박사

A Study on the Bonding Process Using Cu-Al-Zr Brazing Alloys to Improve Liquid Na Corrosion Resistance and Mechanical Property for α-Al2O3/SS430 Joints of Sodium Sulfur Batteries = NaS 전지용 α-Al2O3/SS430 접합부의 액상 Na 내부식성 및 기계적 특성 향상을 위한 Cu-Al-Zr 브레이징 삽입금속 및 접합공정 연구

허회준 2019년
논문상세정보
' A Study on the Bonding Process Using Cu-Al-Zr Brazing Alloys to Improve Liquid Na Corrosion Resistance and Mechanical Property for α-Al2O3/SS430 Joints of Sodium Sulfur Batteries = NaS 전지용 α-Al2O3/SS430 접합부의 액상 Na 내부식성 및 기계적 특성 향상을 위한 Cu-Al-Zr 브레이징 삽입금속 및 접합공정 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 기술과 연합작용
  • Dealloying
  • 세라믹-금속 접합
  • 액상 금속 부식
  • 활성브레이징
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
733 0

0.0%

' A Study on the Bonding Process Using Cu-Al-Zr Brazing Alloys to Improve Liquid Na Corrosion Resistance and Mechanical Property for α-Al2O3/SS430 Joints of Sodium Sulfur Batteries = NaS 전지용 α-Al2O3/SS430 접합부의 액상 Na 내부식성 및 기계적 특성 향상을 위한 Cu-Al-Zr 브레이징 삽입금속 및 접합공정 연구' 의 참고문헌

  • Z. Zhang, K. Jung, L. Li, J.C. Yang, Kinetics aspects of initial stage thin γ-Al2O3 film formation on single crystalline β-NiAl(110), J. Appl. Phys. 111 (2012) 034312-1-034312-6.
  • Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid, Chem. Rev. 111(5) (2011) 3577-3613
  • Z. Wen, Y. Hu, X. Wu, J. Han, Z. Gu, Main challenges for high performance NAS battery: materials and interfaces, Adv. Func. Mater. 23 (2013) 1005-1018
  • Y.X. Zhao, M.R. Wang, J. Cao, X.G. Song, D.Y. Tang, J.C. Feng, Brazing TC4 alloy to Si3N4 ceramic using nano-Si3N4 reinforced AgCu composite filler, Materials & Design 76 (2015) 40-46.
  • Y.C. Yoo, J.H. Kim, K. Park, Microstructural characterization of Al2O3/AISI 8650 steel joint brazed with Ag–Cu–Sn–Zr alloy, Materials Letters 42(6) (2000) 362-366.
  • Y. Zhou, K. Ikeuchi, T.H. North, Z. Wang, Effect of plastic deformation on residual stresses in ceramic/metal interfaces, Metall. Trans. A 22 (1991) 2822 –2825.
  • Y. Zhou, ;F. Bao, ;J. Ren, ; T. North, Interlayer selection and thermal stresses in brazed Si3N4−steel joints, Mater. Sci. Technol. 7 (1991) 863–868.
  • Y. Xu, K. Jung, Y.-C. Park, C.-S. Kim, Selection of container materials for modern planar sodium sulfur (Nas) energy storage cells towards higher thermo-mechanical stability. J. Energy Storage 12 (2017) 215–225.
  • Y. Xu, K. Jung, Y.-C. Park, C.-S. Kim, Selection of container materials for modern planar sodium sulfur (NaS) energy storage cells towards higher thermo-mechanical stability, Journal of Energy Storage 12 (2017) 215-225.
  • Y. Tanaka, M. Kajihara, Kinetics of isothermal reactive diffusion between solid Fe and liquid Al, J. Mater. Sci. 45 (2010) 5676-5684.
  • Y. Nakao, K. Nishimoto, K. Saida, Reaction layer formation in nitride ceramics (Si3N4 and Aln) to metal joints bonded with active filler metals, ISIJ Int. 30 (1990) 1142–1150.
  • Y. Nakao, K. Nishimoto, K. Saida, H. Nakamura, K. Katada, Fundamental study on Si3N4−metal bonding using Cu-base alloy as the insert metal, Q. J. Jpn. Weld. Soc. 7 (1989) 1.
  • X. Zuo, R. Guo, C. Zhao, L. Zhang, E. Wang, K. Han, Microstructure and properties of Cu-6wt %Ag composite thermomechanical-processed after directionally solidifying with magnetic field, J. Alloys Compd. 276 (2016) 46– 53.
  • W.Z. Nernst, Oscillometric investigation of sparingly soluble sulfates, Z. Physik. Chem. 47 (1904) 52-55.
  • W.L. Bragg, C. Gottfried, J. West, The structure of β alumina, Z. Kristallog.- Crystalline Materials 77 (1931) 255-274
  • W.J. Wang, J.P. Lin, Y.L. Wang, G.L. Chen, The corrosion of Fe3Al alloy in liquid zinc, Corros. Sci. 49 (2007) 1340-1349.
  • W.D. Manly, Fundamentals of liquid metal corrosion, Corrosion 12 (1956), 46-52.
  • W. Cui, S. Li, J. Yan, J. He, Y. Liu, Ultrasonic-assisted brazing of sapphire with high strength Al–4.5Cu–1.5Mg alloy, Ceramics International 41(6) (2015) 8014-8022.
  • The Aluminum Association, International alloy design and chemical composition limits for wrought aluminum and wrought aluminum alloys, Registration record series (2004)
  • T.I. Barry, G.S. Schajer, F.M. Stackpool, in Deutscher Verlag fuer Schweisstechnik Conference, West Germany, 1980
  • T. Oshima, M. Kajita, A. Okuno, Int. Development of sodium‐sulfur batteries, J. Appl. Ceram. Tech. 1 (2005) 269-275
  • S.H. Shin, J.H. Kim, J.H. Kim, Corrosion behavior and microstructural evolution of ASTM A182 grade 92 steel in liquid sodium at 650 oC, Corros. Sci. 97 (2015) 172-182.
  • S.H. Shin, J. Lee, J.H. Kim, J.H. Kim, Mechanism of corrosion of 9Cr and 12Cr ferritic/martensitic steels under oxygen-saturated sodium, Corros. Sci. 112 (2016) 611-624.
  • S. Sim es, Recent Progress in the Joining of Titanium Alloys to Ceramics, Metals 8(11) (2018) 876.
  • R.P. Tischer, Candidate materials for the sulfur electrode current collector—II. Aluminum and its alloys, G.J. Tennenhouse, Corros. Sci. 26 (1986) 371-375
  • R.E. Loehman, B.D. Gauntt, F. Michael Hosking, P.G. Kotula, S. Rhodes, J.J. Stephens, Reaction and bonding of Hf and Zr containing alloys to alumina and silica, Journal of the European Ceramic Society 23(15) (2003) 2805-2811.
  • R.A. Robie, B.S. Hemingway, Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures, US Government Printing Office 1995.
  • R. Loehman, F. Hosking, B. Gauntt, P. Kotula, P. Lu, Reactions of Hf-Ag and Zr-Ag alloys with Al2O3 at elevated temperatures, Journal of materials science 40(9-10) (2005) 2319-2324.
  • R. Loehman, A. Tomsia, Reactions of Ti and Zr with AlN and Al2O3, Acta metallurgica et materialia 40 (1992) S75-S83.
  • R. Chang, R. Minck, Sodium-sulfur battery flight experiment definition study, J. Power Sources 29 (1990) 555-563
  • Q. Wu, Z. Luo, Y. Wang, H. Zhao, Z. Deng, Effects of rare earth ce on the brazing performance of high energy mechanical milling Cu-based alloy powder, Metals 8 (2018) 495.
  • P.-A. Geslin, I. McCue, B. Gaskey, J. Erlebacher, A. Karma, Topology generating interfacial pattern formation during liquid metal dealloying, Nature Commun. 6 (2015) Article number 8887.
  • O.T. Iancu, D. Munz, B. Eigenmann, B. Scholtes, E. Macherauch, Residual stress state of brazed ceramic/metal compounds, determined by analytical methods and X-ray residual stress measurements, J. Am. Ceram. Soc. 73 (1990) 1144–1149.
  • O. Ohashi, K. Sasabe, US Patent 4838474 A (1989)
  • N. Weber, J.T. Kummer, Sodium-sulfur secondary battery, in: Proceedings of the 21stAnnualPowerSourcesConference, Monmouth, NJ, 1967, 37-39
  • N. Birks, G.H. Meier, F.S. Pettit. Introduction to the high temperature oxidation of metals, Cambridge University Press, 2006.
  • N. Birks, G.H. Meier, F.S. Pettit, Introduction to the high-temperature oxidation of metals, second ed., Cambridge University Press, London 2006
  • M.-B. Kim, S.-J. Kim, B.-K. Lee, X. Yuan, B.-H. Yoon, I.-S. Woo, C.-Y. Kang, Effect of the heat input on the tensile properties in arc brazing of ferritic stainless steel using Cu-Si insert alloy, Korean J. Met. Mater. 48 (2010) 289– 296.
  • M. Singh, J.M. Fernandez, R. Asthana, J.R. Rico, Interfacial characterization of silicon nitride/silicon nitride joints brazed using cu-base active metal interlayers, Ceram. Int. 38 (2012) 2793–2802.
  • M. Matsui, K. Kondou , K. Wada, O. Ohashi, Effects of post heat treatment on 5052Al and 6063 aluminium joints during pulsed electric current bonding, Weld. Int. 25 (2011) 159-165
  • M. Hattali, S. Valette, F. Ropital, N. Mesrati, D. Tr heux, Effect of thermal residual stresses on the strength for both alumina/Ni/alumina and alumina/Ni/nickel alloy bimaterials, J. Mater. Sci. 44 (2009) 3198–3210.
  • M. Ali, K.M. Knowles, P.M. Mallinson, J.A. Fernie, Microstructural evolution and characterisation of interfacial phases in Al2O3/Ag–Cu–Ti/Al2O3 braze joints, Acta Mater. 96 (2015) 143-158.
  • L. Xijiang, R. Xiong, S. Pengcheng, Z. Di, Studies on reactions between aluminum/aluminum alloy and molten sodium, Mater. Sci. Eng. A280 (2000) 54-57.
  • L. Xijiang, R. Xiong, S. Pengcheng, Z. Di, Studies on reactions between aluminium/aluminium alloy and molten sodium, Mater. Sci. Eng. A280 (2000) 54-57
  • Kim, H.S. On the rule of mixtures for the hardness of particle reinforced composites, Mater. Sci. Eng. A 2000, 289, 30–33.
  • K.S. Bang, S. Liu, Interfacial Reactions between Cu-Zr filler metal and alumina and kinetics of reaction layer growth, Metals and Materials 4(2) (1998) 151-155.
  • K.R. Mangipudi, E. Epler, C.A. Volkert, Morphological similarity and structure-dependent scaling laws of nanoporous gold from different synthesis methods, Acta Mater. 140 (2017) 337-343.
  • K.K. Chawla, Ceramic matrix composites, Springer Science & Business Media2013.
  • K.B. Hueso, V. Palomares, M. Armand, T. Rojo, Challenges and perspectives on high intermediate temperature sodium batteries, Nano Res. (2017) 4082-4114.
  • K.B. Hueso, M. Armand, T. Rojo, High temperature sodium batteries: status, challenges and future trends, Energy Environ. Sci. 6 (2013) 734-749
  • K. Jung, S. Lee, Y.-C. Park, C.-S. Kim, Finite element analysis study on the thermomechanical stability of thermal compression bonding (tcb) joints in tubular sodium sulfur cells, J. Power Sources 250 (2014) 1-14
  • K. Jung, H.J. Chang, J.F. Bonnett, N.L. Canfield, V.L. Sprenkle, G. Li, An advanced Na-NiCl2 battery using bi-layer (dense/micro-porous) b”-Al2O3 solid - state electrolytes, J. Power Sources 396 (2018) 297-303.
  • K. Jung, H. Heo, J. Lee, Y.-C Park, C.-Y. Kang, Enhanced corrosion resistance of hypo-eutectic Al–1Mg–xSi alloys against molten sodium attack in high temperature sodium sulfur batteries, Corros. Sci. 98 (2015) 748-757.
  • K. Geng, K. Sieradzki, Dealloying at high homologous temperature: mophology digrams, J. Electrochem. Soc. 164 (2017) C330-C337.
  • K. Bobzin, M. te, S. Wiesner, A. Kaletsch, C. Broeckmann, Characterization of reactive air brazed ceramic/metal joints with unadapted thermal expansion behavior, Adv. Eng. Mater. 16 (2014) 1490–1497.
  • J.T. Busby, M.C. Hash, G.S. Was, The relationship between hardness and yield stress in irradiated austenitic and ferritic steels. J. Nucl. Mater. 336 (2005) 267–278.
  • J.R. Davis, Copper and Copper Alloys, ASM International, (2001) West Conshohocken, PA, USA.
  • J.P. Kong, C.Y. Kang, Effect of alloying elements on expulsion in electric resistance spot welding of advanced high strength steels, Sci. Technol. Weld. Join. 21 (2016) 32–42.
  • J.M. Fernandez, R. Asthana, M. Singh, F.M. Valera, Active metal brazing of silicon nitride ceramics using a cu-based alloy and refractory metal interlayers, Ceram. Int. 42 (2016) 5447–5454.
  • J.M. Fernandez, R. Asthana, M. Singh, F.M. Valera, Active metal brazing of silicon nitride ceramics using a Cu-based alloy and refractory metal interlayers, Ceramics International 42(4) (2016) 5447-5454.
  • J.L. Sudworth, A.R. Tilley, The sodium sulfur battery, second ed., Chapman and Hall, London 1985
  • J.L. Murray, The Al-Na (Aluminum-Sodium) system, Bull. Alloy Ph. Diagr. 4 (1983) 407–410.
  • J.K. Min, M. Stackpool, C.H. Shin, C.H. Lee, Cell safety analysis of a molten sodium–sulfur battery under failure mode from a fracture in the solid electrolyte, J. Power Sources 293 (2015) 835-845
  • J.C. Dobson, The corrosion of some metals in sulfur-polysulfide melts, F.R. McLarnon, E.J. Cairns, Corros. Sci. 28 (1988) 953-967
  • J.A. Fernie, R.A.L. Drew, K.M. Knowles, Joining of engineering ceramics, International Materials Reviews 54(5) (2013) 283-331.
  • J.A. Fernie, R.A.L. Drew, K.M. Knowles, Joining of engineering ceramics, Int. Mater. Rev. 54 (2013) 283–331.
  • J.A. Degruson, in: the 1991 NASA Aerospace Battery Workshop, NASA Marshall Space Flight Center, 1991, 583-605
  • J.-H. Kim, Y.-C. Yoo, Bonding of alumina to metals with Ag-Cu-Zr brazing alloy, Journal of Materials Science Letters 16(14) (1997) 1212-1215.
  • J. Zhang, T.F. Marcille, R. Kapernick, Theoretical analysis of corrosion by liquid sodium and sodium potassium alloys, Corrosion 64 (2008) 563-573.
  • J. Zhang, P. Hosemann, S. Maloy, Models of liquid metal corrosion, J. Nuc. Mater. 404 (2010) 82-96.
  • J. Zhang, N. Li, Analysis on liquid metal corrosion-oxidation interactions, Corros. Sci. 49 (2007) 4154-4184.
  • J. Zhang, A review of steel corrosion by liquid lead and lead-bismuth, Corros. Sci. 51 (2009) 1207-1227.
  • J. Xu, M.A. Bright, X. Liu, E. Barbero, Liquid metal corrosion of 316L stainless steel, 410 stainless steel, and 1015 carbon steel in a molten zinc bath, Metall. Mat. Trans. 38A (2007) 2727-2736.
  • J. Sudworth, A.R. Tiley, The sodium sulfur battery, Chapman and Hall, London, 1985.
  • J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzski, Evolution of nanoporosity in dealloying, Nature 410 (2001) 450-453.
  • I. McCue, S. Ryan, K. Hemker, X. Xu, N. Li, M. Chen, J. Erlebacher, Size effects in the mechanical properties of bulk bicontinuous Ta/Cu nanocomposites made by liquid metal dealloying, Adv. Eng. Mater. 18 (2016) 46-50
  • I. McCue, B. Gaskey, P.-A. Geslin, A, Karma, J. Erlebacher, Kinetics and morphological evolution of liquid metal dealloying, Acta Mater. 115 (2016) 10-23.
  • I. McCue, B. Gaskey, B. Crawford, J. Erlebacher, Local heterogeneity in the mechanical properties of bicontinuous composites made by liquid metal dealloying, Appl. Phys. Lett. 109 (2016) 231901
  • H.J. Chang, X. Lu, J.F. Bonnett, N.L. Canfield, S. Son, Y.-C. Park, K. Jung, V.L. Sprenkle, G. Li, Development of intermediate temperature sodium nickel chloride rechargeable batteries using conventional polymer sealing technologies, J. Power Sources 348 (2017) 150-157.
  • H.E. Boyer, Atlas of Stress-Strain Curves, ASM International (1987) Metals Park, OH, USA.
  • H.-J. Qiu, L. Peng, X. Li, H.T. Xu, Y. Wang, Using corrosion to fabricate various nanoporous metal structures, Corros. Sci. 92 (2015) 16-31.
  • H.-J. Heo, K. Jung, C.-Y. Kang, Development of Cu-Al-Ti Filler Metals for Al2O3 /Stainless steel Brazed Joints Applied for Na-S Batteries Cells, LOET Proceedings of 11th International Conference, DVS Berichte, 2016.
  • H. Mizuhara, K. Mally, Ceramic-to-metal joining with active brazing filler metal, Weld. J. 64 (1985) 27-32.
  • H. Kaiser, Selective dissolution of high and low diffusivity alloys – a comparison of kinetical and micromophological aspects, Corros. Sci. 34 (1993) 683-699.
  • H. Heo, Y.-C. Park, C.-Y. Kang, K. Jung, Dealloying of Ag-Cu-Ti alloy in liquid Na at 350 oC, 144 (2018) 35-43.
  • H. Heo, G. Kim, Y.-C. Park, K. Jung, C.-Y. Kang, Effect of Bonding Temperature on Crack Occurrences in Al2O3/SS 430 Joints Using Cu-Based Brazing Alloys, Metals 8(10) (2018) 752.
  • G.J. Janz, D.J. Rogers, Melting-crystallization properties of the sulphur electrolyte in sodium-sulphur batteries, J. Appl. Electrochem. 13 (1983) 121-131
  • G.C. Farrington, J.L. Briant, Fast ionic transport in solids, Science 204 (1979) 1371-1379
  • G.B. Niu, D.P. Wang, Z.W. Yang, Y. Wang, Microstructure and mechanical properties of Al2O3 ceramic and TiAl alloy joints brazed with Ag–Cu–Ti filler metal, Ceramics International 42(6) (2016) 6924-6934.
  • G. Wang, J. Lannutti, Chemical thermodynamics as a predictive tool in the reactive metal brazing of ceramics, Metallurgical and Materials Transactions A 26(6) (1995) 1499-1505.
  • G. Blugan, ;J. Kuebler, ;V. Bissig ;J. Janczak-Rusch, Brazing of silicon nitride ceramic composite to steel using sic-particle-reinforced active brazing alloy, Ceram. Int. 33 (2007) 1033–1039.
  • E.Z. Brunner, Reaktionsgeschwindigkeit in heterogenen systemen, Z. Physik, Chem. 47 (1904) 56-62.
  • E.J. Pavlina, ;C.J. Van Tyne, Correlation of yield strength and tensile strength with hardness for steels, J. Mater. Eng. Perform. 17 (2008) 888–893.
  • D.M. Jacobson, G. Humpson, Principles of Brazing, ASM International, Materials Park 2005
  • D.L. Olson, ASM handbook: welding, brazing, and soldering. 6 (1993). ASM international.
  • D. Zhang, R. Okuyama, E. Nomura, Y. Matsumaru, Corrosion behaviour of aluminium in molten sodium, J. Power Sources 47 (1994) 45-55
  • D. Zhang, R. Okuyama, E. Nomura, Y. Matsumaru, Corrosion behavior of aluminum in molten sodium, J. Power Sources 47 (1994) 45-55.
  • D. Sapundjiev, S. Van Dyck, W. Bogaerts, Liquid metal corrosion of T91 and A316L materials in Pb-Bi eutectic at temperatures of 400-600 oC, Corrs. Sci. 48 (2006) 577-594.
  • D. Lee, J. Woo, S. Park, Oxidation behavior of Ag-Cu-Ti brazing alloys, Mater. Sci. Eng. A268 (1999) 202-207
  • D. Kumar, S.K. Rajouria, S.B. Kuhar, D.K. Kanchan, Progress and prospects of sodium-sulfur batteries: A review, Solid State Ionics 312 (2017) 8-16.
  • D. Fan, J. Huang, Y. Wang, S. Chen, X. Zhao, Active brazing of carbon fiber reinforced sic composite and 304 stainless steel with Ti–Zr–Be, Mater. Sci. Eng. A 617 (2014) 66–72.
  • C.W. Bale, The Na-Ti (Sodium-Titanium) system, Bull. Alloy Phase Diagr. 10 (1990) 138-139.
  • C.-H. Dustmann, Advances in ZEBRA batteries, J. Power Sources 127 (2004) 85-92.
  • C. Xu, G. Xiao, Y. Zhang, B. Fang, Finite element design and fabrication of Al2O3/TIC/CaF2 gradient self-lubricating ceramic tool material, Ceram. Int. 40 (2014) 10971–10983.
  • C. Bale, The Na-Zr (Sodium-Zirconium) system, J. Ph. Equilibria 8 (1987) 50–51.
  • B.L. Ellis, L.F. Nazar, Sodium and sodium-ion energy storage batteries, Curr. Opin. Solid State Mater. Sci. 16 (2012) 168-177
  • B. Korojy, L. Ekbom, H. Fredriksson, On solidification shrinkage of copper-lead and copper-tin–lead alloys. Int. J. Cast Met. Res. 22 (2009) 179–182.
  • B. Hartmann, Casing materials for sodium/sulfur cells, J. Power Sources 3 (1978) 227-235
  • B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices, Science 334 (2011) 928-935
  • ASTM B565-04(2015), Standard Test Method for Shear Testing of Aluminum and Aluminum-Alloy Rivets and Cold-Heading Wire and Rods, ASTM International, West Conshohocken, PA, 2015, www.astm.org.
  • A.P. Brown, The Corrosion of Aluminum in Sodium Polysulfides and Sulfur at 350 C, J. Electrochem. Soc. 134 (1987) 2506-2507
  • A.D. Pelton, The Cu-Na (Copper-Sodium) system, Bull. Alloy Phase Diagr. 7 (1986) 25-27.
  • A.D. Pelton, The Ag-Na (Silver-Sodium) system, Bull. Alloy Phase Diagr. 7 (1986) 133-136.
  • A.A. Noyes, W.R. Whitney, The rate of dissolution of solid substances in their own solutoin, J. Am. Chem. Soc. (1897) 930-934.
  • A. Singh, L. Tang, M. Dao, L. Lu, S. Suresh, Fracture toughness and fatigue crack growth characteristics of nanotwinned copper, Acta Mater. 59 (2011) 2437–2446.
  • A. Roine, HSC Chemistry 7.0 User's Guide-Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database and Flowsheet Simulation [computer program], Outotec. Retrieved from www. hsc-chemistry. com (2009).
  • A. Levy, Thermal residual stresses in ceramic-to-metal brazed joints, J. Am. Ceram. Soc. 74 (1991) 2141–2147.
  • A. Laik, P. Mishra, K. Bhanumurthy, G.B. Kale, B.P. Kashyap, Microstructural evolution during reactive brazing of alumina to Inconel 600 using Ag-based alloy, Acta Mater. 61 (2013) 126-138.
  • A. Kar, S. Mandal, K. Venkateswarlu, A.K. Ray, Characterizatoin of interface of Al2O3-304 stainless steel braze joint, Mater. Charact. 58 (2007) 555-562.