코사인 유사도에 기반한 적대 과정 딥러닝의 개선안과 화자인식 및 도메인적응에의 응용 = Advanced adversarial deep learning process based on cosine similarity, and its applications to speaker recognition and domain adaptation
'
코사인 유사도에 기반한 적대 과정 딥러닝의 개선안과 화자인식 및 도메인적응에의 응용 = Advanced adversarial deep learning process based on cosine similarity, and its applications to speaker recognition and domain adaptation' 의 주제별 논문영향력
논문영향력 요약
주제
도메인 적응
딥 러닝
이미지 인식
적대 과정
코사인유사도
화자 식별
동일주제 총논문수
논문피인용 총횟수
주제별 논문영향력의 평균
2,234
0
0.0%
주제별 논문영향력
논문영향력
주제
주제별 논문수
주제별 피인용횟수
주제별 논문영향력
주제어
도메인 적응
9
0
0.0%
딥 러닝
2,160
0
0.0%
이미지 인식
18
0
0.0%
적대 과정
1
0
0.0%
코사인유사도
41
0
0.0%
화자 식별
5
0
0.0%
계
2,234
0
0.0%
* 다른 주제어 보유 논문에서 피인용된 횟수
0
'
코사인 유사도에 기반한 적대 과정 딥러닝의 개선안과 화자인식 및 도메인적응에의 응용 = Advanced adversarial deep learning process based on cosine similarity, and its applications to speaker recognition and domain adaptation' 의 참고문헌
Y. Shinohara, “Adversarial Multi-Task Learning of Deep Neural Networks for Robust Speech Recognition.,” in INTERSPEECH, 2016, pp. 2369–2372.
Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits in natural images with unsupervised feature learning,” in NIPS workshop on deep learning and unsupervised feature learning, 2011, vol. 2011, no. 2, p. 5.
Y. LeCun and C. Cortes, “{MNIST} handwritten digit database,” 2010.
Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky, “Domain-adversarial training of neural networks,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 2030–2096, 2016.
Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798–1828, 2013.
X. Wu, R. He, Z. Sun, and T. Tan, “A light cnn for deep face representation with noisy labels,” IEEE Trans. Inf. Forensics Secur., vol. 13, no. 11, pp. 2884–2896, 2018.
X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in Proceedings of the thirteenth international conference on artificial intelligence and statistics, 2010, pp. 249–256.
S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv Prepr. arXiv1605.07146, 2016.
S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond,” 2018.
S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,” in International Conference on Machine Learning, 2015, pp. 448–456.
N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end factor analysis for speaker verification,” IEEE Trans. Audio. Speech. Lang. Processing, vol. 19, no. 4, pp. 788– 798, 2011.
M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv Prepr. arXiv1411.1784, 2014.
L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res., vol. 9, no. Nov, pp. 2579–2605, 2008.
K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” in European conference on computer vision, 2016, pp. 630–645.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm restarts,” arXiv Prepr. arXiv1608.03983, 2016.
I. J. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, and D. Warde-farley, “Generative Adversarial Nets,” pp. 1–9.
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
H. Yu, Z.-H. Tan, Z. Ma, and J. Guo, “Adversarial network bottleneck features for noise robust speaker verification,” arXiv Prepr. arXiv1706.03397, 2017.
F. Chollet and others, “Keras.” GitHub, 2015.
E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discriminative domain adaptation,” in Computer Vision and Pattern Recognition (CVPR), 2017, vol. 1, no. 2, p. 4.
E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial Discriminative Domain Adaptation.”
D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, and others, “The Kaldi speech recognition toolkit,” in IEEE 2011 workshop on automatic speech recognition and understanding, 2011, no. EPFL-CONF-192584.
D. P. Kingma and J. L. Ba, “Adam: Method for Stochastic Optimization,” in International Conference on Learning Representation, 2015.
D. L. Poole, A. K. Mackworth, and R. Goebel, Computational intelligence: a logical approach, vol. 1. Oxford University Press New York, 1998.
C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations in convolutional network,” arXiv Prepr. arXiv1505.00853, 2015.
A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, 2011, pp. 1521–1528.
A. Solomonoff, C. Quillen, and W. M. Campbell, “Channel compensation for SVM speaker recognition.,” in Odyssey, 2004, vol. 4, pp. 219–226.
A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” arXiv Prepr. arXiv1511.06434, 2015.
A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the nonlinear dynamics of learning in deep linear neural networks,” arXiv Prepr. arXiv1312.6120, 2013.
A. Larcher, K. A. Lee, B. Ma, and H. Li, “Text-dependent speaker verification: Classifiers, databases and RSR2015,” Speech Commun., vol. 60, pp. 56–77, 2014.
A. Larcher, K. A. Lee, B. Ma, and H. Li, “Rsr2015: Database for text-dependent speaker verification using multiple pass-phrases,” in Thirteenth Annual Conference of the International Speech Communication Association, 2012.
A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,” 2009.
'
코사인 유사도에 기반한 적대 과정 딥러닝의 개선안과 화자인식 및 도메인적응에의 응용 = Advanced adversarial deep learning process based on cosine similarity, and its applications to speaker recognition and domain adaptation'
의 유사주제(
) 논문