박사

Enhancement of Odontoblast Differentiation Capacity of MSCs Derived from Various Regions of Dental Tissues using 3D Culture System with 17ß-estradiol Supplementation = 다양한 치아조직 유래 중간엽 줄기세포의 상아질모세포로의 분화능 증진을 위한 에스트로겐 첨가와 3차원 배양시스템에 대한 연구

손영범 2019년
논문상세정보
' Enhancement of Odontoblast Differentiation Capacity of MSCs Derived from Various Regions of Dental Tissues using 3D Culture System with 17ß-estradiol Supplementation = 다양한 치아조직 유래 중간엽 줄기세포의 상아질모세포로의 분화능 증진을 위한 에스트로겐 첨가와 3차원 배양시스템에 대한 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 17ß-estradiol
  • 3d culture
  • Odontoblast
  • mesenchymal stem cell
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
75 0

0.0%

' Enhancement of Odontoblast Differentiation Capacity of MSCs Derived from Various Regions of Dental Tissues using 3D Culture System with 17ß-estradiol Supplementation = 다양한 치아조직 유래 중간엽 줄기세포의 상아질모세포로의 분화능 증진을 위한 에스트로겐 첨가와 3차원 배양시스템에 대한 연구' 의 참고문헌

  • ron Szepesi, Zsolt Matula, Anna Szigeti, Gy rgy V rady, J zsef Szalma, Gyula Szab , Ferenc Uher, Bal zs Sarkadi, Katalin N met. (2016). In Vitro Characterization of Human Mesenchymal Stem Cells Isolated from Different Tissues with a Potential to Promote Complex Bone Regeneration. Stem Cells International Volume 3595941;9.
  • Zhuo Chen, Qi Zhang, Han Wang, Wentong Li, Feng Wang, Chunyan Wan, Shuli Deng, Zhijian Xie, Shuo Chen, Yixin Yin, Xiaoyan Li, Zhijian Xie, Shuo chen. (2017). Klf5 Mediates Odontoblastic Differentiation through Regulating Dentin-Specific Extracellular Matrix Gene Expression during Mouse Tooth Development. Scientific Reports 7:46746.
  • Zhuo Chen, Qi Zhang, Han Wang, Wentong Li, Feng Wang, Chunyan Wan, Shuli Deng, Zhijian Xie, Shuo Chen et al. (2017). Klf5 Mediates Odontoblastic Differentiation through Regulating Dentin- Specific Extracellular Matrix Gene Expression during Mouse Tooth Development. Scientific Reports 7:46746.
  • Yuichiro Yamaguchi, Jun Ohno, Ayako Sato, Hirofumi Kido, Tadao Fukushima. Mesenchymal stem cell spheroids exhibit enhanced in-vitro and in-vivo osteoregenerative potential. Yamaguchi et al. BMC Biotechnology 14:105.
  • Yohanna Feter, Nadhia Sari Afiana, Jessica Nathalia Chandra, Kharima Abdullah, Jasmine Shafira, Ferry Sandra. (2017). Dental Mesenchymal Stem Cell: Its role in tooth development, types, surface antigens and differentiation potential. Mol Cell Biomed Sci. 1(2): 50-7.
  • Yannarelli G, Pacienza N, Cuniberti L, et al. (2013). The potential role of epigenetics on multipotent cell differentiation capacity of mesenchymal stromal cells. Stem Cells. 31: 215–20.
  • Y. Li, Y. Lu, Maciejewska, K.M. Galler, A. Cavender, R.N. D’Souza. (2011). TWIST1 Promotes the Odontoblast-like Differentiation of Dental Stem Cells. Adv Dent Res 23(3): 280–284.
  • X. Cui, Y. Hartanto and H. Zhang. (2017). Advances in multicellular spheroids formation. Soc. Interface 14: 20160877.
  • W. Mueller-Klieser. (1997). Three-dimensional cell cultures: from molecular mechanisms to clinical applications. American Journal of Physiology—Cell Physiology, vol. 273, no. 4, pp. C1109– Cl123.
  • W. Mueller-Klieser. (1987). Multicellular spheroids—a review on cellular aggregates in cancer research. Journal of Cancer Research and Clinical Oncology, vol. 113, no. 2, pp. 101–122.
  • W. Chang, B.-W. Song, J.-Y. Moon et al. (2013). Anti-death strategies against oxidative stress in grafted mesenchymal stem cells. Histology and Histopathology, vol. 28, no. 12, pp. 1529–1536.
  • Ullah I, Subbarao RB, Kim EJ, Bharti D, Jang SJ, Park JS, Shivakumar SB, Lee SL, Kang D, Byun JH, Park BW, Rho GJ. (2016). In vitro comparative analysis of human dental stem cells from a single donor and its neuronal differentiation potential evaluated by electrophysiology. Life Sci. 1;154:39-51.
  • Ullah I, Park JM, Kang YH, Byun JH, Kim DG, Kim JH, Kang DH, Rho GJ, Park BW. (2017). Transplantation of Human Dental Pulp-Derived Stem Cells or Differentiated Neuronal Cells from Human Dental Pulp-Derived Stem Cells Identically Enhances Regeneration of the Injured Peripheral Nerve. Stem Cells Dev 1;26(17):1247-1257.
  • Ullah I, Choe YH, Khan M, Bharti D, Shivakumar SB, Lee HJ, Son YB, Shin Y, Lee SL, Park BW, Ock SA, Rho GJ. (2018). Dental pulp-derived stem cells can counterbalance peripheral nerve injuryinduced oxidative stress and supraspinal neuro-inflammation in rat brain. Scientific Reportsvolume 8:15795
  • Tsumura M, Okumura R, Tatsuyama S, Ichikawa H, Muramatsu T, Matsuda T, Baba A, Suzuki K, Kajiya H, Sahara Y, Tokuda M, Momose Y, Tazaki M, Shimono M, Shibukawa Y. (2010). Ca2+ extrusion via Na+–Ca2+exchangers in rat odontoblasts. J. Endod 36(;668–674.
  • Tristan M. Nicholson, Kristen S. Uchtmann, Conrad D. Valdez, Ashleigh B. Theberge, Tihomir Miralem, William A. Ricke. (2013). J Vis Exp; (78): 50574.
  • Tomohiro Inaba, Tomoko Kobayashi, Takeo W. Tsutsui, Masaaki Ogawa, Minoru Uchida, Takeki Tsutsui. (2013). Expression status of mRNA for sex hormone receptors in human dental pulp cells and the response to sex hormones in the cells. Archives of oral biology 58 943 – 950.
  • Tian Xia Li, Jie Yuan, Yan Chen, Li Jie Pan, Chun Song, Liang Jia Bi, Xiao Hui Jiao. (2013). Differentiation of Mesenchymal Stem Cells from Human Umbilical Cord Tissue into Odontoblast-Like Cells Using the Conditioned Medium of Tooth Germ Cells In Vitro. BioMed Research International 218543;10.
  • Thomas R.J. Heathmana, Qasim A. Rafiq, Alexander K.C. Chan, Karen Coopman, Alvin W. Nienow, Bo Kara, Christopher J. Hewitt. (2016). Characterization of human mesenchymal stem cells from multipledonors and the implications for large scale bioprocess development. Biochemical Engineering Journal 108;14–23
  • Thomas J. Bartosh, Joni H. Yl stalo, Arezoo Mohammadipoor, Nikolay Bazhanov, Katie Coble, Kent Claypool, Ryang Hwa Lee, Hosoon Choi, Darwin J. Prockop. (2010). Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. PNAS. 13724-13729.
  • T. E. Robey, M. K. Saiget, H. Reinecke, and C. E. Murry. (2008). Systems approaches to preventing transplanted cell death in cardiac repair. Journal of Molecular and Cellular Cardiology. vol. 45, no. 4, pp. 567–581.
  • Su Mi Woo, Kyung Joo Seong, Sang Jin Oh, Hong Ju Park, Sun Hun Kim, Won Jae Kim, and Ji Yeon Jung. (2015). 17-Estradiol induces odontoblastic differentiation via activation of the c-Src/MAPK pathway in human dental pulp cells. Biochem. Cell Biol. 93: 587–595
  • Su Mi Woo, Kyung Joo Seong, Sang Jin Oh, Hong Ju Park, Sun Hun Kim, Won Jae Kim, Ji Yeon Jung. (2015). 17-Estradiol induces odontoblastic differentiation via activation of the c-Src/MAPK pathway in human dental pulp cells. Biochem. Cell Biol. 93: 587–595
  • Stanislav LUBAN, Zhan-Guo LI. (2010). Citrullinated peptide and its relevance to rheumatoid arthritis: an update. International Journal of Rheumatic Diseases 13: 284–287
  • Shoji Oka, Kyoko Oka, Xun Xu, Tomoyo Sasaki, Pablo Bringas Jr., Yang Chai. (2007). Cell autonomous requirement for TGF-b signaling during odontoblast differentiation and dentin matrix formation. Mechanisms of Development 124 409–415.
  • Shigeki Suzuki, Naoto Haruyama, Fusanori Nishimura, Ashok B. Kulkarni. (2012). Dentin Sialophosphoprotein and Dentin Matrix Protein-1: Two Highly Phosphorylated Proteins in Mineralized Tissues. Arch Oral Biol 57(9): 1165–1175.
  • Seher KARAG L, Aydan KANLI, Oytun PORTAKAL AK İN, Umut ARSLAN. (2009). Measurement and Comparison of Endogen 17β-Estradiol Levels in Healthy and Symptomatic Pulp Tissues with Irreversible Pulpitis. Hacettepe Diş Hekimliği Fak ltesi Dergisi 33: 2, 9-16.
  • Sedat Odabas , A. Eser El in , Y. Murat El in. (2014). Isolation and Characterization of Mesenchymal Stem Cells. Molecular Biology 1109.
  • Satoshi hirayama, Chiaki komine, Chitaka takahashi, Satoshi matsui, Kuyoshi matsushima. (2013). Effetcs of calcium carbonate on odontoblast differentiation and calcification ability of human dental pulp cells. Journal of Oral Tissue Engineering 11(2):123-134.
  • S. Suzuki, N. Haruyama, F. Nishimura, A.B. Kulkarni. (2012). Dentin Sialophosphoprotein and Dentin Matrix Protein-1: Two Highly Phosphorylated Proteins in Mineralized Tissues. Arch Oral Biol 57(9): 1165–1175.
  • S. Mikhael, N. Beeravolu, G.R. Chaudhry. (2016). Umbilical cord derivatives for intervertebral disc regeneration: advances and challenges. Cell Gene Therapy Insights 2(6) 629–634.
  • Priddle H, Grabowska A, Morris T, Clarke PA, McKenzie AJ, Sottile V, Denning C, Young L, Watson S. (2009). Bioluminescence imaging of human embryonic stem cells transplanted in vivo in murine and chick models. Cloning Stem Cells 11:259–267
  • Philippe B, Luc S, Valerie PB, et al. (2010). Culture and use of mesenchymal stromal cells in phase I and II clinical trials. Stem Cells Int. 503593
  • Peter Stanko,1 Ursula Altanerova,2 Jana Jakubechova,2 Vanda Repiska,3 and Cestmir Altaner. (2018). Dental Mesenchymal Stem/Stromal Cells and Their Exosomes. Stem Cells International 8973613.
  • Peter Stanko, Ursula Altanerova, Jana Jakubechova, Vanda Repiska, Cestmir Altaner. (2018). Dental Mesenchymal Stem/Stromal Cells and Their Exosomes. Stem Cells International 8973613;8.
  • Paula A. Baldi n, Myriam L. Velandia-Romero, Jaime E. Castellanos. (2018). Odontoblast-Like Cells Differentiated from Dental Pulp Stem Cells Retain Their Phenotype after Subcultivation. International Journal of Cell Biology 6853189;12.
  • Paul T. Sharpe. (2016). Dental mesenchymal stem cells. Development 143, 2273-2280.
  • Patil R, Kumar BM, Lee WJ, Jeon RH, Jang SJ, Lee YM et al. (2014). Multilineagepotential and proteomic profiling of human dental stem cells derived from a single donor. Experimental cell research 320(1):92-107.
  • Park, B.W. Kang, D.H. Kang, E.J. Byun, J.H. Lee, J.S. Maeng, G.H. Rho, G.J. (2012). Peripheral nerve regeneration using autologous porcine skin-derived mesenchymal stem cells. J. Tissue Eng. Regen. Med. 6, 113–124.
  • Park BW, Kang EJ, Byun JH, Son MG, Kim HJ, Hah YS et al. (2012). In vitro and in vivo osteogenesis of human mesenchymal stem cells derived from skin, bone marrow anddental follicle tissues. Differentiation; research in biological diversity 83(5):249-259.
  • Nobuaki Ozeki, Makio Mogi, Rie Kawai, Hideyuki Yamaguchi, Taiki Hiyama, Kazuhiko Nakata, Hiroshi Nakamura. (2013). Mouse-Induced Pluripotent Stem Cells Differentiate into Odontoblast-Like Cells with Induction of Altered Adhesive and Migratory Phenotype of Integrin. PLoS One. 8(11): e80026.
  • Nobuaki Ozeki, Makio Mogi, Hideyuki Yamaguchi, Taiki Hiyama, Rie Kawai, Naoko Hase, Kazuhiko Nakata, Hiroshi Nakamura, Randall H. Kramer. (2014). Differentiation of Human Skeletal Muscle Stem Cells into Odontoblasts Is Dependent on Induction of 1 Integrin Expression. THE JOURNAL OF BIOLOGICAL CHEMISTRY 289;20;14380–14391.
  • Nana Han, Yong Zheng, Ran Li, Xianyu Li, Mi Zhou, Yun Niu, Qi Zhang. (2013). -Catenin Enhances Odontoblastic Differentiation of Dental Pulp Cells through Activation of Runx2. PLoSONE 9(2): e88890.
  • Nakashima M. (2014). Mobilized dental pulp stem cells for pulp regeneration: initiation of clinical trial. J Endod 40:S26–32.
  • N. Beeravolu, I. Khan, C. McKee, S. Dinda, B. Thibodeau, G. Wilson, M. Perez-Cruet M, R. Bahado-Singh, G.R. Chaudhry. (2016). Isolation and comparative analysis of potential stem/progenitor cells from different regions of human umbilical cord. Stem Cell Res 16:696–711.
  • N. Beeravolu, C. McKee, A. Alamri, S. Mikhael, C. Brown, M. Perez-Cruet, G.R. Chaudhry. (2017). Isolation and characterization of mesenchymal stromal cells from human umbilical cord and fetal placenta. J. Vis. Exp. 3;(122).
  • Mohamadreza Baghaban Eslaminejad, Sima Bordbar, Hamid Nazarian. (2013). Odontogenic differentiation of dental pulpderived stem cells on tricalcium phosphate scaffolds. Journal of Dental Sciences 8;306e313.
  • Mohamadreza Baghaban Eslaminejad, Sima Bordbar, Hamid Nazarian. (2013). Odontogenic differentiation of dental pulp-derived stem cells on tricalcium phosphate scaffolds. Journal of Dental Sciences 306-313.
  • Michel Goldberg, Askok B. Kulkarni, Marian Young, Adele Boskey. (2011). Dentin: structure, composition and mineralization. Front Biosci 3:711–35.
  • Mary Clare Mc Corry, Jennifer L. Puetzer, Lawrence J. Bonassar. (2016). Characterization of mesenchymal stem cells and fibrochondrocytes in three-dimensional co-culture: analysis of cell shape, matrix production, and mechanical performance. McCorry et al. Stem Cell Research & Therapy 7;39.
  • Markus Thomas Rojewski, Barbara Maria Weber, Hubert Schrezenmeier. (2008). Phenotypic Characterization of Mesenchymal Stem Cells from Various Tissues. Transfus Med Hemother 35:168– 184.
  • Markus Thomas Rojewski, Barbara Maria Weber, Hubert Schrezenmeier. (2007). Phenotypic Characterization of Mesenchymal Stem Cells from Various Tissues. Transfus Med Hemother 35:168– 184.
  • M.F. Pittenger, A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, D.R. Marshak. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147.
  • M. Dominici, K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, Dj. Prockop, E. Horwitz. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells: The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315– 317.
  • M Nakashima, K Mizunuma, T Murakami. (2002). Induction of dental pulp stem cell differentiation into odontoblasts by electroporation-mediated gene delivery of growth/differentiation factor 11 (Gdf11). Gene Therapy volume 9, pages 814–818
  • Lundgren T, Linde A. (1997). Voltage-gated calcium channels and nonvoltage-gated calcium uptake pathways in the rat incisor odontoblast plasma membrane Calcif. Tissue Int. 60;79–85.
  • Liu XB, Chen H, Chen HQ, Zhu MF, Hu XY, Wang YP. (2012). Angiopoietin-1 preconditioning enhances survival and functional recovery of mesenchymal stem cell transplantation. J Zhejiang Univ Sci B 13(8):616–2310.1631
  • Ling Guo, Ying Zhou, Shan Wang, Yaojiong Wu. (2014). Epigenetic changes of mesenchymal stem cells in three-dimensional (3D) spheroids. J. Cell. Mol. Med. Vol 18, No 10, pp. 2009-2019.
  • Lijuan Guo, Jie Li, Xiang chen Qiao, Mei Yu, Wei Tang, Hang Wang, Weihua Guo, Weidong Tian. (2013). Comparison of Odontogenic Differentiation of Human Dental Follicle Cells and Human Dental Papilla Cells. PLoS ONE 8(4): e62332.
  • Leonard D. Shultz, Neal Goodwin, Fumihiko Ishikawa, Vishnu Hosur, Bonnie L. Lyons, Dale L. Greiner. (2015). Subcapsular transplantation of tissue in the kidney. Cold Spring Harb Protoc; (7): 737– 740.
  • Lee, D.H., Lim, B.S., Lee, Y.K., and Yang, H.C. (2006). Effects of hydrogen peroxide (H2O2) on alkaline phosphatase activity and matrix mineralization of odontoblast and osteoblast cell lines. Cell Biol. Toxicol. 22(1): 39–46.
  • Kawashima N. (2016). Odontoblasts: Specialized hard-tissue-forming cells in the dentin-pulp complex. Congenit Anom (Kyoto). 56(4):144-53.
  • Karthikeyan Narayanan, Sivakumar Gajjeraman, Amsaveni Ramachandran, Jianjun Hao, and Anne George. (2006). Dentin Matrix Protein 1 Regulates Dentin Sialophosphoprotein Gene Transcription during Early Odontoblast Differentiation. THE JOURNAL OF BIOLOGICAL CHEMISTRY 281;28;19064–19071.
  • K. Takahashi, S. Yamanaka. (2015). A developmental framework for induced pluripotency. Development 1;142(19):3274–3285.
  • Joo-Hyun Kim, Eun-Hyang Lee, Hye-jeong Park, Eui-Kyun Park, Tae-Geon Kwon, Hong-In Shin, Je-Yoel Cho. (2013). The Role of Lysyl Oxidase-like 2 in the Odontogenic Differentiation of Human Dental Pulp Stem Cells. Mol. Cells 35, 543-549
  • Jing-Wei Yang, Natalia de Isla, C line Huselstein, Marie-Nathalie Sarda-Kolopp, Na Li, Yin-Ping Li, Ou-Yang Jing-Ping, Jean-Fran ois Stoltz, Assia Eljaafari. (2006). Evaluation of human MSCs cell cycle, viability and differentiation in micromass culture. Biorheology 43;489–496
  • Jin R, Song G, Chai J, Gou X, Yuan G, Chen Z. (2018). Effects of concentrated growth factor on proliferation, migration, and differentiation of human dental pulp stem cells in vitro. J Tissue Eng 21;9:2041731418817505.
  • Jeon BG, Kang EJ, Kumar BM, Maeng GH, Ock SA, Kwack DO et al. (2011). Comparative analysis of telomere length, telomerase and reverse transcriptase activity inhuman dental stem cells. Cell transplantation 20(11-12):1693-1705.
  • J.A. Thomson, J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282:145–1147.
  • J. S. Berg, M. A. Goodell. (2007). An argument against a role for Oct4 in somatic stem cells. Cell Stem Cell 1(4): 359–360.
  • J. Itskovitz-Eldor, M. Schuldiner, D. Karsenti, A. Eden, O. Yanuka, M. Amit. (2010). Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med 88–95
  • Hye Jin Jin, Yun Kyung Bae, Miyeon Kim, Soon-Jae Kwon, Hong Bae Jeon, Soo Jin Choi, Seong Who Kim, Yoon Sun Yang, Wonil Oh, Jong Wook Chang. Comparative Analysis of Human Mesenchymal Stem Cells from Bone Marrow, Adipose Tissue, and Umbilical Cord Blood as Sources of Cell Therapy. Int. J. Mol. Sci. 14;17986-18001
  • Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR. (2009). Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2:198–210
  • Hase N, Ozeki N, Hiyama T, Yamaguchi H, Kawai R, Kondo A, Nakata K, Mogi M. (2015). Products of dentin matrix protein-1 degradation by interleukin-1β-induced matrix metalloproteinase-3 promote proliferation of odontoblastic cells. Biosci Trends 9(4):228-36.
  • H. Song, M.-J. Cha, B.-W. Song et al. (2010). Reactive oxygen species inhibit adhesion of mesenchymal stem cells implanted into ischemic myocardium via interference of focal adhesion complex. Stem Cells, vol. 28, no. 3, pp. 555–563,2.
  • Gronthos S, Mankani M, Brahim J, Robey G, Shi S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. PNAS. 97:13625–30.
  • Gronthos S, Brahim J, Fisher W, Cherman N, Boyde A, DenBesten P, et al. (2002) Stem cell properties of human dental pulp stem cells. J Dent Res. 81:533.
  • Gertow K, Przyborski S, Loring JF, Auerbach JM, Epifano O, Otonkoski T, Damjanov I. (2007). Isolation of human embryonic stem cell-derived teratomas for the assessment of pluripotency. Curr Protoc Stem Cell Biol Chapter 1:1B4.
  • Gay IC, Chen S, MacDougall M. (2007). Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod Craniofacial Res 10, 149–160
  • Gang Lei, Yan Yu, Yujiao Jiang, Sainan Wang, Ming Yan, Anthony J. Smith d, Gay Smith d, Paul R. Cooper d, Chunbo Tang, Guangdong Zhang, Jinhua Yu. (2013). Differentiation of BMMSCs into odontoblast-like cells induced by natural dentine matrix. archives of oral biology 58;862–870.
  • G.T.-J. Huang, S. Gronthos, S. Shi. (2009). Mesenchymal Stem Cells Derived from Dental Tissues vs. Those from Other Sources. J Dent Res 88(9):792-806.
  • G.T. Huang, S. Gronthos, S. Shi. (2009). Mesenchymal Stem Cells Derived from Dental Tissues vs. Those from Other Sources. J Dent Res 88(9):792-806.
  • Fuli Zhu, Bin Sun, Yan Wen, Zhe Wang, Renee Reijo Pera, Bertha Chen. (2014). A Modified Method for Implantation of Pluripotent Stem Cells Under the Rodent Kidney Capsule. Stem Cells Dev 1; 23(17): 2119–2125.
  • Elena Redondo-Castro, Catriona J. Cunningham, Jonjo Miller, Helena Brown, Stuart M. Allan, Emmanuel Pinteaux. (2018). Changes in the secretome of tri-dimensional spheroid-cultured human mesenchymal stem cells in vitro by interleukin-1 priming. Stem Cell Research & Therapy 9:11
  • Eggenhofer E, Benseler V, Kroemer A, Popp FC, Geissler EK, Schlitt HJ. (2012). Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol 3:297.6
  • Dean Whiting, Whasun Oh Chung, James D. Johnson, Avina Paranjpe. (2018). Characterization of the Cellular Responses of Dental Mesenchymal Stem Cells to the Immune System. J Endod 44(7):1126- 1131.
  • David Magne, Gilles Bluteau, Serena Lopez-Cazaux, Pierre Weiss, Paul Pilet, Helena H. Ritchie, Guy Daculsi, J r me Guicheux. (2007). Development of an odontoblast in vitro model to study dentin mineralization. Connect Tissue Res 45(2): 101–108.
  • D. Iejima, Y. Sumita, H. Kagami, Y. Ando, M. Ueda. (2007). Odontoblast marker gene expression is enhanced by a CC-chemokine family protein MIP-3α in human mesenchymal stem cells. archives of or albiology 52;924-931.
  • D. Baksh, L. Song, R. S. Tuan. (2004). Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J. Cell. Mol. Med.8;3;301-316.
  • Clifton O. Bingham, Malini Monib. (2013). Periodontal disease and rheumatoid arthritis: the evidence accumulates for complex pathobiologic interactions. Curr Opin Rheumatol 25(3):345–353.
  • Christina McKee, G. Rasul Chaudhry. (2017). Advances and challenges in stem cell culture. Colloids and Surfaces B: Biointerfaces 159;62–77.
  • Chi-Young Yun, Hwajung Choi, Young-Jae You, Jin-Young Yang, Jin-A Baek, Eui-Sic Cho. (2016). Requirement of Smad4-mediated signaling in odontoblast differentiation and dentin matrix formation. Anatomy & cell biology. 2093-3665
  • Cheng, N.C., Chen, S.Y., Li, J.R., and Young, T.H. (2013). Short-term spheroid formation enhances the regenerative capacity of adipose-derived stem cells by promoting stemness, angiogenesis, and chemotaxis. Stem Cells Transl Med 2, 584.
  • Chen, C.J. Ou, Y.C. Liao, S.L. Chen, W.Y. Chen, S.Y. Wu, C.W. Wang, C.C. Wang, W.Y. Huang, Y.S. Hsu, S.H. (2007). Transplantation of bone marrow stromal cells for peripheral nerve repair. Exp. Neurol. 204, 443–453.
  • C.P. Ng, A.R. Sharif, D.E. Heath, J.W. Chow, M.B. Chan-Park, J.K. Chan, L.G. Griffith. (2014). Enhanced ex vivo expansion of adult mesenchymal stem cells by fetal mesenchymal stem cell ECM. Biomaterials 35(13):4046-4057.
  • C. J. Lengner, F. D. Camargo, K. Hochedlinger, G.G. Welstead, S. Zaidi, S. Gokhale, H.R. Scholer, A. Tomilin, R. jaenisch. (2007). Oct4 expression is not required for mouse somatic stem cell selfrenewal. Cell Stem Cell 1(4): 403–415.
  • Bjarke Follin, Morten Juh, Smadar Cohen, Anders Elm Perdersen, Jens Kastrup, Annette Ekblond. (2016). Increased Paracrine Immunomodulatory Potential of Mesenchymal Stromal Cells in Three- Dimensional Culture. TISSUE ENGINEERING: Part B 22;4.
  • Bharti D, Shivakumar SB, Park JK, Ullah I, Subbarao RB, Park JS, Lee SL, Park BW, Rho GJ. (2017). Comparative analysis of human Wharton's jelly mesenchymal stem cells derived from different parts of the same umbilical cord. Cell Tissue Res. ;372(1):51-65.
  • Belame Shivakumar S, Bharti D, Baregundi Subbarao R, Park JM, Son YB, Ullah I, Choe YH, Lee HJ, Park BW, Lee SL, Rho GJ. (2018). Pancreatic endocrine-like cells differentiated from human umbilical cords Wharton's jelly mesenchymal stem cells using small molecules. J Cell Physiol ;234(4):3933-3947.
  • Batouli S, Miura M, Brahim J, Tsutsui TW, Fisher LW, Gronthos S, et al. (2003). Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res. ;82:976–81.
  • Ashraf Abd-Elmeguid, Donald C. Yu. (2009). Dental Pulp Neurophysiology: Part 1. Clinical and Diagnostic Implications. JCDA 75;1.
  • Ana Teresa Amaral, Maria Cristina Manara, Dagmar Berghuis, Jose Luis Ordo n˜ ez, Michele Biscuola, Maria Angeles Lopez-Garc, Daniel Osuna, Enrico Lucarelli, Francesco Alviano, Arjan Lankester, Katia Scotlandi, Enrique de A lava. (2013). Characterization of Human Mesenchymal Stem Cells from Ewing Sarcoma Patients. Pathogenetic Implications. PLoS ONE 9(2): e85814
  • Amalia Raptopoulou, Prodromos Sidiropoulos, Maria Katsouraki, Dimitrios T. Boumpas. (2007). ANTI-CITRULLINE ANTIBODIES IN THE DIAGNOSIS AND PROGNOSIS OF RHEUMATOID ARTHRITIS: Evolving Concepts. Critical Reviews in Clinical Laboratory Sciences, 44(4):339–363.
  • Alleman M, Low E, Truong K, Huang E, Hill C.K, Chen T.Y, Deaton M, Kingsley K. (2013). Dental pulp-derived stem cells (DPSC) differentiation in vitro into odontoblast and neuronal progenitors during cell passaging is associated with alterations in cell survival and viability. International Journal of Medicine and Biomedical Research 2;2.
  • Ali Reza Navabazam, Fatemeh Sadeghian Nodoshan, Mohammad Hasan Sheikhha, Sayyed Mohsen Miresmaeili, Mehrdad Soleimani, Farzaneh Fesahat. (2013). Characterization of mesenchymal stem cells from human dental pulp, preapical follicle and periodontal ligament. Iran J Reprod Med 11;3:235- 242.
  • Akihiro Hosoya, Hiroaki Nakamura. (2015). Ability of stem and progenitor cells in the dental pulp to form hard tissue. Japanese Dental Science Review 51;75-83.
  • Achille V, Mantelli M, Arrigo G, Novara F, Avanzini MA, Bernardo ME, Zuffardi O, Barosi G, Zecca M, Maccario R. Cell-cycle phases and genetic profile of bone marrow-derived mesenchymal stromal cells expanded in vitro from healthy donors. J Cell Biochem 112(7):1817-21.
  • ANDERS LINDE. (1994). Dentin Mineralization and the Role of Odontoblasts in Calcium Transport. Connective Tissue Research 33;163-170;1485-4921
  • A. C. Tsai, Y. Liu, X. Yuan, and T. Ma. (2015). Compaction, fusion, and functional activation of three-dimensional human mesenchymal stem cell aggregate. Tissue Engineering A.
  • A. Abd-Elmeguid, D.C. Yu. (2009). Dental Pulp Neurophysiology: Part 1. Clinical and Diagnostic Implications. J Can Dent Assoc 75(1): 55-59.