박사

Mo 합금성분에 따른 항복강도 500MP 급 해양구조물용 강재와 용접열영향부의 미세조직 및 기계적 성질 = Effect of Mo Contents on Microstructure and Mechanical Properties of YS 500 MPa Class Offshore Structural Steel and its Properties of Low Temperatur Toughness in Weld HAZ

김인 2019년
논문상세정보
' Mo 합금성분에 따른 항복강도 500MP 급 해양구조물용 강재와 용접열영향부의 미세조직 및 기계적 성질 = Effect of Mo Contents on Microstructure and Mechanical Properties of YS 500 MPa Class Offshore Structural Steel and its Properties of Low Temperatur Toughness in Weld HAZ' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 고강도 강재
  • 용접열영향부
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
26 0

0.0%

' Mo 합금성분에 따른 항복강도 500MP 급 해양구조물용 강재와 용접열영향부의 미세조직 및 기계적 성질 = Effect of Mo Contents on Microstructure and Mechanical Properties of YS 500 MPa Class Offshore Structural Steel and its Properties of Low Temperatur Toughness in Weld HAZ' 의 참고문헌

  • Z.W. Hu, G. Xu, H.L. Yang, C. Zhang, R. Yu, J. Mater. Eng. Perform., 23, 4216 (2014).
  • You, Y.; Shang, C.; Chen, L.; Subramanian, S. Investigation on the crystallography of the transformation products of reverted austenite in intercritically reheated coarse grained heat affected zone. Mater Des. 2013, 43, 485–491.
  • Y.M. Kim, S.Y. Shin, H.C. Lee, B.C. Hwang, S.H. Lee, and N.J. Kim, Metall. Mater. Trans. A, 38A, 1731 (2007).
  • Y.M. Kim, S.K. Kim, Y.J. Lim, and N.J. Kim, ISIJ Int., 42, 1571 (2002).
  • Y. Ohmori, R.W.K. S Honeycombe, Proceedings of ICSTIS (suppl.) Transactions Iron and Steel Institute of Japan 11, 1160 (1971).
  • X. Fang, Z. Fan, B. Ralph, P. Evans, R. Underhill, Mater. Sci. Tech. 18 (2002) 47–53.
  • W. Oldfield, Curve fitting impact test data - a statistical procedure, ASTM Standardization News, p. 24, West Conshohocken, PA, USA (1975).
  • The new South African standard for structural steel, SANS 50025 / EN 10025.
  • Terasaki, H.; Komizo, Y. I. Correlation between the microstructural development of bainitic ferrite and the characteristics of martensite-austenite constituent. Metall Mater Tran A. 2013, 44(12), 5289–5293.
  • Taillard, R.; Verrier, P.; Maurickx, T.; Foct, J. Effect of silicon on CGHAZ toughness and microstructure of microalloyed steels. Metall Mater Trans A, 1995, 26(2), 447–457.
  • T. Kamo et al, ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers (2004).
  • T. Hayashi, F. Kawabata, and K. Amano: Proc. Materials Solution ’97 on Accelerated Cooling/Direct Quenching Steels, ASM INTERNATIONAL, Materials Park, OH, 1997, pp. 93-99.
  • T. Hara, Y. Shinohara, Y. Terada, H. Asahi, and N. Doi: Proceedings of the Nineteenth International Offshore and Polar Engineering Conference, Vancouver, Canada, 2009, pp. 73-79.
  • T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London,UK, 1997.
  • T. Furuhara, K. Tsuzumi, G. Miyamoto, T. Amino, G. Shigesato, Metall. Mater. Trans. A, 45A, 5990 (2014).
  • T. B. Massalski: Phase Transformations, ASM, Metals Park, Ohio, 1970, pp. 433-86.
  • T. Araki: Atlas for baintic microstructures, ISIJ, Tokyo ,Japan, 1992, PP. 1-100.
  • T. Araki: Atlas for Bainitic Microstructures, ISIJ, Tokyo, Japan, 1992, pp. 1-100.
  • T. Araki, Atlas for Bainitic Microstructures, p. 1-100, ISIJ, Tokyo (1992).
  • S.Y. Han, S.Y. Shin, S. Lee, J. Bae, and K. Kim: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 329-
  • S. W. Thompson, D.J. Colvin, and G. Krauss: Scripta Metall., 1988, vol. 22, pp. 1069-74.
  • S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, T. Mannering, D. Panda, S. Jansto, Materials Science and Engineering A, 460–461, 335 (2007).
  • S. Khare, K. Lee, H.K.D.H. Bhadeshia, Int. J. Mater. Res., 100, 1513 (2009).
  • R.A. Grange, Metall. Trans. B, 4, 2231 (1973).
  • Qiu, C.; Lan, L.; Zhao, D.; Gao, X.; Du, L. Microstructural evolution and toughness in the HAZ of submerged arc welded low welding crack susceptibility steel. Acta Metall Sin. 2013, 26(1), 49–55.
  • Park, C.; Kang, N.; Liu, S. Effect of grain size on the resistance to hydrogen embrittlement of API 2W Grade 60 steels using in situ slow-strain-rate testing. Corros Sci. 2017,128, 33–41.
  • P. Cizek, B.P. Wynne, C.H.J. Davies, B.C. Muddle, and P.D. Hodgson: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1331–49.
  • Moon, J.; Kim, S. J.; Lee, C. Effect of thermo-mechanical cycling on the microstructure and strength of lath martensite in the weld CGHAZ of HSLA steel. Mater Sci Eng A. 2011, 528(25–26), 7658–7662.
  • Material data sheets for structural steel, NORSOK STANDARD M-120.
  • M. Thompson, M. Ferry, P.A. Manohar, ISIJ Inter. 41 (2001) 891–899.
  • M. Soliman, H. Palkowski, Arch. Civ. Mech. Eng., 16, 403 (2016).
  • M. J. Lee, K. M. Cho and N. H. Nam, Korean J. Met. Mater., 54-4, 252 (2016).
  • M. Diaz-Fuentes, A. Iza-Mendia, and I. Gutierrez, Metall. Mater. Trans. A. 34, 2505 (2003).
  • M. C. Zhao, K. Yang, and Y. Shan, Mater. Sci. Eng. A 335, 14 (2002).
  • Li, X.; Fan, Y.; Ma, X.; Subramanian, S. V.; Shang, C. Influence of Martensite- Austenite constituents formed at different intercritical temperatures on toughness. Mater Des, 2015, 67, 457–463.
  • Lee, S.; Kim, B. C.; Kwon, D. Fracture toughness analysis of heat-affected zones in high-strength low-alloy steel welds. Metall Mater Tran A. 1993, 24(5), 1133–1141.
  • Lan, L.; Qiu, C.; Zhao, D.; Gao, X.; Du, L. Analysis of microstructural variation and mechanical behaviors in submerged arc welded joint of high strength low carbon bainitic steel. Mater Sci Eng A. 2012, 558, 592–601.
  • Lan, L.; Qiu, C.; Zhao, D.; Gao, X.; Du, L. Analysis of martensite-austenite constituent and its effect on toughness in submerged arc welded joint of low carbon bainitic steel. J. Mater Sci. 2012, 47(11), 4732–4742.
  • Lan, H. F.; Du, L. X.; Misra, R. D. K. Effect of microstructural constituents on strength-toughness combination in a low carbon bainitic steel. Mater Sci Eng A, 2014, 611, 194–200.
  • Lambert-Perlade, A.; Gourgues, A. F.; Besson, J.; Sturel, T.; Pineau, A. Mechanisms and modelling of cleavage fractures in simulated heat affected zone microstructures in HSLA steel. Metall Mater Tran A. 2004, 35, 1039–1053.
  • Kim, I.; Lee, M.; Choi, Y.; Kang, N. Effects of Mo Content on Low-Angle Misorientation Microstructure and Mechanical Properties of YS 550 MPa-Grade Steels for Offshore Structures. Steel Research Int. 2018, 89(2), 1–6.
  • J.H. Sung, Y.K. Kim, J.G. Moon, K.W. Kim, K.B. Kang and K.M. Cho, Korean J. Met. Mater., 54-4, 295 (2016).
  • J.H. Kong, C.S. Xie, Mater. Des., 27, 1169 (2006).
  • J.H. Ai, T.C. Zhao, H.J. Gao, Y.H. Hu, X.S. Xie, J. Mater. Proc. Tech. 160 (2005) 390–395.
  • J. Y. Koo, M.J. Luton, N. V. Bangaru, R.A. Petkovic, D.P. Fairchild: Proc. Of the Thirteenth Intern. Offshore and polar engineering conf., Honolulu, Hawaii, USA, 2003, pp. 10-18.
  • J. Shimamura, N. Ishikawa, H. Sueyoshi, S. Mitao and J. Rassel, Proceedings of the 20th International Offshore and Polar Engineering Conference, p.8, ISOPE, Beijing, China (2010).
  • J. Billingham, J. V. Sharp, J. Spurrier and P J Kilgallon, Research Report, Cranfield University (2003).
  • J Di, X. J.; An, X.; Cheng, F. J.; Wang, D. P.; Guo, X. J.; Xue, Z. K. Effect of martensite–austenite constituent on toughness of simulated inter-critically reheated coarse-grained heat-affected zone in X70 pipeline steel. Sci Technol Weld Joining. 2016, 21(5), 366–373.
  • I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi: Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworth & Co. Ltd., London, UK, 1988.
  • Hu, J.; Du, L. X.; Wang, J. J.; Xie, H.; Gao, H. C. R.; Misra, R. D. K. High toughness in the intercritically reheated coarse-grained (ICRCG) heat-affected zone (HAZ) of low carbon microalloyed steel. Mater Sci Eng A, 2014, 590, 323–328.
  • Haugen, V. G.; Rogne, B. R. S.; Akselsen, O. M.; Thaulow, C.; stby, E. Local mechanical properties of intercritically reheated coarse grained heat affected zone in low alloy steel. Mater Des. 2014, 59, 135–140.
  • Han, C.; Li, K.; Liu, X.; Cao, R.; Cai, Z. Effect of Ti content and martensite– austenite constituents on microstructure and mechanical property. Sci Technol Weld Joining, 2018, 23(5), 410–419.
  • H.K.D.H. Bhadeshia: Mater. Sci. Eng., 2004, vol. A378, pp. 34-39.
  • H.K.D.H. Bhadeshia: Bainite in Steels, IOM Communications, Ltd., London, 2001, pp. 1-454.
  • H.K.D.H. Bhadeshia, Scr. Mater., 70, 12 (2014).
  • H.I. Aaronson: The Decomposition of Austenite by Diffusional Processes, V. F. Zackay and H.I. Aaronson, eds., Interscience, New York, NY, 1962, pp. 131-92.
  • H.C. Kang, B.J. Park, J.H. Jang, K.S. Jang, K.J. Lee, Met. Mater. Int., 22-6, 949, (2016).
  • H. Ohtani, S. Okaguchi, Y. Fujiishiro, and Y. Omori: Metall. Trans. A, 1990, Vol. 21A, pp. 877-88.
  • H. Li, E. Hsu, J. Szpunar, H. Utsunomiya and T. Sakai, J. Mater. Sci. 43, 7148 (2008).
  • H. Lee: Ph. D. thesis, POSTECH, Korea, 2008, pp. 1-129.
  • H. K. D. H. Bhadeshia, Mater. Sci. Eng. A 378, 34 (2004).
  • H. Bhadeshia and R. Honeycombe, Steels: microstructure and properties. Butterworth-Heinemann (2011).
  • G. Krauss, principles of heat treatment of steel, 1st edn, OH, ASM (1980).
  • G. Krauss and S.W. Thompson: ISIJ Int., 1995, vol. 35, pp. 937-45.
  • G. Krauss and S. W. Thompson, ISIJ Int. 35, 937 (1995).
  • F.B. Pickering, Physical Metallurgy and the Design of Steels; Applied Science Publishers Ltd.: London, UK, 1978.
  • E.V. Pereloma, C. Bayley, J.D. Boyd, Mater. Sci. Eng. A 210 (1996) 16–24.
  • Di, X. J.; An, X.; Cheng, F. J.; Wang, D. P.; Guo, X. J.; Xue, Z. K. Effect of martensite–austenite constituent on toughness of simulated inter-critically reheated coarse-grained heat-affected zone in X70 pipeline steel. Sci Technol Weld Joining. 2016, 21(5), 366–373.
  • Davis, C. L.; King, J. E. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: Part I. Fractographic evidence. Metall Mater Tran A. 1994, 25(3), 563–573.
  • D.B. Lillig: Proceedings of the Eighteenth International Offshore and Polar Engineering Conference, Vancouver, Canada, 2008, pp. 1-12.
  • D. V. Edmons and R. C. Cochrorane, Metall. Trans. A 21, 1527 (1990).
  • Chen, J. H.; Kikuta, Y.; Araki, T.; Yoneda, M.; Matsuda. Y. Micro-fracture behaviour induced by M-A constituent (Island Martensite) in simulated welding heat affected zone of HT80 high strength low alloyed steel. Acta Metall. 1984, 32(10),1779–1788.
  • C.H. Lee, H.K.D.H. Bhadeshia, and H.-C. Lee: Mater. Sci. Eng., 2003, vol. A360, pp. 249-57.
  • C. H. Lee, H. K. D. H. Bhadeshia, and H.-C. Lee, Mater. Sci. Eng. A 360, 249 (2003).
  • C. Garcia-Mateo, M. Peet, F.G. Caballero, and H.K.D.H. Bhadeshia: Mater. Sci. Tech., 2004, vol. 20, pp. 814-18.
  • C. Garcia-Mateo, M. Peet, F. G. Caballero, and H. K. D. H. Bhadeshia, Mater. Sci. Tech. 20, 814 (2004).
  • Bonnevie, E.; Ferri re, G.; Ikhlef, A.; Kaplan, D.; Orain, J. M. Morphological aspects of martensite-austenite constituents in intercritical and coarse grain heat affected zones of structural steels. Mater Sci Eng A. 2004, 385(1–2), 352–358.
  • B.L. Bramfitt and J.G. Speer: Metall. Trans. A, 1990, Vol. 21A, pp. 817-29
  • B.C. Hwang, C.G. Lee, Materials Science and Engineering A, 527, 4341 (2010).
  • B. Hwang, C.G. Lee, and S.-J. Kim: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 717-28.
  • B. Hwang, C.G. Lee, and S.-J. Kim: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 85-96.
  • Atta-Agyemang, Sammy-Armstrong, et al. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture (2015).
  • Amer, A. E.; Koo, M. Y.; Lee, K. H.; Kim, S. H.; Hong, S. H. Effect of welding heat input on microstructure and mechanical properties of simulated HAZ in Cu containing microalloyed steel. J. Mater Sci. 2010, 45(5), 1248–1254.
  • A.B. Cota, D.B. Santos, Mater. Charact. 44 (2000) 291–299.