박사

Pulmonary toxicological effects and action mechanism of copper oxide nanoparticles in mice = 산화구리 나노입자의 호흡기 독성영향과 작용기전 연구

고제원 2019년
논문상세정보
' Pulmonary toxicological effects and action mechanism of copper oxide nanoparticles in mice = 산화구리 나노입자의 호흡기 독성영향과 작용기전 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 축산
  • Copper oxide nanoparticles
  • Fibrosis
  • Inflammation
  • Pulmonary toxicity
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,611 0

0.0%

' Pulmonary toxicological effects and action mechanism of copper oxide nanoparticles in mice = 산화구리 나노입자의 호흡기 독성영향과 작용기전 연구' 의 참고문헌

  • ten Dijke P, Hill CS. 2004. New insights into TGF-β–Smad signalling. Trends Biochem Sci 29(5):265–273.
  • Zhang L, Bai R, Liu Y, Meng L, Li B, Wang L, Xu L, Guyader LL, Chen C. 2012. The dose-dependent toxicological effects and potential perturbation on the neurotransmitter secretion in brain following intranasal instillation of copper nanoparticles. Nanotoxicology 6(5):562–575.
  • Zhang J, Zou Z, Wang B, Xu G, Wu Q, Zhang Y, Yuan Z, Yang X, Yu C. 2018b. Lysosomal deposition of copper oxide nanoparticles triggers HUVEC cells death. Biomaterials 161:228–239.
  • Zhang J, Wang B, Wang H, He H, Wu Q, Qin X, Yang X, Chen L, Xu G, Yuan Z, Yi Q, Zou Z, Yu C. 2018c. Disruption of the superoxide anions-mitophagy regulation axis mediates copper oxide nanoparticles-induced vascular endothelial cell death. Free Radic Biol Med 129:268–278.
  • Zhang H, Wu X, Mehmood K, Chang Z, Li K, Jiang X, Nabi F, Ijaz M, Rehman MU, Javed MT, Zhou D. 2017. Intestinal epithelial cell injury induced by copper containing nanoparticles in piglets. Environ Toxicol Pharmacol 56:151–156.
  • Zhang H, Chang Z, Mehmood K, Abbas RZ, Nabi F, Rehman MU, Wu X, Tian X, Yuan X, Li Z, Zhou D. 2018a. Nano Copper Induces Apoptosis in PK-15 Cells via a Mitochondria-Mediated Pathway. Biol Trace Elem Res 181(1):62–70.
  • Yuan L, Wang Y, Wang J, Xiao H, Liu X. 2014. Additive effect of zinc oxide nanoparticles and isoori entin on apoptosis in human hepatoma cell line. Toxicol Lett 225:294–304.
  • Yang J, Hu S, Rao M, Hu L, Lei H, Wu Y, Wang Y, Ke D, Xia W, Zhu CH. 2017. Copper nanoparticle-induced ovarian injury, follicular atresia, apoptosis, and gene expression alterations in female rats. Int J Nanomed 12:5959–5971.
  • Yadav T, Mungray AA, Mungray AK. 2014. Fabricated nanoparticles: current status and potential phytotoxic threats. Rev Environ Contam Toxicol 230:83–110.
  • Xu M, Zhao Y, Feng M. 2012. Polyaspartamide derivative nanoparticles with tunable surface charge achieve highly efficient cellular uptake and low cytotoxicity. Langmuir 28:11310–11318.
  • Xu M, Tang H, Zhou X, Chen H, Dong Q, Zhang Y, Ye G, Shi F, Lv C, Jing B, He C, Zhao L, Li Y. 2018. Effects and mechanisms of sub-chronic exposure to copper nanoparticles on renal cytochrome P450 enzymes in rats. Environ Toxicol Pharmacol 63:135–146.
  • Xiong TT, Dumat C, Dappe V, Vezin H, Schreck E, Shahid M, Pierart A, Sobanska S. 2017. Copper Oxide Nanoparticle Foliar Uptake, Phytotoxicity, and Consequences for Sustainable Urban Agriculture. Environ Sci Technol 51(9):5242–5251.
  • Winterbourn CC. 2008. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4(5):278–286.
  • Winterbourn C. 2008. Reconciling the chemistry and biology of reactive oxyten species. Nat Chem Biol 4:278–286.
  • Welte T, Groneberg DA. 2006. Asthma and COPD. Exp Toxicol Pathol 2: 35–40.
  • Wang Z, Li N, Zhao J, White JC, Qu P, Xing B. 2012. CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chem Res Toxicol 25(7):1512–1521.
  • Wang P, Nie X, Wang Y, Li Y, Ge C, Zhang L, Wang L, Bai R, Chen Z, Zhao Y, Chen C. 2013. Multiwall carbon nanotubes mediate macrophage activation and promote pulmonary fibrosis through TGF-β/Smad signaling pathway. Small 9 (22):3799–3811.
  • Wang IJ, Wu CY, Hu FR. 2007. Effect of proinflammatory cytokines on the human MUC5AC promoter activity in vitro and in vivo. Clin Ophthalmol 1:71–77.
  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella Jr MF, Rejeski D, Hull MS. 2015. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J Nanothechnol 6:1769–1780.
  • Tumer J, Jones CE. 2009. Regulation of mucin expression in respiratory disease. Biochem Soc Trans 37:877–881.
  • Tsagkaris AS, Tzegkas SG, Danezis GP. 2018. Nanomaterials in food packaging: state of the art and analysis. J Food Sci Technol 55(8):2862–2870.
  • Tiede K, Hasselly M, Breitbarth E, Chaudhry Q, Boxall ABA. 2009. Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J Chromatogr Part A 1216:503–509.
  • Tiede K, Hanssen SF, Westerhoff P, Fern GJ, Hankin SM, Aitken RJ, Chaudhry Q, Boxall ABA. 2015. How important is drinking water exposure for the risks of engineered nanoparticles to consumers? Nanotoxicology 10(1):102–110.
  • Tachdjian R, Mathias C, Al Khatib S, Bryce PJ, Kim HS, Blaeser F, O’Connor BD, Rzymkiewicz D, Chen A, Holtzman MJ, Hershey GK, Garn H, Harb H, Renz H, Oettgen HC, Chatila TA. 2009. Pathogenicity of a disease-associated human IL-4 receptor allele in experimental asthma. J Exp Med 206:2191–2204.
  • Song Y, Li X, Du X. 2009. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J 34(3):559–567.
  • Song Y, Li X, Du X, 2009. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J 34:559–567.
  • Song KS, Lee WJ, Chung KC, Koo JS, Yang EJ, Choi JY, Yoon JH. 2003. Interleukin-1 beta and tumor necrosis factor-alpha induce MUC5AC overexpression through a mechanism involving ERK/p38 mitogen-activated protein kinases-MSK1-CREB activation in human airway epithelial cells. J Biol Chem 278:23243–23250.
  • Singh D, Kane B, Molfino NA, Faggioni R, Roskos L, Woodcock A. 2010. A phase 1 study evaluating the pharmacokinetics, safety and tolerability of repeat dosing with a human IL-13 antibody (CAT-354) in subjects with asthma. BMC Pulm Med 10:3. Doi: 10.1186/1471-2466-10-3.
  • Siddiqui MA, Alhadlaq HA, Ahmed J, Al-khedhairy AA, Musarrat J, Ahamed M. 2013. Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLoS ONE 8(8): e69534. Doi: 10.1371/journal.pone.0069534.
  • Shin IS, Shin NR, Park JW, Jeon CM, Hong JM, Kwon OK, Kim JS, Lee IC, Kim JC, Oh SR, Ahn KS. 2015. Melatonin attenuates neutrophil inflammation and mucus secretion in cigarette smoke-induced chronic obstructive pulmonary diseases via the suppression of Erk-Sp1 signaling. J Pineal Res 58(1):50–60.
  • Shin IS, Shin NR, Park JW, Jeon CM, Hong HM, Kwon OK, Kim JS, Lee IC, Kim JC, Oh SR, Ahn KS. 2015. Melatonin attenuates neutrophil inflammation and mucus secretion in cigarette smoke-induced chronic obstructive pulmonary diseases via the suppression of Erk-Sp1 signaling. J Pineal Res 58:50–60.
  • Shin IS, Park JW, Shin NR, Jeon CM, Kwon OK, Kim JS, Kim JC, Oh SR, Ahn KS. 2014. Melatonin reduces airway inflammation in ovalbumin-induced asthma. Immunobiology 219:901–908.
  • Shi Y, Massagu J. 2003. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700.
  • Shao MX, Nakanaga T, Nadel JA. 2004. Cigarette smoke induces MUC5AC mucin overproduction via tumor necrosis factor-alphaconverting enzyme in human airway epithelial (NCI-H292) cells. Am J Physiol Lung Cell Mol Physiol 287:L420– L427.
  • Sava F, MacNutt MJ, Carlsten CR. 2013. Nasal neurogenic inflammation markers increase after diesel exhaust inhalation in individuals with asthma. Am J Respir Crit Care Med 188:759–760.
  • Sanchez F, Sobole K. 2010. Nanotechnology in concrete – A review. Constr Build Mater 24(11):2060–2071.
  • Profita M, Sala A, Bonanno A, Riccobono L, Ferraro M, La Grutta S, Albano GD, Montalbano AM, Gjomarkaj M. 2010. Chronic obstructive pulmonary disease and neutrophil infiltration: role of cigarette smoke and cyclooxygenase products. Am J Physiol Lung Cell Mol Physiol 298:L262– L269.
  • Prasad M, Lambe UP, Brar B, Shah I, J M, Ranjan K, Rao R, Kumar S, Mahant S, Khurana SK, Iqbal HMN, Dhama K, Misri J, Prasad G. 2018. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother 97:1521–1537.
  • Possa SS, Leick EA, Prado CM, Martins MA, Tiberio IF. 2013. Eosinophilic inflammation in allergic asthma. Front Pharmacol 4:46. Doi: 10.3389/fphar.2013.00046.
  • Piret JP, Jacques D, Audinot JN, Mejia J, Boilan E, Noel F, Fransolet M, Demazy C, Lucas S, Saout C, Toussaint O. 2012. Copper (II) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response. Nanoscale 4:7168–7184.
  • Piret JP, Jacques D, Audinot JN, Mejia J, Boilan E, No l F, Fransolet M, Demazy C, Lucas S, Saout C, Toussaint O. 2012. Copper(II) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response. Nanoscale 4(22):7168–7184.
  • Pelaia G, Cuda G, Vatrella A, Gallelli L, Caraglia M, Marra M, Abbruzzese A, Caputi M, Maselli R, Costanzo FS, Marsico SA. 2005. Mitogen-activated protein kinases and asthma. J Cell Physiol 202:642–653.
  • Pauluhn J. 2009. Pulmonary toxicity and fate of agglomerated 10 and 40 nm aluminium oxyhydroxides following 4-week inhalation exposure of rats: toxic effects are determined by agglomerated, not primary particle size. Toxicol Sci 109:152–167.
  • Park MVDZ, Neigh AM, Vermeulen JP, Fonteyne LJJ, Verharen HW, Briede JJ, Loveren HV, Jong WH. 2011. The effect of particle size on the cytotoxicity, inflammation, developemental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32:9810–9817.
  • Park JW, Lee IC, Shin NR, Jeon CM, Kwon OK, Ko JW, Kim JC, Oh SR, Shin IS, Ahn KS. 2016. Copper oxide nanoparticles aggravate airway inflammation and mucus production in asthmatic mice via MAPK signaling. Nanotoxicology 10(4):445–452.
  • Park JH, Yoon J, Lee KY, Park B. 2015. Effects of geniposide on hepatocytes undergoing epithelial-mesenchymal transition in hepatic fibrosis by targeting TGFβ/Smad and ERK-MAPK signaling pathways. Biochimie 113: 26-34.
  • Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K. 2010. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmcol 30(2):162–168.
  • Pacurari M, Yin XJ, Zhao J, Ding M, Leonard SS, Schwegler-Berry D, Ducatman BS, Sbarra D, Hoover MD, Castranova V, Vallyathan V. 2008. Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-κB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspecti 116:1211–1217.
  • Oberd rster G, Utell MJ. 2002. Ultrafine particles in the urban air: to the respira-tory tract—and beyond? Environ Health Perspect 110:A440–A441.
  • Oberd rster G, Utell MJ. 2002. Ultrafine particles in the urban air: To the respiratory tract-and beyond? Environ Health Perspect 110(8):A440–A441.
  • O'Brien N, Cummins E. 2008. Recent Developments in Nanotechnology and Risk Assessment Strategies for Addressing Public and Environmental Health Concerns. Hum Ecol Risk Assess 14(3):568–592.
  • Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ. 2012. Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31: 50–59.
  • Nel A., Xia T., Madler L. & Li N. 2006. Toxic potential of material satthenano level. Science 311, 622– 627.
  • Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, Zhang H. 2013. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res 46:607–621.
  • Mwaanga P, Carraway ER, van den Hurk P. 2014. The induction of biochemical changes in Daphnia magna by CuO and ZnO nanoparticles. Aquat Toxicol 150:201–209.
  • Mortimer M, Kasemets K, Kahru A. 2010. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa tetrahymena thermophila. Toxicology 269(2–3):182–189.
  • Mortimer M, Kasemets K, Kahru A. 2010. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 269:182–189.
  • Moolgavkar SH, Brown RC, Turim J. 2001. Biopersistence, fiber length, and cancer risk assessment for inhaled fibers. Inhal Toxicol 13(9):755–777.
  • Meng H, Chen Z, Xing G, Yuan H, Chen C, Zhao F, Zhang C, Zhao Y. 2007. Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. Toxicol Lett 175(1):102–110.
  • Mazzola L. 2003. Commercializing nanotechnology. Nat Biotechnol 21(10):1137–1143.
  • Maynard AD, Warheit DB, Philbert MA. 2011. The New Toxicology of Sophisticated Materials: Nanotoxicology and Beyond. Toxicol Sci 120:S109–S129.
  • Mantecca P, Kasemets K, Deokar A, Perelshtein I, Gedanken A, Bahk YK, Kianfar B, Wang J. 2017. Airborne nanoparticle release and toxicological risk from metal oxide-coated textiles: toward a multi-scale safe-by-design approach. Environ Sci Technol 51:9305–9317.
  • Manna P, Ghosh M, Ghosh J, Das J, Sil PC. 2012. Contribution of nano-copper particles to in vivo liver dysfunction and cellular damage: Role of IκBα/NF-κB, MAPKs and mitochondrial signal. Nanotoxicology 6(1):1–21.
  • Ma JY, Mercer RR, Barger M, Schwegler-Berry D, Scabilloni J, Ma JK, Castranova V. 2012. Induction of pulmonary fibrosis by cerium oxide nanoparticles. Toxicol Appl Pharmacol 262(3):255–264.
  • Lu X, Zhu T, Chen C, Liu Y. 2014. Right or Left: The role of nanoparticles in pulmonary diseases. Int J Mol Sci 15(10):17577–17600.
  • Lohani A, Verma A. 2017. Vesicles: Potential nano carriers for the delivery of skin cosmetics. J Cosmet Laser Ther 19(8):485–493.
  • Liu W, Liang Q, Balzar S, Wenzel S, Gorska M, Alam R. 2008. Cellspecific activation profile of extracellular signal-regulated kinase 1/2, Jun N-terminal kinase, and p38 mitogen-activated protein kinases in asthmatic airways. J Allergy Clin Immunol 121:893–902.
  • Li X, Sun W, An L. 2018. Nano-CuO impairs spatial cognition associated with inhibiting hippocampal long-term potentiation via affecting glutamatergic neurotransmission in rats. Toxicol Ind Health 34(6):409–421.
  • Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A. 2003. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111(4):455–460.
  • Li JJ, Muralikrishnan S, Ng CT, Yung LYL, Bay BH. 2010. Nanoparticle-induced pulmonary toxicity. Exp Biol Med 235:1025–1033.
  • Li JJ, Muralikrishnan S, Ng CT, Yung LYL, Bay BH. 2010. Nanoparticle-induced pulmonary toxicity. Exp Biol Med 235(9):1025–1033.
  • Lei RH, Wu CQ, Yang BH, Ma HZ, Shi C, Wang QJ, Wang QX, Yuan Y, Liao MY. 2008. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: A rapid in vivo screening method for nanotoxicity. Toxicol Appl Pharm 232(2):292–301.
  • Lee MY, Seo CS, Lee JA, Lee NH, Kim JH, Ha H, Zheng MS, Son JK, Shin HK. 2011. Antiasthmatic effects of angelica dahurica against ovalbumin-induced airway inflammation via upregulation of heme oxygenase-1. Food Chem Toxicol 49:829–837.
  • Lee IC, Ko JW, Lee SM, Kim SH, Shin IS, Moon OS, Yoon WK, Kim HC, Kim JC. 2015. Time-course and molecular mechanism of hepatotoxicity induced by1,3-dichloro-2-propanol in rats. Environ Toxicol Pharmacol 40:191–198.
  • Lee GB, Brandt EB, Xiao C, Gibson AM, Le Cras TD, Brown LA, Fitzpatrick AM, Khurana Hershey GK. 2013. Diesel exhaust particles induce cysteine oxidation and sglutathionylation in house dust mite induced murine asthma. PLoS One 8:e60632. Doi: 10.1371/journal.pone.0060632.
  • Lam C, James J, McCluskey R, Hunter R. 2003. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134.
  • Lai X, Zhao H, Zhang Y, Guo K, Xu Y, Chen S, Zhang J. 2018. Intranasal Delivery of Copper Oxide Nanoparticles Induces Pulmonary Toxicity and Fibrosis in C57BL/6 mice. Sci Rep 8(1):4499. Doi: 10.1038/s41598-018-22556-7.
  • Lai H, Rogers DF. 2010. New pharmacotherapy for airway mucus hypersecretion in asthma and COPD: targeting intracellular signaling pathways. J Aerosol Med Pulm Drug Delivery 23:219–231.
  • Kumar R, Nagesha DK. 2013. Size-dependent study of pulmonary responses to nano-sized iron and copper oxide nanoparticles. Methods Mol Biol 1028:247–264.
  • Kooter IM, Gr€ollers-Mulderij M, Duistermaat E, Kuper F, Schoen ED. 2017. Factors of concern in a human 3D cellular airway model exposed to aerosols of nanoparticle. Toxicol In Vitro 44:339–348.
  • Kim SR, Lee KS, Park SJ, Jeon MS, Lee YC. 2012. Inhibition of p38 MAPK reduce expression of vascular endothelial growth factor in allergic airway disease. J Clin Immunol 32:574–586.
  • Karlsson HL, Cronhom P, Gustafsson J, Moller L. 2008. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732.
  • Kalaiselvi P, Rajashree K, Poornima P, Huang CY, Padma VV. 2015. Eicosapentaenoic acid prevents TCDD‐induced oxidative stress and inflammatory response by modulating MAP kinases and redox‐sensitive transcription factors. Br J Pharmacol 172(19):4726–4740.
  • Kahru A, Ivask A. 2013. Mapping the dawn of nanoecotoxicological research. Acc Chem Res 46:823–833.
  • Juganson K, Ivask A, Blinova I, Mortimer M, Kahru A. 2015. NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials. Beilstein J Nanotechnol 6:1788–1804.
  • Jeong J, Kim J, Seok SH, Cho WS. 2015. Indium oxide (In2O3) nanoparticles induce progressive lung injury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoprticles. Arch Toxicol 90(4):817–828.
  • Ivask A, Juganson K, Bondarenko O, Mortimer M, Aruoja V, Kasemets K, Blinova I, Heinlaan M, Slaveykova V, Kahru A. 2014. Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: A comparative review. Nanotoxicology 8(suppl 1):57–71.
  • Isama K. 2014. In vitro safety of nanomaterials—cellular response to metal oxide nanoparticles. Yakugaku Zasshi 134:731–735.
  • Hwang TL, Aljuffali IA, Hung CF, Chen CH, Fang JY. 2015. The impact of cationic solid lipid nanoparticles on human neutrophil activation and formation of neutrophil extracellular traps (NETs). Chem Biol Interact 235:106–114.
  • Huang KT, Wu CT, Huang KH, Lin WC, Chen CM, Guan SS, Chiang CK, Liu SH. 2015. Titanium nanoparticle inhalation induces renal fibrosis in mice via an oxidative stress upregulated transforming growth factor-β Pathway. Chem Res Toxicol 28(3):354–364.
  • Hu W, Culloty S, Darmody G, Lynch S, Davenport J, Ramirez-Garcia S, Dawson KA, Lynch I, Blasco J, Sheehan D. 2014. Toxicity of copper oxide nanoparticles in the blue mussel, Mytilus edulis: a redox proteomic investigation. Chemosphere 108: 289–299.
  • Hsin YH, Chena CF, Huang S, Shih TS, Lai PS, Cheuh PJ. 2008. The apoptotic effect of nanosilver is mediated by a ROS and JNKdependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179:130–139.
  • Holsapple MP, Farland WH, Landry TD, Monteiro-Riveiere NA, Carter JM, Walker NJ, Thomas KV. 2005. Research Strategies for Safety Evaluation of Nanomaterials, Part II: Toxicological and Safety Evaluation of Nanomaterials, Current Challenges and Data Needs. Toxicol Sci 88(1):12–17.
  • Holgate ST. 2008. The airway epithelium is central to the pathogenesis of asthma. Allergol Int 57:1–10.
  • Hoet PHM, Bruske-Hohlfeld I, Salata OV. 2004. Nanoparticles–known and unknown health risks. J Nanobiotechnol 2(1):12. Doi: 10.1186/1477-3155-2-12.
  • Hodes G. 2007. When small is different: some recent advances in concepts and applications of nanoscale phenomena. Adv Mater 19(10):639–655.
  • Hirano T. 2010. Interleukin 6 in autoimmune and inflammatory diseases: a personal memoir. Proc Jpn Acad Ser B: Phys Biol Sci 86:717–730.
  • Hewson CA, Edbrooke MR, Johnston SL. 2004. PMA induces the MUC5AC respiratory mucin in human bronchial epithelial cells, via PKC, EGF/TGF-alpha, Ras/Raf, MEK, ERK and Sp1-dependent mechanism. J Mol Biol 344:683–695.
  • Heussen C, Dowdel EB. 1980. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrate. Anal Biochem 102:196–202.
  • Hashimoto A, Tanaka M, Takeda S, Ito H, Nagano K. 2015. Cilostazol induces PGI2 production via activation of the downstream Epac-1/Rap1 signaling cascade to increase intracellular calcium by PLC and to activate p44/42 MAPK in human aortic endothelial cells. PLoS ONE 10(7):e0132835. Doi: 10.1371/journal.pone.0132835.
  • Hansbro PM, Kaiko GE, Foster PS. 2011. Cytokine/anticytokines therapy - novel treatments for asthma. Brit J Pharmacol 163:81–95.
  • Hannon JC, Kerry JP, Cruz-Romero M, Azlin-Hasim S, Morris M, Cummins E. 2016. Human exposure assessment of silver and copper migrating from an antimicrobial nanocoated packaging material into an acidic food simulant. Food Chem Toxicol 95:128–136.
  • Han S, Liu Y, Nie X, Xu Q, Jiao F, Li W, Zhao Y, Wu Y, Chen C. 2012. Efficient delivery of antitumor drug to the nuclei of tumor cells by amphiphilic biodegradable poly(L-aspartic acid-co-lactic acid)/DPPE co-polymer nanoparticles. Small 8(10):1596–1606.
  • H gsberg T, Saunte DM, Frimodt-M ller N, Serup J. 2013. Microbial status and product labelling of 58 original tattoo inks. J Eur Acad Dermatol Venereol 27:73–80.
  • Grommes J, Soehnlein O. 2011. Contribution of neutrophils to acute lung injury. Mol Med 17:293–307.
  • Gosens I, Cassee FR, Zanella M, Manodori L, Brunelli A, Costa AL, Bokkers BGH, de Jong WH, Brown D, Hristozov D, Stone V. 2016. Organ burden and pulmonary toxicity of nano-sized copper (II) oxide particles after short-term inhalation exposure. Nanotoxicology 10(8):1084–1895.
  • Gosens I, Cassee FR, Zanella M, Manodori L, Brunelli A, Costa AL, Bokkers BGH, de Jong WH, Brown D, Hristozov D, Stone V. 2016. Organ burden and pulmonary toxicity of nano-sized copper (II) oxide particles after short-term inhalation exposure. Nanotoxicology 10(8):1084–1095.
  • Goncalves DM, Girard D. 2011. Titanium dioxide (TiO2) nanoparticles induce neutrophil influx and local production of several pro-inflammatory mediators in vivo. Int Immunopharmacol 11:1109–1115.
  • Gipson IK. 2004. Distribution of mucins at the ocular surface. Exp Eye Res 78:379–388.
  • Gebel T, Foth H, Damm G, Freyberger A, Kramer PJ, Lilienblum W, R hl C, Schupp T, Weiss C, Wollin KM, Hengstler JG. 2014. Manufactured nanomaterials: categorization and approaches to hazard assessment. Arch Toxicol 88:2191–2211.
  • Gatoo MA, Naseem S, Arfat MY, Dar AM, Qasim K, Zubair S. 2014. Physicochemical Properties of Nanomaterials: Implication in Associated Toxic Manifestations. BioMed Res Int 2014:498420. Doi: 10.1155/2014/498420.
  • Fahmy B, Cornier SA. 2009. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro 23(7):1365–1371.
  • Fahmy B, Cormier SA. 2009. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro 23(7):1365–1371.
  • Enss ML, Cornberg M, Wagner S, Gebert A, Henrichs M, Eisenblatter R, Beil W, Kownatzki R, Hedrich HJ. 2000. Proinflammatory cytokines trigger MUC gene expression and mucin release in the intestinal cancer cell line LS180. Inflamm Res 49:162–169.
  • Elsaesser A, Howard CV. 2012. Toxicology of nanoparticles. Adv Drug Delivery Rev 64:129–137.
  • Elsaesser A, Howard CV. 2012. Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–137.
  • Elsaesser A, Howard CV. 2012. Toxicology of nanoparticles. Adv Drug Deliv Rev 64(2):129–137.
  • Ebrahimnia-Bajestan E, Niazmand H, Duangthongsuk W, Wongwises S. 2011. Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime. Int J Heat Mass Transf 54(19–20):4376–4388.
  • Donaldson K, Poland CA. 2012. Inhaled nanoparticles and lung cancer—what we can learn from conventional particle toxicology. Swiss Med Wkly 142:w13547. Doi: 10.4414/smw.2012.13547.
  • Conte E, Iemmolo M, Fruciano M, Fagone E, Gili E, Genovese T, Esposito E, Cuzzocrea S, Vancheri C. 2015. Effects of thymosin β4 and its N-terminal fragment Ac-SDKP on TGF-β-treated human lung fibroblasts and in the mouse model of bleomycin-induced lung fibrosis. Expert Opin Biol Ther 15(suppl 1):S211–S221.
  • Civardi C, Schlagenhauf L, Kaiser JP, Hirsch C, Mucchino C, Wichser A, Wick P, Schwarze FWMR. 2016. Release of copper-amended particles from micronized copper-pressure-treated wood during mechanical abrasion. J Nanobiotechnology 14(1):77. Doi: 10.1186/s12951-016-0232-7.
  • Cho WS, Duffin R, Poland CA, Howie SE, MacNee W, Bradley M, Megson IL, Donaldson K. 2010. Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health Perspect 118(12):1699–1706.
  • Cho WS, Duffin R, Poland CA, Howie SE, MacNee W, Bradley M, Megson IL, Donaldson K. 2010. Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health 118(12):1699–1706.
  • Cho WS, Duffin R, Poland CA, Duschl A, Oostingh GJ, Macnee W, Bradley M, Megson IL, Donaldson K. 2012. Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lung. Nanotoxicology 6:22–35.
  • Chen Z, Meng H, Xing GM, Chen CY, Zhao YL, Jia G, Wang TC, Yuan H, Ye C, Zhao F, Chai ZF, Zhu CF, Fang XH, Ma BC, Wan LJ. 2006. Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163(2):109–120.
  • Chau CF, Wu SH, Yen GC. 2007. The development of regulations for food nanotechnology. Trends Food Sci Technol 18(5):269–280.
  • Casalino-Matsuda SM, Monzon ME, Forteza RM. 2006. Epithermal growth factor receptor activation by epithermal growth factor mediates oxidant-induced goblet cell metaplasia in human airway epithelium. Am J Respir Cell Mol Biol 34:581–591.
  • Casalino-Matsuda SM, Monzon ME, Forteza RM. 2006. Epidermal growth factor receptor activation by epidermal growth factor mediates oxidant-induced goblet cell metaplasia in human airway epithelium. Am J Respir Cell Mol Biol 34:581–591.
  • Busse PJ, Zhang TF, Srivastava K, Lin BP, Schofield B, Sealfon SC, Li XM. 2005. Chronic exposure to TNF-alpha increases airway mucus gene expression in vivo. J Allergy Clin Immunol 116:1256–1263.
  • Bordea C, Latifaj B, Jaffe W. 2009. Delayed presentation of tattoo lymphadenopathy mimicking malignant melanoma lymphadenopathy. J Plast Reconstr Aesthet Surg 62:e283–e285.
  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. 2013.Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200.
  • Baek M, Chung HE, Yu J, Lee JA, Kim TH, Oh JM, Lee WJ, Paek SM, Lee JK, Jeong J, Choy JH, Choi SJ. 2012. Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. Int J Nanomed 7:3081–3097.
  • Atherton HC, Jones G, Danahay H. 2003. IL-13-induced changes in the goblet cell density of human bronchial epithelial cell cultures: MAP kinase and phosphatidylinositol 3-kinase regulation. Am J Physiol Lung Cell Mol Physiol 285:L730– L739.
  • Assadian E, Zarei MH, Gilani AG, Farshin M, Degampanah H, Pourahmad J. 2018. Toxicity of Copper Oxide (CuO) Nanoparticles on Human Blood Lymphocytes. Biol Trace Elem Res 184(2):350–357.
  • Anik U, Cubukcu M, Yavuz Y. 2013. Nanomaterial-based composite biosensor forglucose detection in alcoholic beverages. Artif Cells Nanomed B 41:8–12.
  • Anik U, Cubukcu M, Yavuz Y. 2013. Nanomaterial-based composite biosensor for glucose detection in alcoholic beverages. Artif Cells Nanomed Biotechnol 41(1):8–12.
  • Almeida JP, Chen AL, Foster A, Drezek R. 2011. In vivo biodistribution of nanoparticles. Nanomedicine 6:815–835.
  • Alam R, Gorska MM. 2011. Mitogen-activated protein kinase signaling and ERK1/2 bistability in asthma. Clin Exp Allergy 41:149–159.
  • Ahamed M, Akhtar MJ, Alhadlaq HA, Alrokayan SA. 2015. Assessment of the lung toxicity of copper oxide nanoparticles: current status. Nanomedicine 10:2365–2377.
  • Ahamed M, Akhtar MJ, Alhadlaq HA, Alrokayan SA. 2015. Assessment of the lung toxicity of copper oxide nanoparticles: current status. Nanomedicine 10(15):2365–2377.
  • Acciani TH, Brandit EB, Khurana Hershey GK, Le Cras TD. 2013. Diesel exhaust particle exposure increases severity of allergic asthma in young mice. Clin Exp Allergy 43:1406–1418.
  • Aalapati S, Ganapathy S, Manapuram S, Anumolu G, Prakya BM. 2014. Toxicity and bio-accumulation of inhaled cerium oxide nanoparticles in CD1 Mice. Nanotoxicology 8(7):786–798.