. Q. Pan and Z. X. Tang. 2014. Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biol. Trace Elem. Res. 160(3): 361-367.
  • Zhang, H., X. Wu, K. Mehmood, Z. Chang, K. Li, X. Jiang, F. Nabi, M. Ijaz, M. U. Rehman, M. T. Javed and D. Zhou. 2017. Intestinal epithelial cell injury induced by copper containing nanoparticles in piglets. Environ. Toxicol. Pharmacol. 56: 151-156.
  • Zervas, G., E. Nikolaou and A. Mantzios. 1990. Comparative study of chronic copper poisoning in lambs and young goats. Anim. Prod. 50(3): 497-506.
  • Yu, Y. Y., C. P. Kirschke and L. Huang. 2007. Immunohistochemical analysis of ZnT1, 4, 5, 6, and 7 in the mouse gastrointestinal tract. J. Histochem. Cytochem. 55(3): 223-234.
  • Yi, Z., E. T. Kornegay and D. M. Denbow. 1996. Supplemental microbial phytase improves zinc utilization in broilers. Poult. Sci. 75(4): 540-546.
  • Yang, W., J. Wang, X. Zhu, Y. Gao, Z. Liu, L. Zhang, H. Chen, X. Shi, L. Yang and G. Liu. 2012. High lever dietary copper promote ghrelin gene expression in the fundic gland of growing pigs. Biol. Trace Elem. Res. 150(1-3): 154-157.
  • Yang, W., J. Wang, L. Liu, X. Zhu, X. Wang, Z. Liu, Z. Wang, L. Yang and G. Liu. 2011. Effect of high dietary copper on somatostatin and growth hormone-releasing hormone levels in the hypothalami of growing pigs. Biol. Trace Elem. Res. 143(2): 893-900.
  • Yamamoto, O. 2001. Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 3(7): 643-646.
  • Xu, Y., W. Yu, Q. Ma and H. Zhou. 2013. Accumulation of copper and zinc in soil and plant within ten-year application of different pig manure rates. Plant Soil Environ. 59(11): 492-499.
  • Xiang Qi, Z., K. Y. Zhang, X. M. Ding and S. P. Bai. 2009. Effects of dietary supplementation with copper sulfate or tribasic copper chloride on carcass characteristics, tissular nutrients deposition and oxidation in broilers. Pak. J. Nutr. 8(8): 1114-1119.
  • Xia, X. R., N. A. Monteiro-Riviere and J. E. Riviere. 2010. An index for characterization of nanomaterials in biological systems. Nat. Nanotechnol. 5(9): 671-675
  • Xia, T., W. Lai, M. Han, X. Ma and L. Zhang. 2017. Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets. Oncotarget.
  • Xia, M. S., C. H. Hu and Z. R. Xu. 2004. Effects of copper-bearing montmorillonite on growth performance, digestive enzyme activities, and intestinal microflora and morphology of male broilers. Poult. Sci. 83(11): 1868-1875.
  • Wu, X., Z. Liu, T. Zhang, Y. Yang, F. Yang and X. Gao. 2014. Effects of dietary copper on nutrient digestibility, tissular copper deposition and fur quality of growing-furring mink. Biol. Trace Elem. Res. 158(2): 166-175.
  • Wu, X., Z. Liu, J. Guo, C. Wan, T. Zhang, H. Cui, F. Yang and X. Gao. 2015. Influence of dietary zinc and copper on apparent mineral retention and serum biochemical indicators in young male mink. Biol. Trace Elem. Res. 165(1): 59-66.
  • Wilson, M., M. A. Williams, D. S. Jones and G. P. Andrews. 2012. Hot-melt extrusion technology and pharmaceutical application. Ther. Deliv. 3(6): 787-797.
  • Williams, D. M., R. E. Lynch, G. R. Lee and G. E. Cartwright. 1975. Superoxide dismutase activity in copper-deficient swine. Proc. Soc. Exp. Biol. Med. 149(2): 534-536.
  • Wedekind, K. J., A. E. Hortin and D. H. Baker. 1992. Methodology for assessing zinc bioavailability: Efficacy estimates for zinc-methionine, zinc sulfate, and zinc oxide. J. Anim. Sci. 70(1): 178-187.
  • Wang, Z., S. Cerrate, C. Coto, F. Yan and P. W. Waldroup. 2007. Evaluation of Mintrex copper as a source of copper in broiler diets. Int. J. Poult. Sci. 6(5): 308-313.
  • Wang, Y., J. W. Tang, W. Q. Ma and J. Feng. 2010. Dietary zinc glycine chelate on growth performance, tissue mineral concentrations, and serum enzyme activity in weanling piglets. Biol. Trace Elem. Res. 133(3): 325-334.
  • Wang, R., M. Chen, F. Feng, J. Zhang, Q. Sui, J. Tong, Y. Wei and D. Wei. 2017. Effects of chlortetracycline and copper on tetracyclines and copper resistance genes and microbial community during swine manure anaerobic digestion. Bioresour. Technol. 238: 57-69.
  • Wang, M. Q., Y. J. Du, C. Wang, W. J. Tao, Y. D. He and H. Li. 2012. Effects of copper-loaded chitosan nanoparticles on intestinal microflora and morphology in weaned piglets. Biol. Trace Elem. Res. 149(2): 184-189.
  • Walk, C. L., S. Srinongkote and P. Wilcock. 2013. Influence of a microbial phytase and zinc oxide on young pig growth performance and serum minerals. J. Anim. Sci. 91(1): 286-291.
  • Vo, C. L. N., C. Park and B. J. Lee. 2013. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur. J. Pharm. Biopharm. 85(3): 799- 813.
  • Van Heugten, E., J. W. Spears, E. B. Kegley, J. D. Ward and M. A. Qureshi. 2003. Effects of organic forms of zinc on growth performance, tissue zinc distribution, and immune response of weanling pigs. J. Anim. Sci. 81(8): 2063-2071.
  • Vahjen, W., R. Pieper and J. Zentek. 2011a. Increased dietary zinc oxide changes the bacterial core and enterobacterial composition in the ileum of piglets. J. Anim. Sci. 89(8): 2430-2439.
  • Vahjen, W., J. Liedtke and J. Zentek. 2011b. Growth of porcine intestinal bacteria in the presence of ZnO. Proc. Soc. Nutr. Physiol. 21: 139 (Abstract).
  • VSP (Videncenter for Svineproduktion [Danish Pig Research Centre]). 2016. Normer for n ringsstoffer (Nutrient recommendations for pigs in Denmark).
  • Uni, Z., Y. Noy and D. Sklan. 1998. Posthatch development of mucosal function in the broiler small intestine. Poult. Sci. 77(1): 75-82.
  • Tucker, H. F. and W. D. Salmon. 1955. Parakeratosis or zinc deficiency disease in the pig. Proc. Soc. Exp. Biol. Med. 88(4): 613-616.
  • Trindade Neto, M. A., B. H. C. Pacheco, R. Albuquerque and J. C. Rodriguez-Lecompte. 2011. Dietary effects of chelated zinc supplementation and lysine levels in ISA Brown laying hens on early and late performance, and egg quality. Poult. Sci. 90(12): 2837-2844.
  • Tolle, V., P. Zizzari, C. Tomasetto, M. C. Rio, J. Epelbaum and M. T. Bluet-Pajot. 2001. In vivo and in vitro effects of ghrelin/motilin-related peptide on growth hormone secretion in the rat. Neuroendocrinology. 73(1): 54-61.
  • Taylor, S., L. Qu, A. Kitaygorodskiy, J. Teske, R. A. Latour and Y. P. Sun. 2004. Synthesis and characterization of peptide-functionalized polymeric nanoparticles. Biomacromolecules. 5(1): 245-248.
  • Tapiero, H., D. M. Townsend and K. D. Tew. 2003. Trace elements in human physiology andpathology, Copper. Biomed. Pharmacother. 57(9): 386-398.
  • Tang, Z. G., C. Wen, L. C. Wang, T. Wang and Y. M. Zhou. 2014. Effects of zinc-bearing clinoptilolite on growth performance, cecal microflora and intestinal mucosal function of broiler chickens. Anim. Feed Sci. Technol. 189: 98-106.
  • Tan, X. Y., Z. Luo, X. Liu and C. X. Xie. 2011. Dietary copper requirement of juvenile yellow catfish Pelteobagrus fulvidraco. Aquac. Nutr. 17(2): 170-176.
  • Takaya, K., H. Ariyasu, N. Kanamoto, H. Iwakura, A. Yoshimoto, M. Harada, K. Mori, Y. Komatsu, T. Usui, A. S. Y. Ogawa, K. Hosoda, T. Akamizu, M. Kojima, K. Kangawa and K. Nakao. 2000. Ghrelin strongly stimulates growth hormone release in humans. J. Clin. Endocr. Metab. 85(12): 4908-4911.
  • Swiatkiewicz, S., J. Koreleski and D. Zhong. 2001. The bioavailability of zinc from inorganic and organic sources in broiler chickens as affected by addition of phytase. J. Anim. Feed Sci. 10: 317-328.
  • Swain, P. S., S. B. Rao, D. Rajendran, G. Dominic and S. Selvaraju. 2016. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Anim. Nutr. 2(3): 134-141.
  • Suttle, N. F. and C. F. Mills. 1966b. Studies of the toxicity of copper to pigs. 1. Effect of protein source and other dietary components on the response to high and moderates intakes of copper. Br. J. Nutr. 20(2): 149-161.
  • Suttle, N. F. and C. F. Mills. 1966a. Studies of the toxicity of copper to pigs. 1. Effects of oral supplements of zinc and iron salts on the development of copper toxicosis. Br. J. Nutr. 20(2): 135-148.
  • Suttle, N. F. 2010. Mineral nutrition of livestock, 4th Edition. CAB International, Cambridge.
  • Suazo, M., F. Olivares, M. A. Mendez, R. Pulgar, J. R. Prohaska, M. Arredondo, F. Pizarro, M. Olivares, M. Araya and M. Gonzalez. 2008. CCS and SOD1 mRNA are reduced after copper supplementation in peripheral mononuclear cells of individuals with high serum ceruloplasmin concentration. J. Nutr. Biochem. 19(4): 269-274.
  • Starcher, B., C. H. Hill and G. Matrone. 1964. Importance of dietary copper in the formation of aortic elastin. J. Nutr. 82(3): 318-322.
  • Stanley, S. L. and L. L. Doris. 2000. Glyconutritionals: Implications in Antimicrobial Activity. Glyco. Sci. 1(22): 1-4.
  • Stanger, B. R., G. M. Hill, J. E. Link, J. R. Turk, M. S. Carlson and D. W. Rozeboom. 1998. Effect of high zinc diets on TGE-challenged early weaned piglets. J. Anim. Sci, 78: 52.
  • Spreeuwenberg, M. A. M., J. M. A. J. Verdonk, H. R. Gaskins and M. W. A. Verstegen. 2001. Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning. J. Nutr. 131(5): 1520-1527.
  • Southon, S., J. M. Gee, C. E. Bayliss, G. M. Wyatt, N. Horn and I. T. Johnson. 1986. Intestinal microflora, morphology and enzyme activity in zinc-deficient and Zn-supplemented rats. Br. J. Nutr. 55(3): 603-611.
  • Smith, W. H., M. P. Plumlee and W. M. Beeson. 1962. Effect of source of protein on zinc requirement of the growing pig. J. Anim. Sci. 21(3): 399-405.
  • Smith, B. S. W. and H. Wright. 1975. Copper: molybdenum interaction: effect of dietary molybdenum on the binding of copper to plasma proteins in sheep. J. Comp. Pathol. 85(2): 299-305.
  • Sloup, V., I. Jankovsk , S. Nechybov , P. Peřinkov and I. Langrov . 2017. Zinc in the animal organism: a review. Sci. Agric. Bohem. 48(1): 13-21.
  • Slade, R. D., I. Kyriazakis, S. M. Carroll, F. H. Reynolds, I. J. Wellock, L. J. Broom and H. M. Miller. 2011. Effect of rearing environment and dietary zinc oxide on the response of group-housed weaned pigs to enterotoxigenic Escherichia coli O149 challenge. Animal. 5(8): 1170-1178.
  • Skřivan, M., V. Skřivanov and M. Marounek. 2005. Effects of dietary zinc, iron, and copper in layer feed on distribution of these elements in eggs, liver, excreta, soil, and herbage. Poult. Sci. 84(10): 1570-1575.
  • Singhal, S., V. K. Lohar and V. Arora. 2011. Hot melt extrusion technique. Webmedcentral.
  • Shurson, G. C., P. K. Ku, G. L. Waxler, M. T. Yokoyama and E. R. Miller. 1990. Physiological relationships between microbiological status and dietary copper in the pig. J. Anim. Sci. 68(4): 1061-1071.
  • Shelton, N. W., M. D. Tokach, J. L. Nelssen, R. D. Goodband, S. S. Dritz, J. M. DeRouchey and G. M. Hill. 2011. Effects of copper sulphate, tri-basic copper chloride, and zinc oxide on weanling pig performance. J. Anim. Sci. 89(8): 2440-2451.
  • Sheikh, A. A., A. Aggarwal and O. Aarif. 2016. Effect of in vitro zinc supplementation on HSPs expression and Interleukin 10 production in heat treated peripheral blood mononuclear cells of transition Sahiwal and Karan Fries cows. J. Therm. Biol. 56: 68-76.
  • Sharma, M. C., C. Joshi, N. N. Pathak and H. Kaur. 2005b. Copper status and enzyme, hormone, vitamin and immune function in heifers. Res. Vet. Sci. 79(2): 113-123.
  • Sharma, M. C., C. Joshi and M. Kumar. 2005a. Micro-minerals-their deficiency disorders and treatment: A review. Indian J. Anim. Sci. 75(2): 246-257.
  • Shanklin, S. H., E. R. Miller, D. E. Ullrey, J. A. Hoefer and R. W. Luecke. 1968. Zinc requirements of baby pigs on casein diets. J. Nutr. 96(1): 101-108.
  • Scott, A., K. P. Vadalasetty, M. Łukasiewicz, S. Jaworski, M. Wierzbicki, A. Chwalibog and E. Sawosz. 2017. Effect of different levels of copper nanoparticles and copper sulphate on performance, metabolism and blood biochemical profiles in broiler chicken. J. Anim. Physiol. Anim. Nutr. 102(1): 364-373.
  • Scott, A., K. P. Vadalasetty, E. Sawosz, M. Łukasiewicz, R. K. P. Vadalasetty, S. Jaworski and A. Chwalibog. 2016. Effect of copper nanoparticles and copper sulphate on metabolic rate and development of broiler embryos. Anim. Feed Sci. Technol. 220: 151-158.
  • Scott, A., K. P. Vadalasetty, A. Chwalibog and E. Sawosz. 2018. Copper nanoparticles as an alternative feed additive in poultry diet: a review. Nanotechnol. Rev. 7(1): 69-93.
  • Schlegel, P., D. Sauvant and C. Jondreville. 2013. Bioavailability of zinc sources and their interaction with phytates in broilers and piglets. Animal. 7(1): 47-59.
  • Schell, T. C. and E. T. Kornegay. 1996. Zinc concentration in tissues and performance of weanling pigs fed pharmacological levels of zinc from ZnO, Zn-methionine, Zn-lysine, or ZnSO4. J. Anim. Sci. 74(7): 1584-1593.
  • Sandoval, M., P. R. Henry, X. G. Luo, R. C. Littell, R. D. Miles and C. B. Ammerman. 1998. Performance and tissue zinc and metallothionein accumulation in chicks fed a high dietary level of zinc. Poult. Sci. 77(9): 1354-1363.
  • Sandoval, M., P. R. Henry, R. C. Littell, R. J. Cousins and C. B. Ammerman. 1997b. Estimation of the relative bioavailability of zinc from inorganic zinc sources for sheep. Anim. Feed Sci. Technol. 66(1-4): 223-235.
  • Sandoval, M., P. R. Henry, R. C. Littell, R. D. Miles, G. D. Butcher and C. B. Ammerman. 1999. Effect of dietary zinc source and method of oral administration on performance and tissue trace mineral concentration of broiler chicks. J. Anim. Sci. 77(7): 1788-1799..
  • Sandoval, M., P. R. Henry, P. R. Ammermann, R. D. Miles and R. C. Little. 1997a. Relative bioavailability of supplemental inorganic zinc sources for chicks. J. Anim. Sci. 75(12): 3195-3205.
  • Sanchez, E., R. Borja and M. Lopez. 1996. Determination of the kinetic constants of anaerobic digestion of sugar-mill-mud waste (SMMW). Bioresour. Technol. 56(2-3): 245-249.
  • Samanta, B., P. R. Ghosh, A. Biswas and S. K. Das. 2011a. The effects of copper supplementation on the performance and hematological parameters of broiler chickens. Asian-Australas. J. Anim. Sci. 24(7): 1001-1006.
  • Samanta, B., A. Biswas and P. Ghosh. 2011b. Effects of copper supplementation on production performance and plasma biochemical parameters in broiler chickens. Br. Poult. Sci. 52(5): 573-577.
  • Saenmahayak, B., S. F. Bilgili, J. B. Hess and M. Singh. 2010. Live and processing performance of broiler chickens fed diets supplemented with complexed zinc. J. Appl. Poult. Res. 19(4): 334-340.
  • SAS. 2012. SAS Software for PC. Release 9.3, SAS Institute. Ins, Cart, NC, USA.
  • Rucker, R. B., R. S. Riggins, R. Laughlin, M. M. Chen, M. Chen and K. Tom. 1975. Effects of nutritional copper deficiency of the biomechanical properties of bone and arterial elastin metabolism in the chick. J. Nutr. 105(8): 1062-1070.
  • Rothe, S., J. Gropp, H. Weiser and W. A. Rambeck. 1994. Influence of vitamin-C and zinc on copper-induced increased cadmium retention in pig. Eur. J. Nutr. 33(1): 61-67.
  • Rossi, P., F. Rutz, M. A. Anciuti, J. L. Rech and N. H. F. Zauk. 2007. Influence of graded levels of organic zinc on growth performance and carcass traits of broilers. J. Appl. Poult. Res. 16(2): 219-225.
  • Roselli, M., A. Finamore, M. S. Britti, P. Bosi, I. Oswald and E. Mengheri. 2005. Alternatives to infeed antibiotics in pigs: Evaluation of probiotics, zinc or organic acids as protective agents for the intestinal mucosa. A comparison of in vitro and in vivo results. Anim. Res. 54(3): 203-218.
  • Roof M. D. and D. C. Mahan. 1982. Effect of carbadox and various dietary copper levels for weanling swine. J. Anim. Sci. 55(5): 1109-1117.
  • Rodriguez, P., N. Darmon, P. Chappuis, C. Candalh, M. A. Blaton, C. Bouchaud and M. Heyman. 1996. Intestinal paracellular permeability during malnutrition in guinea pigs: effect of high dietary zinc. Gut. 39(3): 416-422.
  • Robinson, N. J., S. K. Whitehall and J. S. Cavet. 2001. Microbial metallothioneins. Adv. Microb. Physiol. 44(1): 183-213.
  • Roberson, R. H. and P. J. Schaible. 1958. The zinc requirement of the chick. Poult. Sci. 37(6): 1321- 1323.
  • Robbins, K. R. and D. H. Baker. 1980. Effect of sulfur amino acid level and source on the performance of chicks fed high levels of copper. Poult. Sci. 59(6): 1246-1253.
  • Robbins, K. R. and D. H. Baker. 1980. Effect of high-level copper feeding on the sulfur amino acid need of chicks fed corn-soybean meal and purified crystalline amino acid diets. Poult. Sci. 59(5): 1099-1108.
  • Rincker, M. J., G. M. Hill, J. E. Link, A. M. Meyer and J. E. Rowntree. 2005. Effects of dietary zinc and iron supplementation on mineral excretion, body composition, and mineral status of nursery pigs. J. Anim. Sci. 83(12): 2762-2774.
  • Richards, J. D., J. Zhao, R. J. Harrell, C. A. Atwell and J. J. Dibner. 2010. Trace mineral nutrition in poultry and swine. Asian-Australas. J. Anim. Sci, 23(11): 1527-1534.
  • Rhee, J. S., Y. M. Lee, D. S. Hwang, K. W. Lee, I. C. Kim, K. H. Shin, S. Raisuddin and J. S. Lee. 2007b. Molecular cloning and characterization of omega class glutathione S-transferase (GST-O) from the Polychaete Neanthes succinea: Biochemical comparison with theta class glutathione S-transferase (GST-T). Comp. Biochem. Physiol. 146(6): 471-477.
  • Rhee, J. S., Y. M. Lee, D. S. Hwang, E. J. Won, S. Raisuddin, K. H. Shin and J. S. Lee. 2007a. Molecular cloning, expression, biochemical characteristics, and biomarker potential of theta class glutathione S-transferase (GST-T) from the polycheate Neanthes succinea. Aquat. Toxicol. 83(2): 104-115.
  • Rhee, J. S., E. J. Won, R. O. Kim, J. Lee, K. H. Shin and J. S. Lee. 2011. Expression of superoxide dismutase (SOD) genes from the copper-exposed polychaete, Neanthes succinea. Mar. Pollut. Bull. 63(5-12): 277-286.
  • Revy, P. S., C. Jondreville, J. Y. Dourmad and Y. Nys. 2006. Assessment of dietary zinc requirement of weaned piglets fed diets with or without microbial phytase. J. Anim. Physiol. Anim. Nutr. 90(1-2): 50-59.
  • Revy, P. S., C. Jondreville, J. Y. Dourmad and Y. Nys. 2004. Effect of zinc supplemented as either an organic or an inorganic source and of microbial phytase on zinc and other minerals utilisation by weanling pigs. Anim. Feed Sci. Technol. 116(1-2): 93-112.
  • Refaie, A. M., M. N. Ghazal, F. M. Easa, S. A. Barakat, W. A. Morsy, G. E. Younan and W. H. Eisa. 2015. Nano-copper as a new growth promoter in the diet of growing New Zealand white rabbits. Egypt. J. Rabbit Sci, 25: 39-57.
  • Rauwendaal, C. H. 2014. Polymer Extrusion, Hanser Publishers, M nchen. 20-25.
  • Rajendran, D., A. Thulasi, S. Jash, S. Selvaraju and S. B. Rao. 2013. Synthesis and application of nano minerals in livestock industry. In: Animal Nutrition and Reproductive Physiology (Recent Concepts). Satish Serial Publishing House, Delhi, pp. 517-530.
  • Radecki, S. V., P. K. Ku, M. R. Bennink, M. T. Yokoyama and E. R. Miller. 1992. Effect of dietary copper on intestinal mucosa enzyme activity, morphology, and turnover rates in weanling pigs. J. Anim. Sci. 70(5): 1424-1431.
  • Prasad, A. S. 1984. Discovery and importance of zinc in human nutrition. Fed. Proc. 43(13): 2829- 2834.
  • Powell, S. R. 2000. The antioxidant properties of zinc. J. Nutr. 130(5): 1447-1454.
  • Poupoulis, C. and L. S. Jensen. 1976b. Effect of high dietary copper on gizzard integrity of the chick. Poult. Sci. 55(1): 113-121.
  • Poupoulis, C. and L. S. Jensen. 1976a. Effect of high dietary copper on fatty acid composition of the chick. Poult. Sci. 55(1): 122-129.
  • Poulsen, H. D. 1995. Zinc oxide for weanling pigs. Acta Agric. Scand. A Anim. Sci. 45(3): 159-167.
  • Poulsen, H. D. 1989. Zinc oxide for weaned pigs. Proceedings of the 40th Annual Meeting of the European Association of Animal Production, Dublin, Ireland. EAAP Publications. 265- 266.
  • Pluske, J. R., D. J. Hampson and I. H. Williams. 1997. Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livest. Prod. Sci. 51(1): 215- 236.
  • Pineda, L., E. Sawosz, K. P. Vadalasetty and A. Chwalibog. 2013b. Effects of copper nanoparticles on metabolic rate and development of layer embryos. In Energy and protein metabolism and nutrition in sustainable animal production. Wageningen Academic Publishers, Wageningen.
  • Pineda, L., E. Sawosz, K. P. Vadalasetty and A. Chwalibog. 2013a. Effect of copper nanoparticles on metabolic rate and development of chicken embryos. Anim. Feed Sci. Technol. 186(1- 2): 125-129.
  • Pieper, R., W. Vahjen, K. Neumann, A. G. Van Kessel and J. Zentek. 2012. Dose-dependent effects of dietary zinc oxide on bacterial communities and metabolic profiles in the ileum of weaned pigs. J. Anim. Physiol. Anim. Nutr. 96(5): 825-833.
  • Pesti, G. M. and R. I. Bakalli. 1996. Studies on the feeding of cupric sulfate pentahydrate and cupric citrate to broiler chickens. Poult. Sci. 75(9): 1086-1091.
  • Persia, M. E., D. H. Baker and C. M. Parsons. 2004. Tolerance for excess basic zinc chloride and basic copper chloride in chicks. Br. Poult. Sci. 45(5): 672-676.
  • Peino, R., R. Baldelli, J. Rodriguez-Garcia, S. Rodriguez-Segade, M. Kojima, K. Kangawa, E. Ghigo, C. Dieguez and F. F. Casanueva. 2000. Ghrelin-induced growth hormone secretion in humans. Eur. J. Endocrinol. 143(6): 11-14.
  • Patil, H., R. V. Tiwari and M. A. Repka. 2016. Hot-melt extrusion: from theory to application in pharmaceutical formulation. Aaps. Pharm. Sci. Technol. 17(1): 20-42.
  • Pang, Y., J. A. Patterson and T. J. Applegate. 2009. The influence of copper concentration and source on ileal microbiota. Poult. Sci. 88(3): 586-592.
  • Pang, Y. and T. J. Applegate. 2007. Effects of dietary copper supplementation and copper source on digesta pH, calcium, zinc, and copper complex size in the gastrointestinal tract of the broiler chicken. Poult. Sci. 86(3): 531-537.
  • Pallauf, J., D. H hler and G. Rimbach. 1992. Effekt einer Zulage an mikrobieller Phytase zu einer Mais‐Soja‐Di t auf die scheinbare Absorption von Mg, Fe, Cu, Mn und Zn sowie auf Parameter des Zinkstatus beim Ferkel. J. Anim. Physiol. Anim. Nutr. 68(1): 1-9.
  • Pallauf, J. and G. Rimbach. 1997. Nutritional significance of phytic acid and phytase. Arch. Anim. Nutr. 50(4): 301-319.
  • Paik, I. K., S. H. Seo, J. S. Um, M. B. Chang and B. H. Lee. 1999. Effects of supplementary copperchelate on the performance and cholesterol level in plasma and breast muscle of broiler chickens. Asian-Australas. J. Anim. Sci. 12(5): 794-798.
  • P rez, V. G., A. M. Waguespack, T. D. Bidner, L. L. Southern, T. M. Fakler, T. L. Ward, M. Steidinger and J. E. Pettigrew. 2011. Additivity of effects from dietary copper and zinc on growth performance and fecal microbiota of pigs after weaning. J. Anim. Sci. 89(2): 414- 425.
  • Okonkwo, A. C., P. K. Ku, E. R. Miller, K. K. Keahey and D. E. Ullrey. 1979. Copper requirement of baby pigs fed purified diets. J. Nutr. 109(6): 939-948.
  • O'’Dell, B. L., P. M. Newberne and J. E. Savage. 1958. Significance of dietary zinc for the growing chicken. J. Nutr. 65(4): 503-523.
  • O'Dell, B. L., A. R. Boland and S. R. Koirtyohann. 1972. Distribution of phytate and nutritionally important elements among the morphological components of cereal grains. J. Agric. Food Chem. 20(3): 718-723.
  • O'Dell, B. L. and P. G. Reeves. 1989. Zinc status and food intake. In zinc in human biology (pp. 173-181). Springer, London.
  • O'Dell, B. L. 1976. Biochemistry of copper. The Medical Clinics of North America. 60(4): 687-703.
  • Nwokolo, E. N., D. B. Bragg and W. D. Kitts. 1976. A method for estimating the mineral availability in feedstuffs. Poult. Sci. 55(6): 2217-2221.
  • Nose, Y., L. K. Wood, B. E. Kim, J. R. Prohaska, R. S. Fry, J. W. Spears and D. J. Thiele. 2010. Ctr1 is an apical copper transporter in mammalian intestinal epithelial cells in vivo that is controlled at the level of protein stability. J. Biol. Chem. 285(42): 32385-32392.
  • Nielsen, F. H. 2012. History of zinc in agriculture. Adv. Nutr. 3(6): 783-789.
  • Nabuurs, M. J. A., A. Hoogendoom, E. J. van der Molen and A. L. M. van Osta. 1993. Villus height and crypt depth in weaned and unweaned pigs, reared under various circumstances in the Netherlands. Res. Vet. Sci. 55: 78-84.
  • NRC (National Research Council). 2012. Nutrient requirements of swine. 11th revised edition. National Academy Press, Washington, DC, USA.
  • NRC (National Research Council). 1994. Nutrient requirements of poultry. 9th revised edition. National Academy Press, Washington, DC, USA.
  • NRC (National Research Council). 1980. Mineral tolerance of domestic animals. National Academies Press, Washington, DC, USA.
  • Mroczek-Sosnowska, N. A. T. A. L. I. A., M. Lukasiewicz, A. G. N. I. E. S. Z. K. A. Wnuk, E. Sawosz and J. Niemiec. 2014. Effect of copper nanoparticles and copper sulfate administered in ovo on copper content in breast muscle, liver and spleen of broiler chickens. Annals of Warsaw University of Life Sciences-SGGW, Animal Science. 53.
  • Mroczek-Sosnowska, N. A. T. A. L. I. A., M. A. R. T. Y. N. A. Batorska, M. Lukasiewicz, A. G. N. I. E. S. Z. K. A. Wnuk, E. Sawosz, S. Ł. A. W. O. M. I. R. Jaworski and J. Niemiec. 2013. Effect of nanoparticles of copper and copper sulfate administered in ovo on hematological and biochemical blood markers of broiler chickens. Annals of Warsaw University of Life Sciences-SGGW. Animal Science, 52.
  • Morrison, A. B. and H. P. Sarett. 1958. Studies on zinc deficiencies in the chick. J. Nutr. 65(2): 267- 280.
  • Moodley, A., S. S. S ren Saxmose Nielsen and L. Guardabassi. 2011. Effects of tetracycline and zinc on selection of methicillin-resistant Staphylococcus aureus (MRSA) sequence type 398 in pigs. Vet. Microbiol. 152(3-4): 420-423.
  • Mondal, M. K., T. K. Das, P. Biswas, C. C. Samanta and B. Bairagi. 2007. Influence of dietary inorganic and organic copper salt and level of soybean oil on plasma lipids, metabolites and mineral balance of broiler chickens. Anim. Feed Sci. Technol. 139(3-4): 212-233.
  • Molist, F., R. G. Hermes, A. G mez de Segura, S. M. Mart n-Or e, J. Gasa, E. Garcia Manzanilla and J. F. P rez. 2011. Effect and interaction between wheat bran and zinc oxide on productive performance and intestinal health in post-weaning piglets. Br. J. Nutr. 105(11): 1592-1600.
  • Mohanna, C. and Y. Nys. 1999. Effect of dietary zinc content and sources on the growth, body zinc deposition and retention, zinc excretion and immune response in chickens. Br. Poult. Sci. 40(1): 108-114.
  • Mishra, A., R. K. Swain, S. K. Mishra, N. Panda and K. Sethy. 2014. Growth performance and serum biochemical parameters as affected by nano zinc supplementation in layer chicks. Indian J. Anim. Nutr. 31(4): 384-388.
  • Min, S. K., J. S. Um and I. K. Paik. 1994. Effects of supplementary methionine-copper and proteincopper complexes on the growth, mineral metabolism and intestinal microflora of broiler chickens and rats. Korean J. Anim. Sci. 18(2): 103-113.
  • Miles, R. D., S. F. O'keefe, P. R. Henry, C. B. Ammerman and X. G. Luo. 1998. The effect of dietary supplementation with copper sulfate or tribasic copper chloride on broiler performance, relative copper bioavailability, and dietary prooxidant activity. Poult. Sci. 77(3): 416-425.
  • Milani, N. C., M. Sbardella, N. Y. Ikeda, A. Arno, B. C. Mascarenhas and V. S. Miyada. 2017. Dietary zinc oxide nanoparticles as growth promoter for weanling pigs. Anim. Feed Sci. Technol. 227: 13-23.
  • Mei, S. F., B. Yu, C. F. Ju, D. Zhu and D. W. Chen. 2010. Effect of different concentrations of copper on growth performance and cecal ecosystem of newly weaned piglets. Ital. J. Anim. Sci. 9(4): 378-381.
  • Mehring Jr, A. L., J. H. Brumbaugh, A. J. Sutherland and H. W. Titus. 1960. The tolerance of growing chickens for dietary copper. Poult. Sci. 39(3): 713-719.
  • Mcginity, J. W. and J. J. Koleng. 1997. Preparation and evaluation of rapid-release granules using a novel hot-melt extrusion technique. In Pharmaceutical Technology Conference. 2: 153- 154.
  • McNaughton, J. F., E. J. Day, B. C. Dilworth and B. D. Lott. 1974. Iron and copper availability from various sources. Poult. Sci. 53(4): 1325-1330.
  • McDowell, L. R. 1992. Mineral in animal and human nutrition. academic press. Inc, New York. 176-200.
  • Matsui, T., T. Ishiguro, S. Suzaki, H. Yano and S. Fujita. 1996. Supplementation of zinc as amino acid-chelated zinc for piglets. Proc. 8th Asian Australian Assoc. Anim. Prod. Anim. Sci. Congr. 2: 754-755.
  • Martinez, M. M., J. E. Link and G. M. Hill. 2005. Dietary pharmacological or excess zinc and phytase effects on tissue mineral concentrations, metallothionein, and apparent mineral retention in the newly weaned pig. Biol. Trace Elem. Res. 105(1): 97-115.
  • Martin, L., U. Lodemann, A. Bondzio, E. M. Gefeller, W. Vahjen, J. R. Aschenbach, J. Zentek and R. Pieper. 2013. A high amount of dietary zinc changes the expression of zinc transporters and metallothionein in jejunal epithelial cells in vitro and in vivo but does not prevent zinc accumulation in jejunal tissue of piglets. J. Nutr. 143(8): 1205-1210.
  • Maojo, V., M. Fritts, D. de la Iglesia, R. E. Cachau, M. Garcia-Remesal, J. A. Mitchell and C. Kulikowski. 2012. Nanoinformatics: a new area of research in nanomedicine. Int. J. Nanomed. 7: 3867-3890.
  • Maniruzzaman, M., J. S. Boateng, M. J. Snowden and D. Douroumis. 2012. A review of hot-melt extrusion: process technology to pharmaceutical products. ISRN Pharm.
  • Makarski, B. and A. Zadura. 2006b. Influence of different doses of copper bioplex on production results and tissue mineral composition in female turkeys. Pol. J. Nat. Sci. 3: 451-457.
  • Makarski, B. and A. Zadura. 2006a. Influence of copper and lysine chelate on hematological and biochemical component levels in turkey blood. Ann. UMCS Lublin, Sect. EE. 24: 357- 363.
  • Ma, W., H. Niu, J. Feng, Y. Wang and J. Feng. 2011. Effects of zinc glycine chelate on oxidative stress, contents of trace elements, and intestinal morphology in broilers. Biol. Trace Elem. Res. 142(3): 546-556.
  • MTT (Maa- ja elintarviketalouden tutkimuskeskus). 2013. Available online: https://portal.mtt.fi/portal/page/portal/Rehutaulukot/feed_tables_english/nutrient_require ments (Accessed on 30.10.2013).
  • Luo, X. G., F. Ji, Y. X. Lin, F. A. Steward, L. Lu, B. Liu and S. X. Yu. 2005. Effects of dietary supplementation with copper sulfate or tribasic copper chloride on broiler performance, relative copper bioavailability, and oxidation stability of vitamin E in feed. Poult. Sci. 84(6): 888-893.
  • Luo, X. G. and C. R. Dove. 1996. Effect of dietary copper and fat on nutrient utilization, digestive enzyme activities, and tissue mineral levels in weanling pigs. J. Anim. Sci. 74(8): 1888- 1896.
  • Lu, X. M., P. Z. Lu, J. J. Chen, H. Zhang and J. Fu. 2015. Effect of passivator on Cu form transformation in pig manure aerobic composting and application in soil. Environ. Sci. Pollut. Res. 22(19): 14727-14737.
  • Lu, L., R. L. Wang, Z. J. Zhang, F. A. Steward, X. Luo and B. Liu. 2010. Effect of dietary supplementation with copper sulfate or tribasic copper chloride on the growth performance, liver copper concentrations of broilers fed in floor pens, and stabilities of vitamin E and phytase in feeds. Biol. Trace Elem. Res. 138(1-3): 181-189.
  • Lu, J. and G. F. Combs Jr. 1988. Effect of excess dietary zinc on pancreatic exocrine function in the chick. J. Nutr. 118(6): 681-689.
  • Lu, J. X., G. F. Jr. Combs and J. C. Fleet. 1990. Time-course studies of pancreatic exocrine damage induced by excess dietary zinc in the chick. J. Nutr. 120(4): 389-397.
  • Liu, Z, M. Bryant and D. A. Sr. Roland. 2005. Layer performance and phytase retention as influenced by copper sulfate pentahydrate and tribasic copper chloride. J. Appl. Poult. Res. 14(3): 499-505.
  • Liu, Y., Y. L. Ma, J. M. Zhao, M. Vazquez-A n and H. H. Stein. 2014. Digestibility and retention of zinc, copper, manganese, iron, calcium, and phosphorus in pigs fed diets containing inorganic or organic minerals. J. Anim. Sci. 92(8): 3407-3415.
  • Liu, S., L. Lu, S. Li, J. Xie, L. Zhang, R. Wang and X. Luo. 2012. Copper in organic proteinate or inorganic sulfate form is equally bioavailable for broiler chicks fed a conventional corn– soybean meal diet. Biol. Trace Elem. Res. 147(1-3): 142-148.
  • Liu, G. W. and Z. Wang. 2000. Relationship between somatotropic hormone axis and copper stimulated growth. Proc. Vet. Edu. 21: 22-24.
  • Lin, Y. H., Y. Y. Shie and S. Y. Shiau. 2008. Dietary copper requirements of juvenile grouper, Epinephelus malabaricus. Aquaculture. 274(1): 161-165.
  • Lin, C. Y. 1992. Effect of heavy metals on volatile fatty acid degradation in anaerobic digestion. Water Res. 26(2): 177-183.
  • Lillie, R. J., L. T. Frobish, N. C. Steele and G. Graber. 1977. Effect of dietary copper and tylosin and subsequent withdrawal on growth, hematology and tissue residues of growingfinishing pigs. J. Anim. Sci. 45(1): 100-107.
  • Li, M. Z., J. T. Huang, Y. H. Tsai, S. Y. Mao, C. M. Fu and T. F. Lien. 2016. Nanosize of zinc oxide and the effects on zinc digestibility, growth performances, immune response and serum parameters of weanling piglets. Animal Sci. J. 87(11): 1379-1385.
  • Li, J., L. Yan, X. Zheng, G. Liu, N. S. Zhang and Z. Wang. 2008. Effect of high dietary copper on weight gain and neuropeptide Y level in the hypothalamus of pigs. J. Trace Elem. Med. Biol. 22(1): 33-38.
  • Lei, X. G., P. K. Ku, E. R. Miller, D. E. Ullrey and M. T. Yokoyama. 1993. Supplemental microbial phytase improves bioavailability of dietary zinc to weanling pigs. J. Nutr. 123(6): 1117- 1123.
  • Leeson, S. and J. D. Summers. 2005. Commercial poultry nutrition. Publ. Univ. Books, Guelph. ON.
  • Leeson, S. 2009. Copper metabolism and dietary needs. Worlds Poult. Sci. J. 65(3): 353-366.
  • Lee, S. Y, S. Y. Nam, Y. H. Choi, M. J. Kim, J. S. Koo, B. J. Chae, W. S. Kang and H. J. Cho. 2017. Fabrication and characterizations of hot-melt extruded nanocomposites based on zinc sulfate monohydrate and Soluplus. Appl. Sci. 7(9): 902.
  • Lee, S. R., S. J. Noh, J. R. Pronto, Y. J. Jeong, H. K. Kim, I. S. Song, Z. Xu, H. Y. Kwon, S. C. Kang, E. H. Sohn, K. S. Ko, B. D. Rhee, N. Kim and J. Han. 2015. The critical roles of zinc: beyond impact on myocardial signaling. Korean J. Physiol. PHA. 19(5): 389-399.
  • Lee, J. Y., W. S. Kang, J. Piao, I. S. Yoon, D. D. Kim and H. J. Cho. 2015. Soluplus /TPGS-based solid dispersions prepared by hot-melt extrusion equipped with twin-screw systems for enhancing oral bioavailability of valsartan. Drug Des. Devel. Ther. 9: 2745.
  • Lee, J. G. 2009. Effects of copper and zinc concentrations on anaerobic fermentation of swine slurry. Master of degree. Thesis. Konkuk University. Seoul. Korea.
  • Lebel, A., J. J. Matte and F. Guay. 2014. Effect of mineral source and mannan oligosaccharide supplements on zinc and copper digestibility in growing pigs. Arch. Anim. Nutr. 68(5): 370-384.
  • Kumar, V., A. K. Sinha, H. P. S. Makkar and K. Becker. 2010. Dietary roles of phytate and phytase in human nutrition: a review. Food Chem. 120(4): 945-959.
  • Kruder, G. A. 1985. Extrusion. In: Encyclopedia of polymer science and engineering. Vol. 1, 2nd ed. John Wiley and Sons Inc. New York. 571-631.
  • Krebs, N. F. 2000. Overview of zinc absorption and excretion in the human gastrointestinal tract. J. Nutr. 130(5): 1374-1377.
  • Koo, J. S., S. Y. Lee, S. Y. Nam, M. O. K. Azad, M. J. Kim, K. Y. Kim, B. J. Chae, W. S. Kang and H. J. Cho. 2018. Preparation of cupric sulfate-based self-emulsifiable nanocomposites and their application to the photothermal therapy of colon adenocarcinoma. Biochem. Biophys. Res. Commun. 503(4): 2471-2477.
  • Konkol, D. and K. Wojnarowski. 2018. The use of nanominerals in animal nutrition as a way to improve the composition and quality of animal products. J. Chem. 7.
  • Kojima, M., H. Hosoda, Y. Date, M. Nakazato, H. Matsuo and K. Kangawa. 1999. Ghrelin is a growthhormone-releasing acylated peptide from stomach. Nature. 402(6762): 656-660.
  • Kohlgruber, K. and W. Wiedmann. 2008. Co-rotatin twin-screw extruders. Hanser Gardner Publications.
  • Kim, J. W. and D. Y. Kil. 2015. Determination of relative bioavailability of copper in tribasic copper chloride to copper in copper sulfate for broiler chickens based on liver and feather copper concentrations. Anim. Feed Sci. Technol. 210: 138-143.
  • Kim, J. C., C. F. Hansen, B. P. Mullan and J. R. Pluske. 2012. Nutrition and pathology of weaner pigs: nutritional strategies to support barrier function in the gastrointestinal tract. Anim. Feed Sci. Technol. 173(1-2): 3-16.
  • Kim, H., H. Y. Son, S. M. Bailey and J. Lee. 2009. Deletion of hepatic Ctr1 reveals its function in copper acquisition and compensatory mechanisms for copper homeostasis. Am. J. Physiol. Gastrointest. Liver Physiol. 296(2): 356-364.
  • Kim, G. B., Y. M. Seo, K. S. Shin, A. R. Rhee, J. Han and I. K. Paik. 2011. Effects of supplemental copper-methionine chelate and copper-soy proteinate on the performance, blood parameters, liver mineral content, and intestinal microflora of broiler chickens. J. Appl. Poult. Res. 20(1): 21-32.
  • Kim, B. E., T. Nevitt and D. J. Thiele. 2008. Mechanisms for copper acquisition, distribution, and regulation. Nat. Chem. Biol. 4(3): 176-185.
  • Kim, B. E., M. L. Turski, Y. Nose, M. Casad, H. A. Rockman and D. J. Thiele. 2010. Cardiac copper deficiency activates a systemic signaling mechanism that communicates with the copper acquisition and storage organs. Cell Metab. 11(5): 353-363.
  • Kidd, M. T. 2004. Nutritional modulation of immune function in broilers. Poult. Sci. 83(4): 650– 657.
  • Kickinger, T., J. Humer, K. Aichberger, H. Wurzner and W. Windisch. 2008. Survey on zinc and copper contents in dung from Austrian livestock production. Die Bodenkultur. 101(59): 1- 4.
  • Kickinger, T., H. Wurzner and W. Windisch. 2010. Zinc and copper in feeds, slurry and soils from Austrian pig fattening farms feeding commercial complete feed or feed mixtures produced on-farm. Die Bodenkultur. 60: 47-58.
  • Kernkamp, H. C. and E. F. Ferrin. 1953. Parakeratosis in swine. J. Am. Vet. Med. A. 123(918): 217- 220.
  • Kennedy, K. J., T. M. Rains and N. F. Shay. 1998. Zinc deficiency changes preferred macronutrient intake in subpopulations of Sprague-Dawley outbred rats and reduces hepatic pyruvate kinase gene expression. J. Nutr. 128(1): 43-49.
  • Kendrick, M. J., M. T. May, M. J. Plishka and K. D. Robinson. 1992. Metals in biological systems. In metals in biological systems. MidsomerNorton, Avon, Great Britain. 142-149.
  • Kelsay, J. L. 1987. Effects of fiber, phytic acid, and oxalic acid in the diet on mineral bioavailability. Am. J. Gastroenterol. 82(10).
  • Kaya, A., A. Altiner and A. Ozpinar. 2006. Effect of copper deficiency on blood lipid profile and haematological parameters in broilers. J. Vet. Med. 53(8): 399-404.
  • Katouli, M., L. Melin, M. Jensen, Waern, P. Wallgren and R. M llby. 1999. The effect of zinc oxide supplementation on the stability of the intestinal flora with special reference to composition of coliforms in weaned pigs. J. Appl. Microbiol. 87(4): 564-573.
  • Karimi, A., G. H. Sadeghi and A. Vaziry. 2011. The effect of copper in excess of the requirement during the starter period on subsequent performance of broiler chicks. J. Appl. Poult. Res. 20(2): 203-209.
  • Jongbloed, A. W. 2008. Environmental pollution control in pigs by using nutrition tools. R. Bras. Zootec. 37: 215-229.
  • Jones, D. S. 2008. Engineering drug delivery using polymer extrusion/injection moulding technologies. School of Pharmacy. 4(9).
  • Jondreville, C., P. Lescoat, M. Magnin, D. Feuerstein, B. Gruenberg and Y. Nys. 2007. Sparing effect of microbial phytase on zinc supplementation in maize–soya-bean meal diets for chickens. Animal. 1(6): 804-811.
  • Jo, A. 2014. Study on antibacterial mechanism of ZnO nanoparticles under dark condition and strategy to enhancement of antibacterial activity. Master of degree. Thesis. Kumoh National Institude of Technology. Gumi-si. Korea.
  • Jensen, L. S. 1975. Precipitation of a selenium deficiency by high dietary levels of copper and zinc. Proc. Soc. Exp. Biol. Med. 149(1): 113-116.
  • Jensen, L. S. 1975. Modification of a selenium toxicity in chicks by dietary silver and copper. J. Nutr. 105(6): 769-775.
  • Jegede, A., O. Uduguwa, A. Bamgbose, A. Fanimo and L. Nollet. 2011. Growth response, blood characteristics and copper accumulation in organs of broilers fed on diets supplemented with organic and inorganic copper sources. Br. Poult. Sci. 52(1): 133-139.
  • Jang, D. A., J. G. Fadel, K. C. Klasing, A. J. Mireles Jr, R. A. Ernst, K. A. Young and V. Raboy. 2003. Evaluation of low-phytate corn and barley on broiler chick performance. Poult. Sci. 82(12): 1914-1924.
  • Jahanian, R., H. N. Moghaddam and A. Rezaei. 2008. Improved broiler chick performance by dietary supplementation of organic zinc sources. Asian-Australas. J. Anim. Sci. 21(9): 1348-1354.
  • IFZZ (Instytut Fizjologii I Zywienia Zwierzat). 2005. Poultry nutrition standards. Dietary advice and nutritional value of feed. Wartość pokarmowa pasz. IFZZ PAN Jabłonna, Omnitech Press, Warszawa.
  • Hwang, I., C. Y. Kang and J. B. Park. 2017. Advances in hot-melt extrusion technology toward pharmaceutical objectives. J. Pharm. Investig. 47(2): 123-132.
  • Huang, Y., T. X. Zhou, J. H. Lee, H. D. Jang, J. C. Park and I. H. Kim. 2010. Effect of dietary copper sources (cupric sulfate and cupric methionate) and concentrations on performance and fecal characteristics in growing pigs. Asian-Australas. J. Anim. Sci. 23(6): 757-761.
  • Huang, Y. L., M. S. Ashwell, R. S. Fry, K. E. Lloyd, W. L. Flowers and J. W. Spears. 2015. Effect of dietary copper amount and source on copper metabolism and oxidative stress of weanling pigs in short-term feeding. J. Anim. Sci. 93(6): 2948-2955.
  • Huang, Y. L., L. Lu, S. F. Li, X. G. Luo and B. Liu. 2009. Relative bioavailabilities of organic zinc sources with different chelation strengths for broilers fed a conventional corn-soybean meal diet. J. Anim. Sci. 87(6): 2038-2046.
  • Huang, S., L. Wang, L. Liu, Y. Hou and L. Li. 2015. Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agron. Sustain. Dev. 35(2): 369-400.
  • Hu, C., J. Song, Y. Li, Z. Luan and K. Zhu. 2013. Diosmectite–zinc oxide composite improves intestinal barrier function, modulates expression of pro-inflammatory cytokines and tight junction protein in early weaned pigs. Br. J. Nutr. 110(4): 681-688.
  • Hu, C. H., Z. C. Qian, J. Song, Z. S. Luan and A. Y. Zuo. 2013. Effects of zinc oxidemontmorillonite hybrid on growth performance, intestinal structure, and function of broiler chicken. Poult. Sci. 92(1): 143-150.
  • Hu, C. H., L. Y. Gu, Z. S. Luan, J. Song and K. Zhu. 2012. Effects of montmorillonite–zinc oxide hybrid on performance, diarrhea, intestinal permeability and morphology of weanling pigs. Anim. Feed Sci. Technol. 177(1-2): 108-115.
  • Hsu, F. S., L. Krook, W. G. Pond and J. R. Duncan. 1975. Interactions of dietary calcium with toxic levels of lead and zinc in pigs. J. Nutr. 105(1): 112-118.
  • Holden, P., J. Carr, M. Honeyman, J. Kliebenstein, J. McKean, J. Harmon, J. Mabry and S. Hoyer. 2002. Minimizing the use of antibiotics in pig production. AS-11 Iowa State University Extension, Ames, Iowa, 50011. IPIC 8: 11.
  • Hill, G. M., P. K. Ku, E. R. Miller, D. E. Ullrey, T. A. Losty and B. L. O'Dell. 1983. A copper deficiency in neonatal pigs induced by a high zinc maternal diet. J. Nutr. 113(4): 867-872.
  • Hill, G. M., G. L. Cromwell, T. D. Crenshaw, C. R. Dove, R. C. Ewan, D. A. Knabe, A. J. Lewis, G. W. Libal, D. C. Mahan, G. C. Shurson, L. L. Southern and T. L. Veum. 2000. Growth promotion effects and plasma changes from feeding high dietary concentrations of zinc and copper to weanling pigs (regional study). J. Anim. Sci. 78(4): 1010-1016.
  • Hill, G. M., D. C. Mahan and J. S. Jolliff. 2014. Comparison of organic and inorganic zinc sources to maximize growth and meet the zinc needs of the nursery pig. J. Anim. Sci. 92(4): 1582- 1594.
  • Hill, G. M. and J. E. Link. 2009. Transporters in the absorption and utilization of zinc and copper. J. Anim. Sci. 87(14): 85-89.
  • Hill, G. M. and E. R. Miller. 1983. Effect of dietary zinc levels on the growth and development of the gilt. J. Anim. Sci. 57(1): 106-113.
  • Hill, C. H. and G. Matrone. 1961. Studies on copper and iron deficiencies in growing chicks. J. Nutr. 73(1): 425-431.
  • Hett, A. 2004. Nanotechnology: Small matter, many unknowns. Swiss Re. Ltd.
  • Heo, J. M., J. C. Kim, C. F. Hansen, B. P. Mullan, D. J. Hampson and J. R. Pluske. 2010. Effects of dietary protein level and zinc oxide supplementation on performance responses and gastrointestinal tract characteristics in weaner pigs challenged with an enterotoxigenic strain of Escherichia coli. Animal Prod. Sci. 50(9): 827-836.
  • Hefnawy, A. E. and H. M. El-khaiat. 2015a. Copper and animal health (importance, maternal fetal, immunity and DNA relationship, deficiency and toxicity). Int. J. Agro Vet. Med. Sci. 9: 195-211.
  • Hefnawy, A. E. and H. M. El-Khaiat. 2015b. The importance of copper and the effects of its deficiency and toxicity in animal health. Int. J. Livest. Res. 5(1).
  • Hedemann, M. S., S. H jsgaard and B. B. Jensen. 2003. Small intestinal morphology and activity of intestinal peptidases in piglets around weaning. J. Anim. Physiol. Anim. Nutr. 87(12): 32- 41.
  • Hedemann, M. S., B. B. Jensen and H. D. Poulsen. 2006. Influence of dietary zinc and copper on digestive enzyme activity and intestinal morphology in weaned pigs. J. Anim. Sci. 84(12): 3310-3320.
  • Hart, E. B., C. A. Elvehjem, H. Steenbock, A. R. Kemmerer, G. Bohstedt and J. M. Fargo. 1930. A study of the anemia of young pigs and its prevention. J. Nutr. 2(3): 277-294.
  • Hansen, S. L., M. S. Ashwell, L. R. Legleiter, R. S. Fry, K. E. Lloyd and J. W. Spears. 2009. The addition of high manganese to a copper-deficient diet further depresses copper status and growth of cattle. Br. J. Nutr. 101(7): 1068-1078.
  • Han, Y. G., Y. Hyun, S. R. Lee, I. H. Kim, J. H. Lee and B. H. Moon. 2009. Development of feed additives and feeding technology for replacement of the pharmacological level of zinc in piglets diets. Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF). Gyeonggido, Gwachenon-si, Korea.
  • Han, X. Y., W. L. Du, Q. C. Huang, Z. R. Xu and Y. Z. Wang. 2012. Changes in small intestinal morphology and digestive enzyme activity with oral administration of copper-loaded chitosan nanoparticles in rats. Biol. Trace Elem. Res. 145(3): 355-360.
  • Han, X. Y., W. L. Du, C. L. Fan and Z. R. Xu. 2010. Changes in composition a metabolism of caecal microbiota in rats fed diets supplemented with copper loaded chitosan nanoparticles. J. Anim. Physiol. Anim. Nutr. 94(5): 138-144.
  • Han, H., S. L. Archibeque and T. E. Engle. 2009. Characterization and identification of hepatic mRNA related to copper metabolism and homeostasis in cattle. Biol. Trace Elem. Res. 129(1-3): 130-136.
  • Hampson, D. J. 1986. Alterations in piglet small intestinal structure at weaning. Res. Vet. Sci. 40(1): 32-40.
  • Hambidge, M. 2000. Human zinc deficiency. J. Nutr. 130(5): 1344-1349.
  • Halliwell, B. and J. M. C. Gutteridge. 1999. Free radicals in medicine and biology. Clarendon, Oxford.
  • Hahn, J. D. and D. H. Baker. 1993. Growth and plasma zinc responses of young pigs fed pharmacologic levels of zinc. J. Anim. Sci. 71(11): 3020-3024.
  • H jberg, O., N. Canibe, H. D. Poulsen, M. S. Hedemann and B. B. Jensen. 2005. Influence of dietary zinc oxide and copper sulfate on the gastrointestinal ecosystem in newly weaned piglets. Appl. Environ. Microbiol. 71(5): 2267-2277.
  • Guo, R., P. R. Henry, R. A. Holwerda, J. Cao, R. C. Littell, R. D. Miles and C. B. Ammerman. 2001. Chemical characteristics and relative bioavailability of supplemental organic copper sources for poultry. J. Anim. Sci. 79(5): 1132-1141.
  • Gopi, M., B. Pearlin, R. D. Kumar, M. Shanmathy and G. Prabakar. 2017. Role of nanoparticles in animal and poultry nutrition: modes of action and applications in formulating feed additives and food processing. Int. J. Pharmacol. 13: 724-731.
  • Gonzales-Eguia, A., C. M. Fu, F. Y. Lu and T. F. Lien. 2009. Effects of nanocopper on copper availability and nutrients digestibility, growth performance and serum traits of piglets. Livest. Sci. 126(1-3): 122-129.
  • GfE (Gesellschaft f r Ern hrungsphysiologie). 2004. Empfehlungen zur Energie- und N hrstoffversorgung der Mastputen. Proc. Soc. Nutr. Physiol. 13: 199-233.
  • Gebert, S., G. Bee, H. P. Pfirter and C. Wenk. 1999. Phytase and vitamin E in the feed of growing pigs. 1. Influence on growth, mineral digestibility and fatty acids in digesta. J. Anim. Physiol. Anim. Nutr. 81(1): 9-19.
  • Galiazzo, F., M. R. Ciriolo, M. T. Carri, P. Civitareale, L. Marcocci, F. Marmocchi and G. Rotilio. 1991. Activation and induction by copper of Cu/Zn superoxide dismutase in Saccharomyces cerevisiae: presence of an inactive proenzyme in anaerobic yeast. Eur. J. Biochem. 196(3): 545-549.
  • Gaetke, L. M. and C. K. Chow. 2003. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology. 189(1-2): 147-163.
  • Fry, R. S., M. S. Ashwell, K. E. Lloyd, A. T. O'Nan, W. L. Flowers, K. R. Stewart and J. W. Spears. 2012. Amount and source of dietary copper affects small intestine morphology, duodenal lipid peroxidation, hepatic oxidative stress, and mRNA expression of hepatic copper regulatory proteins in weanling pigs. J. Anim. Sci. 90(9): 3112-3119.
  • Fry, R. S. 2010. Dietary and genetic effects on cellular copper homeostasis in Bovine and Porcine Tissues. Ph. D. Thesis, North Carolina State University, Raleigh, North Carolina, USA.
  • Follis, R., H. Jr., J. A. Bush, G. E. Cartwright and M. M. Wintrobe. 1955. Studies on copper metabolism. XVIII. Skeletal changes associated with copper deficiency in swine. Bull. Johns Hopkins Hosp. 97: 405-414.
  • Fernandez, M. V. S., S. C. Pearce, N. K. Gabler, J. F. Patience, M. E. Wilson, M. T. Socha, J. L. Torrison, R. P. Rhoads and L. H. Baumgard. 2014. Effects of supplemental zinc amino acid complex on gut integrity in heat-stressed growing pigs. Animal. 8(1): 43-50.
  • Fenton, T. W. and M. Fenton. 1979. An improved procedure for the determination of chromic oxide in feed and feces. Can. J. Anim. Sci. 59(3): 631-634.
  • Feng, Z., D. Carlson and H. D. Poulsen. 2006. Zinc attenuates forskolin-stimulated electrolyte secretion without involvement of the enteric nervous system in small intestinal epithelium from weaned piglets. Comp. Biochem. Physiol. 145(3): 328-333.
  • Fard, R., M. Heuzenroeder and M. Barton. 2011. Antimicrobial and heavy metal resistance in commensal enterococci isolated from pigs. Vet. Microbiol. 148(2-4): 276-282.
  • Failla, M. L. 2003. Trace elements and host defense: Recent advances and continuing challenges. J. Nutr. 133(5): 1443-1447.
  • Ezzati, M. S., M. H. Bozorgmehrifard, P. Bijanzad, S. Rasoulinezhad, H. Moomivand, S. Faramarzi, A. Ghaedi, H. Ghabel and E. Stabraghi. 2013. Effects of different levels of zinc supplementation on broilers performance and immunity response to Newcastle disease vaccine. Eur. J. Exp. Biol. 3(5): 497-501.
  • Ewing, H. P., G. M. Pesti, R. I. Bakalli and J. F. Menten. 1998. Studies on the feeding of cupric sulfate pentahydrate, cupric citrate, and copper oxychloride to broiler chickens. Poult. Sci. 77(3): 445-448.
  • Elvehjem, C. A. and E. B. Hart. 1932. The necessity of copper as a supplement iron for hemoglobin formation in the pig. J. Biol. Chem. 95(1): 363-370.
  • El-Shobaki, F. A. and W. Rummel. 1979. Binding of copper to mucosal transferrin and inhibition of intestinal iron absorption in rats. Res. Exp. Med. 174(2): 187-195.
  • Edwards, H. M., S. D. Boling, J. L. Emmert and D. H. Baker. 1998. Bioavailability of zinc in two zinc sulphate by-products of the galvanizing industry. Poult. Sci. 77(10): 1546-1549.
  • Edwards, H. M. and D. H. Baker. 2000. Zinc bioavailability in soybean meal. J. Anim. Sci. 78(4): 1017-1021.
  • Edwards, H. M. and D. H. Baker. 1999. Bioavailability of zinc in several sources of zinc oxide, zinc sulphate and zinc metal. J. Anim. Sci. 77(10): 2730-2735.
  • Eckel, H., U. Roth, H. D hler and U. Schultheis. 2008. Assessment and reduction of heavy metal input into agro-ecosystems. Trace elements in animal production systems. 33-43.
  • EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). 2016. Revision of the currently authorised maximum copper content in complete feed. EFSA J. 14(8): e04563.
  • EC (European Commission). 2003. Scientific committee on animal nutrition (SCAN) delivered report on the use of copper in feedingstuffs.
  • Du, W. L., S. S. Niu, Y. L. Xu, Z. R. Xu and C. L. Fan. 2009. Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr. Polym. 75(3): 385-389.
  • Dove, C. R. and K. D. Haydon. 1991. The effect of copper addition to diets with various iron levels on the performance of weaning swine. J. Anim. Sci. 69(5): 2013-2019.
  • Dove, C. R. 1995. The effect of copper level on nutrient utilization of weanling pigs. J. Anim. Sci. 73(1): 166-171.
  • Douroumis, D. 2012. Hot-melt extrusion: Pharmaceutical applications. Chichester. Wiley.
  • Domek, M. J., M. W. Lechevallier, S. C. Cameron and G. A. McFeters. 1984. Evidence for the role of copper in the injury process of coliform bacteria in drinking water. Appl. Environ. Microbiol. 48(2): 289-293.
  • Dibner, J. J., D. Richards, M. L. Kitchell and M. A. Quiroz. 2007. Metabolic challenges and early bone development. J. Appl. Poult. Res. 16(1): 167-174.
  • Di Giancamillo, A., R. Rossi, P. A. Martino, L. Aidos, F. Maghin, C. Domeneghini and C. Corino. 2018. Copper sulphate forms in piglet diets: Microbiota, intestinal morphology and enteric nervous system glial cells. Animal Sci. J. 89(3): 616-624.
  • Dewar, W. A., P. A. Wight, R. A. Pearson and M. J. Gentle. 1983. Toxic effects of high concentrations of zinc oxide in the diet of the chick and laying hen. Br. Poult. Sci. 24(3): 397-404.
  • Deres, P., R. Halmosi, A. Toth, K. Kovacs, A. Palfi, T. Habon, L. Czopf, T. Kalai, K. Hideg, B. Sumegi and K. Toth. 2005. Prevention of doxorubicin-induced acute cardiotoxicity by an experimental antioxidant compound. J. Cardiovasc. Pharm. 45(1): 36-43.
  • Davis, G. K. and W. Mertx. 1987. Copper in trace elements in human and animal nutrition. Academic, New York. 301-364.
  • Davda, J. and V. Labhasetwar. 2002. Characterization of nanoparticle uptake by endothelial cells. Int. J. Pharm. 233(1-2): 51-59.
  • Crowley, M. M., F. Zhang, M. A. Repka, S. Thumma, S. B. Upadhye, S. K. Battu, J. W. McGinity and C. Martin. 2007. Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev. Ind. Pharm. 33(9): 909-926.
  • Cromwell, G. L., T. S. Stahly and H. J. Monegue. 1989. Effects of source and level of copper on performance and liver copper stores in weanling pigs. J. Anim. Sci. 67(11): 2996-3002.
  • Cromwell, G. L. 2001. Antimicrobial and promicrobial agents. In: A. J. Lewis and L. L. Southern. Swine Nutrition, 611.
  • Cromwell, G. L. 1983. Copper-copper sulfate as a growth promotant. In: Minerals: The often neglected nutrients. Nutr. Inst. Natl. Feed Ingredients Assoc. west Des moines, LA. USA.
  • Creech, B. L., J. W. Spears, W. L. Flowers, G. M. Hill, K. E. Lloyd, T. A. Armstrong and T. E. Engle. 2004. Effect of dietary trace mineral concentration and source (inorganic vs. chelated) on performance, mineral status, and fecal mineral excretion in pigs from weaning through finishing. J. Anim. Sci. 82(7): 2140-2147.
  • Cox, D. H. and O. M. Hale. 1962. Liver iron depletion without copper loss in swine for excess zinc. J. Nutr. 77: 225-228.
  • Cousins, R. J. 1998. A role of zinc in the regulation of gene expression. Proc. Nutr. Soc. 57(2): 307- 311.
  • Cousins, R. J. 1985. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol. Rev. 65(2): 238-309.
  • Cousins, R. B., J. P. Liuzzi and L. A. Lichten. 2006. Mammalian zinc transport, trafficking and signals. J. Biol. Chem. 281(34): 24085-24089.
  • Coffey, R. D., G. L. Cromwell and H. J. Monegue. 1994. Efficacy of a copper-lysine complex as a growth promotant for weanling pigs. J. Anim. Sci. 72(11): 2880-2886.
  • Chung, Y. C., Y. P. Su, C. C. Chen, G. Jia, H. L. Wang, J. C. G. Wu and J. G. Lin. 2004. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol. Sin. 25(7): 932-936.
  • Choi, B. S. and W. Zheng. 2009. Copper transport to the brain by the blood-brain barrier and blood- CSF barrier. Brain Res. 1248: 14-21.
  • Cho, J. H., S. D. Upadhaya and I. H. Kim. 2015. Effects of dietary supplementation of modified zinc oxide on growth performance, nutrient digestibility, blood profiles, fecal microbials shedding and fecal score in weanling pigs. Animal Sci. J. 86(6): 617-623.
  • Chesters, J. K. and J. Quarterman. 1970. Effects of zinc deficiency on food intake and feeding patterns of rats. Br. J. Nutr. 24(4): 1061-1069.
  • Cheng, J., E. T. Kornegay and T. Schell. 1998. Influence of dietary lysine on the utilization of zinc from zinc sulfate and a zinc-lysine complex by young pigs. J. Anim. Sci. 76(4): 1064- 1074.
  • Chen, H., J. Weiss and F. Shahidi. 2006. Nanotechnology in nutraceuticals and functional foods. Food Technol. 3: 30-36.
  • Chaudhry, Q. and L. Castle. 2011. Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci. Technol. 22(11): 595-603.
  • ChangSha, H. P. 2001. The bioavailability of zinc from inorganic and organic sources in broiler chickens as affected by addition of phytase. J. Anim. Feed Sci. 10: 317-328.
  • Cavaco, L. M., H. Hasman, M. Stegger, P. S. Andersen, R. Skov, A. C. Fluit, T. Ito and F. M. Aarestrup. 2010. Cloning and occurrence of czrC, a gene conferring cadmium and zinc resistance in Methicillin-Resistant Staphylococcus aureus CC398 isolates. Antimicrob. Agents Chemother. 54(9): 3605-3608.
  • Cavaco, L. M., H. Hasman and F. M. Aarestrup. 2011. Zinc resistance of Staphylococcus aureus of animal origin is strongly associated with methicillin resistance. Vet. Microbiol. 150(3-4): 344-348.
  • Case, C. L. and M. S. Carlson. 2002. Effect of feeding organic and inorganic sources of additional zinc on growth performance and zinc balance in nursery pigs. J. Anim. Sci. 80(7): 1917- 1924.
  • Carter, M. A. and J. F. B. Mercer. 2005. Copper in mammals: Mechanisms of homeostasis and pathophysiology. In Molecular Biology of Metal Homeostasis and Detoxification. Springer, Berlin, Heidelberg, Germany. 101-129.
  • Carnes, W. H., W. F. Coulson and A. M. Albino. 1965. Intimal lesions in muscular arteries of young copper‐deficient swine. Ann. N. Y. Acad. Sci. 127(1): 800-810.
  • Carlton, W. W. and W. Henderson. 1962. Histopathological lesions observed in the long bones of chickens fed a copper-deficient diet. Poult. Sci. 41(5): 1634.
  • Carlson, M. S., S. L. Hoover, G. M. Hill, J. E. Link and J. R. Turk. 1998. Effect of pharmacological zinc on intestinal metallothionein concentration and morphology in the nursery pig. J. Anim. Sci. 76(1): 57.
  • Carlson, M. S., G. M. Hill and J. E. Link. 1999. Early- and traditionally weaned nursery pigs benefit from phase-feeding pharmacological concentrations of zinc oxide: effect on metallothionein and mineral concentrations. J. Anim. Sci. 77(5): 1199-1207.
  • Carlson, M. S., C. A. Boren, C. Wu, C. E. Huntington, D. W. Bollinger and T. L. Veum. 2004. Evaluation of various inclusion rates of organic zinc either as polysaccharide or proteinate complex on the growth performance, plasma, and excretion of nursery pigs. J. Anim. Sci. 82(5): 1359-1366.
  • Carlson, D., J. Sehested, Z. Feng and H. D. Poulsen. 2007. Zinc is involved in regulation of secretion from intestinal epithelium in weaned piglets. Livest. Sci. 108(1-3): 45-48.
  • Carlson, D., J. Sehested and H. D. Poulsen. 2006. Zinc reduces the electrophysiological responses in vitro to basolateral receptor mediated secretagogues in piglet small intestinal epithelium. Comp. Biochem. Physiol. 144(4): 514-519.
  • Carlson, D., J. H. Beattie and H. D. Poulsen. 2007. Assessment of zinc and copper status in weaned piglets in relation dietary zinc and copper supply. J. Anim. Physiol. Anim. Nutr. 91(1-2): 19-28.
  • Carlson, D., H. D. Poulsen and J. Sehested. 2004. Influence of weaning and effect of post weaning dietary zinc and copper on electrophysiological response to glucose, theophylline and 5- HT in piglet small intestinal mucosa. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 137(4): 757-765.
  • Carlson, D. 2003. The physiological role of dietary zinc and copper in weaned piglets, with emphasis on zinc and intestinal mucosal function. Ph. D. Thesis, The Royal Veterinary and Agricultural University, Copenhagen, Denmark.
  • Cao, J., P. R. Henry, S. R. Davis, R. J. Cousins, R. D. Miles, R. C. Littell and C. B. Ammerman. 2002. Relative bioavailability of organic zinc sources based on tissue zinc and metallothionein in chicks fed conventional dietary zinc concentrations. Anim. Feed Sci. Technol. 101(1): 161-170.
  • Cao, J., P. R. Henry, R. Guo, R. A. Holwerda, J. P. Toth, R. C. Littell, R. D. Miles and C. B. Ammerman. 2000. Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. J. Anim. Sci. 78(8): 2039-2054.
  • Bureau, I., C. G. Lewis and M. Fields. 1998. Effect of hepatic iron on hypercholesterolemia and hypertriacylglycerolemia in copper-deficient fructose-fed rats. Nutrition. 14(4): 366-371.
  • Bunch, R., V. Speer, V. Hays, J. Hawbaker and D. Catron. 1961. Effects of copper sulfate, copper oxide and chlortetracycline on baby pigs performance. J. Anim. Sci. 20(4): 723-726.
  • Bunch, R. J., J. T. McCall, V. C. Speer and V. W. Hays. 1965. Copper supplementation for weanling pigs1, 2. J. Anim. Sci. 24(4): 995-1000.
  • Bun, S. D., Y. M. Guo, F. C. Guo, F. J. Ji and H. Cao. 2011. Influence of organic zinc supplementation on the antioxidant status and immune responses of broilers challenged with Eimeria tenella. Poult. Sci. 90(6): 1220-1226.
  • Bryant, M. P. and I. Allison. 1961. An improved nonselective culture medium for animal bacterial and its use in determining diurnal variation in numbers of bacteria in the rumen. J. Dairy Sci. 44(8): 1446-1453.
  • Bryant, M. P. 1972. Commentary on the Hungate technique for culture for anaerobic bacteria. Am. J. Clin. Nutr. 25(12): 1324-1330.
  • Brink, M. F., D. E. Becker, S. W. Terrill and A. H. Jensen. 1959. Zinc toxicity in the weanling pig. J. Anim. Sci. 18(2): 836-842.
  • Bremner, I. 1998. Manifestations of copper excess. Am. J. Clin. Nutr. 67(5): 1069-1073.
  • Breitenbach, J. 2002. Melt extrusion: from process to drug delivery technology. Eur. J. Pharm. Biopharm. 54(2): 107-117.
  • Braude, R. 1967. Copper as a stimulant in pig feed (cuprum pro pecunia). World Rev. Anim. Prod. 3: 69-82.
  • Braude, R. 1948. Some observations on the behaviour of pigs in an experimental piggery. Bull. Anim. Behav. 6: 17-25.
  • Braude, R. 1945. Some observations on the need for copper in the diet of fattening pigs. J. Agr. Sci. 35(3): 163-167.
  • Brand o-Neto, J., V. Stefan, B. B. Mendon a, W. Bloise and A. V. B. Castro. 1995. The essential role of zinc in growth. Nutr. Res. 15(3): 335-358.
  • Bradley, B. L., G. Graber, R. J. Condon and L. T. Frobish. 1983. Effects of graded levels of dietary copper on copper and iron concentrations in swine tissues. J. Anim. Sci. 56(3): 625-630.
  • Blalock, T. L. and C. H. Hill. 1988. Studies on the role of iron in zinc toxicity in chicks. Biol. Trace Elem. Res. 17(1): 17-29.
  • Birben, E., U. M. Sahiner, C. Sackesen, S. Erzurum and O. Kalayci. 2012. Oxidative stress and antioxidant defense. World Allergy Organ. J. 5(1): 9.
  • Bikker, P., J. van Baal, G. P. Binnendijk, J. Th. M. van Diepen, L. M. P. Troquet and A. W. Jongbloed. 2015. Copper in diets for weaned pigs. Influence of level and duration of copper supplementation. Livestock Research Report 830. Wageningen UR Livestock Research.
  • Biehl, R. R., D. H. Baker and H. F. de Luca. 1995. α-Hydroxylated cholecalciferol compounds act additively with microbial phytase to improve phosphorus, zinc and manganese utilization in chicks fed soy-based diets. J. Nutr. 125(9): 2407-2416.
  • Batterham, R. L. and S. R. Bloom. 2003. The gut hormone peptide YY regulates appetite. Ann. N. Y. Acad. Sci. 994(1): 162-168.
  • Batal, A. B., T. M. Parr and D. H. Baker. 2001. Zinc bioavailability in tetrabasic zinc chloride and the dietary zinc requirement of young chicks fed a soy concentrate diet. Poult. Sci. 80(1): 87-90.
  • Barber, R. S., R. Braude and K. G. Mitchell. 1965. Studies on various potential growth stimulants for growing pigs with particular reference to their activity in supplementing that of copper sulphate. Br. J. Nutr. 19(1): 575-579.
  • Bao, Y. M., M. Choct, P. A. Iji and K. Bruerton. 2007. Effect of organically complexed copper, iron, manganese, and zinc on broiler performance, mineral excretion, and accumulation in tissues. J. Appl. Poult. Res. 16(3): 448-455.
  • Bao, Y. M. and M. Choct. 2009. Trace mineral nutrition for broiler chickens and prospects of application of organically complexed trace minerals: a review. Animal Prod. Sci. 49(4): 269-282.
  • Banks, K. M., K. L. Thompson, J. K. Rush and T. J. Applegate. 2004. Effects of copper source on phosphorus retention in broiler chicks and laying hens. Poult. Sci. 83(6): 990-996.
  • Baiarzhal, M., I. S. Zilova, I. V. Gmoshinskii, A. V. Buchanova, L. V. Sheviakova, N. N. Makhova and V. K. Mazo. 2008. Comparative evaluation of zinc organic and inorganic form bioavailability in vivo. Vopr. Pitan. 77(1): 34-37.
  • Aydin, A., A. Y. Pekel, G. Issa, G. Demirel and P. H. Patterson. 2010. Effects of dietary copper, citric acid, and microbial phytase on digesta pH and ileal and carcass microbiota of broiler chickens fed a low available phosphorus diet. J. Appl. Poult. Res. 19(4): 422-431.
  • Awad, W., K. Ghareeb and J. B hm. 2008. Intestinal structure and function of broiler chickens on diets supplemented with a synbiotic containing Enterococcus faecium and oligosaccharides. Int. J. Mol. Sci. 9(11): 2205-2216.
  • Aw-Yong, L. M., J. S. Sim and D. B. Bragg. 1983. Mineral availability of corn, barley, wheat, and triticale for the chick. Poult. Sci. 62(4): 659-664.
  • Aviagen. 2019. Ross broiler management handbook. Huntsville, AL: Aviagen Group.
  • Asheer, M., S. J. Manwar, M. A. Gole, S. Sirsat, M. R. Wade, K. K. Khose and S. Sajid. 2018. Effect of dietary nano zinc oxide supplementation on performance and zinc bioavailability in broilers. Indian J. Poult. Sci. 53(1): 70-75.
  • Armstrong, T. A., J. W. Spears, E. van Heugten, T. E. Engle and C. L. Wright. 2000. Effect of copper source (cupric citrate vs. cupric sulfate) and level on growth performance and copper metabolism in pigs. Asian-Australas. J. Anim. Sci. 13(8): 1154-1161.
  • Armstrong, T. A., D. R. Cook, M. M. Ward, C. M. Williams and J. W. Spears. 2004. Effect of dietary copper source (cupric citrate and cupric sulfate) and concentration on growth performance and fecal copper excretion in weanling pigs. J. Anim. Sci. 82(4): 1234-1240.
  • Arias, V. and E. Koutsos. 2006. Effects of copper source and level on intestinal physiology and growth of broiler chickens. Poult. Sci. 85(6): 999-1007.
  • Applegate, T. J. and R. Angel. 2014. Nutrient requirements of poultry publication: history and need for an update. J. Appl. Poult. Res. 23(3): 567-575.
  • Apgar, G. A., E. T. Kornegay, M. D. Lindemann and D. R. Notter. 1995. Evaluation of copper sulfate and a copper lysine complex as growth promoters for weanling swine. J. Anim. Sci. 73(9): 2640-2646.
  • Aoyagi, S., K. M. Hiney and D. H. Baker. 1995. Copper bioavailability in pork liver and in various animal by-products as determined by chick bioassay. J. Anim. Sci. 73(3): 799-804.
  • Aoyagi, S. and D. H. Baker. 1993c. Bioavailability of copper in analytical-grade and feedgrade inorganic copper sources when fed to provide copper at levels below the chicks requirement. Poult. Sci. 72(6): 1075-1083.
  • Aoyagi, S. and D. H. Baker. 1993b. Estimates of copper bioavailability from liver of different animal species and from feed ingredients derived from plants and animals. Poult. Sci. 72(9): 1746-1755.
  • Aoyagi, S. and D. H. Baker. 1993a. Nutritional evaluation of copper-lysine and zinc-lysine complexes for chicks. Poult. Sci. 72(1): 165-171.
  • Ao, T., J. L. Pierce, R. Power, K. A. Dawson, A. J. Pescatore, A. H. Cantor and M. J. Ford. 2006. Evaluation of bioplex zn as an organic zinc source for chicks. Int. J. Poult. Sci. 5(9): 808- 811.
  • Ao, T., J. L. Pierce, R. Power, A. J. Pescatore, A. H. Cantor, K. A. Dawson and M. J. Ford. 2009. Effects of feeding different forms of zinc and copper on the performance and tissue mineral content of chicks. Poult. Sci. 88(10): 2171-2175.
  • Amit-Romach, E., D. Sklan and Z. Uni. 2004. Microflora ecology of the chicken intestine using 16S ribosomal DNA primers. Poult. Sci. 83(7): 1093-1098.
  • Amachawadi, R. G., N. W. Shelton, X. Shi, J. Vinasco, S. S. Dritz, M. D. Tokach, J. N. Nelssen, H. M. Scott and T. G. Nagaraja. 2011. Selection of fecal enterococci exhibiting tcrBmediated copper resistance in pigs fed diets supplemented with copper. Appl. Environ. Microbiol. 77(16): 5597-5603.
  • Allee, G. L., K. R. Perryman and T. J. Price. 2011. Effects of feeding tribasic copper chloride or copper sulfate on growth and efficiency of nursery pigs. Proc. Trace Mineral Conference, Munich, Germany. 110-113.
  • Alip, K. 2017. Bioavailability of zinc in major feed ingredients and dietary supplemented zinc sources, and their effects on broiler performance. Master of degree. Thesis. Kangwon National University. Chuncheon. Korea.
  • Ali, S., S. Masood, H. Zaneb, H. Faseeh-ur-Rehman, S. Masood, M. U. R. Khan and S. K. Tahir. 2017. Supplementation of zinc oxide nanoparticles has beneficial effects on intestinal morphology in broiler chicken. Pak. Vet. J. 37(3): 335-339.
  • Albanese, A., P. S. Tang and W. C. Chan. 2012. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14: 1-16.
  • Aksu, T., B. Ozsoy, D. S. Aksu, M. A. Yoruk and M. Gul. 2009. The effects of lower levels of organically complexed zinc, copper and manganese in broiler diets on performance, mineral concentration of tibia and mineral excretion. Kafkas Univ. Vet. Fak. Derg. 17(1): 141-146.
  • Agostoni, C. V., J. L. Bresson, S. Fairweather Tait, A. Flynn, I. Golly, H. Korhonen, P. Lagiou, M. Lovik, R. Marchelli, A. Martin, B. Moseley, M. Neuhauser Berthold, H. Przyrembel, S. Salminen, Y. Sanz, S. Strain, S. Strobel, I. Tetens, D. Tome, H. van Loveren and H. Verhagen. 2010. Scientific Opinion on principles for deriving and applying dietary reference values. EFSA J. 8(3): 1458.
  • Agnihotri, S. A., N. N. Mallikarjuna and T. M. Aminabhavi. 2004. Recent advances on chitosanbased micro-and nanoparticles in drug delivery. J. Control. Release. 100(1): 5-28.
  • Agers , Y., H. Hasman, L. M. Cavaco, K. Pedersen and F. M. Aarestrup. 2012. Study of methicillin resistant Staphylococcus aureus (MRSA) in Danish pigs at slaughter and in imported retail meat reveals a novel MRSA type in slaughter pigs. Vet. Microbiol. 157(1-2): 246- 250.
  • Adeola, O., B. V. Lawrence, A. L. Sutton and T. R. Cline. 1995. Phytase-induced changes in mineral utilization in zinc-supplemented diets for pigs. J. Anim. Sci. 73(11): 3384-3391.
  • Adeola, O. 2001. Digestion and balance techniques in pigs. In: Lewis, A. J., Southern, L. L. (Eds.), Swine Nutrition, 2nd ed. CRC Press, New York NY, US, pp. 903-916.
  • Adeola, O. 1995. Digestive utilization of minerals by weanling pigs fed copper-and phytasesupplemented diets. Can. J. Anim. Sci. 75(4): 603-610.
  • Aarestrup, F. M., L. Cavaco and H, Hasman. 2010. Decreased susceptibility to zinc chloride is associated with methicillin resistant Staphylococcus aureus CC398 in Danish swine. Vet. Microbiol. 142(3-4): 455-457.
  • AOAC. 2007. Official Methods of Analysis of the Association of Official Analytical Chemists International. 18th edition. Gaithersburg, MD, USA.
  • AMCRA (AntiMicrobial Consumption and Resistance in Animals). 2012. L’usage d’oxyde de zinc (ZnO) chez les porcelets sevr s en belgique en pr vention de la diarrh e de sevrage. Merelbeke.