박사

전기모터 냉각성능 향상을 위한 유/수냉 복합 열전달에 대한 수치해석 = Numerical Study on the Heat Transfer in an Electric Motor with Oil-Water Cooling to Achieve an Enhanced Cooling Performance

김종수 2019년
논문상세정보
' 전기모터 냉각성능 향상을 위한 유/수냉 복합 열전달에 대한 수치해석 = Numerical Study on the Heat Transfer in an Electric Motor with Oil-Water Cooling to Achieve an Enhanced Cooling Performance' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Computational fluid dynamics (CFD)
  • Motor cooling
  • convectiveheattransfercoefficient
  • electric vehicle
  • heat-transfer
  • oil-water combined cooling
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
163 0

0.0%

' 전기모터 냉각성능 향상을 위한 유/수냉 복합 열전달에 대한 수치해석 = Numerical Study on the Heat Transfer in an Electric Motor with Oil-Water Cooling to Achieve an Enhanced Cooling Performance' 의 참고문헌

  • 현대자동차 수소 전기차 개발 현황, 한국 자동차 공학회
    박종진 한국자동차 공학회 워크샵, 19-29 [2017]
  • 하이브리드 차량용 ISG 모터의 열 특성에 관한 수치해석 적 연구, 한양대학교 대학원
    김대건 학위 논문 [2015]
  • 하이브리드 자동차용 모터 내부 의 오일 냉각 시스템에 대한 수치해석
    강태곤 곽태희 김종수 문정욱 한국전산유체공학회, 22(3), 86-94 [2017]
  • 국내외 전기자동차 기술 개발 동향 및 국내 전 기자동차 핵심 부품 개발 전략
    손영욱 허건수 The Transaction of the Korean Institute of Power Electrics, 22, No. 5 [2017]
  • 국내 차량용 구동 모터의 방열 및 냉각 기술동 향
    김규식 이기수 한국자동차 공학회, 37(8), 16-20 [2015]
  • 국내 전기차 보급 및 충전 인프라 구축 규정
    임명도 한국자동 차 공학회, 39(6), pp 44-49 [2017]
  • Yuan Z. X., Saniei N., and Yan X. T., (2003). Turbulent heat transfer on the stationary disk in a rotor-stator system. International Journal of Heat and Mass Transfer, Volume 46(12), 2207 – 2218.
  • Yang C., Wang H., Niu X., Zhang J., and Yan Y., (2016). Design and Analysis of Cycling Oil Cooling in Driving Motors for Electric Vehicle Application, Vehicle Power and Propulsion Conference (VPPC).
  • Venkataraman B., Premerlani W., Shulman E., Thakur, M., and Midence R., (2005) Fundamentals of a Motor Thermal Model and its Applications in Motor Protection, IEEE, DOI: 10.1109/PAPCON.2005.1502046.
  • Stewartson K., (1953). On the flow between two rotating coaxial disks, Mathematical Proceedings of the Cambridge Philosophical Society, Voume 49(02), 333–341.
  • Staton D., (2014). Multiphysics analysis of electric machines for traction applications considering complex duty cycles, Special session, IEEE ECCE, 2014.
  • Song L., Li Z., Gao J., Zeng Q., and Wang F., (2008). 3D thermal analysis of water cooling induction motor used for HEV, International Conference on Electrical Machines and Systems.
  • Song G., Jumg H., and Um S., (2013). Optimizing water cooling systems of high speed BLDC motors using a design of experiment method, The Korean Society Of Automotive Engineers, pp. 1864- 1869.
  • Sarigiannidis A. G., Beniakar M. E., and Kladas A. G., (2016) Fast Adaptive Evolutionary PM Traction Motor Optimization Based on Electric Vehicle Drive Cycle, IEEE Transactions on Vehicular Technology, Volume 66, 5762 – 5774.
  • Ryuichi U., Raphael A., and Hirofumi E., (2003). Application of Computational Fluid Dynamics (CFD) on Ventilation-Cooling Optimization of Electrical Machines, International Electric Machines and Drive Conference, IEMDC.
  • Pech nek R., and Bouzek L., (2012). Analyzing of two types water cooling electric motors using computational fluid dynamics, 15th International Power Electronics and Motion Control Conference (EPE/PEMC).
  • Nategh S., Wallmark O., Leksell M., and Zhao S., (2012). Thermal analysis of a PMaSRM using partial FEA and lumped parameter modeling, IEEE Transactions on Energy Conversion, Volume 27(2).
  • Nategh S., Huang Z., and Krings A.,(2013). Thermal modeling of directly cooled electric machines using lumped parameter and limited CFD analysis, IEEE Transactions on Energy Conversion, Volume 28, 979-990.
  • M. F not, M. Bertin Y., Dorignac E., and Lalizel G., (2011). A review of heat transfer between concentric rotating cylinders with or without axial flow, International Journal of Thermal Sciences, Volume 50,1138-1155.
  • Lim D.H., and Kim S.C., (2014). Thermal performances of oil spray cooling system for in-wheel motor in electric vehicles, Applied Thermal Engineering, Volume 63, 577-587.
  • Li Y., Fan T., Wen X., and Li. Y., (2013). Numerical research on hydraulic and thermal performance of the motor water jackets based on the orthogonal experiment, International Conference on Electrical Machines and Systems(ICEMS), DOI: 10.1109/ICEMS.2013.6713133.
  • Li Y., Fan T., Sun W., Li Q., and Wen X., (2016). Experimental research on the oil cooling of the end winding of the motor, Energy Conversion Congress and Exposition (ECCE), DOI: 10.1109/ECCE. 2016.7855097.
  • Li H., (2010). Cooling of a permanent magnet electric motor with a centrifugal impeller, International Journal of Heat and Mass Transfer, Voume 53(4), 797 – 810.
  • Lee J.H., Lee G.S., Yu B.H., Kim H.C., Kim K.S., and Lee B.H., (2015). Design and thermal analysis of electric motors of Electric vehicle using analytical and CFD Method, EVS28 International Electric Vehicle Symposium and Exhibition.
  • Kral C., Haumer A., Haigis M., Lang H., and Kapeller H., (2009). Comparison of a CFD analysis and a thermal equivalent circuit model of a TEFC induction machine with measurements, IEEE Transactions on Energy Conversion, Volume 24, 809-818.
  • Kolondzovski Z., Belahcen A., and Arkkio A., (2009). Multiphysics thermal design of a high-speed permanent-magnet machine. Applied Thermal Engineering, Volume 29(13), 2693–2700.
  • Kolondzovski Z., (2008). Numerical modeling of the coolant flow in a high-speed electrical machine, 18th International Conference on Electrical Machines, DOI: 10.1109/ICELMACH.2008.4799884
  • Kimotho J., and Hwang P., (2011). Thermal Management of Electric Vehicle BLDC Motor, SAE Technical Paper, Volume 28, 0134
  • Kim M.S., Lee K.S., and Um S.K., (2009). Numerical investigation and optimization of the thermal performance of a brushless dc motor, International Journal of Heat and Mass Transfer, Volume 52(5-6), 1589 – 1599.
  • Kevin B., (2017). Electric Motor Thermal Management Research, National Renewable Energy Laboratory.
  • Kasap S.O., (2006). Priciples of Electronic Materials and Devices. (3rd edition), USA, Mc-Graw Hill, Third edition, 126.
  • Jungreuthmayer C., B uml T., Winter O., and Ganchev M., (2011) Heat and fluid flow analysis of an internal permanent magnet synchronous machine by means of computational fluid dynamics, IEEE International Electric Machines & Drives Conference (IEMDC), DOI: 10.1109/IEMDC.2011.5994651.
  • Huber A., Pfitzner M., Nguyen-Xuan T., and Eckstein, F., (2013). Efficient fluid flow in the water jacket of electric machines for powertrain, ATZ elektronik worldwide, Volume 8, 54-60.
  • Huang Z., Nategh S., Lassila V., Alak la M., and Yuan J., (2012). Direct oil cooling of traction motors in hybrid drives, IEEE International Electric Vehicle Conference (IEVC).
  • Huai Y., Melnik R., and Thogersen P.B., (2003). Computational analysis of temperature rise phenomena in electric induction motors, Applied Thermal Engineering, Volume 23, 779-795.
  • Howey D.A., Childs P. R., and Holmes A.S., (2012). Air-gap convection in rotating electrical machines, IEEE Transactions on Industrial Electronics, Volume 59, 1367-1375.
  • Hosain M.L., Fdhila R.B., and R nnberg K., (2017). Taylor-Couette flow and transient heat transfer inside the annulus air-gap of rotating electrical machines, Applied Energy, Volume 207, 624- 633.
  • Hosain M.L., Fdhila R.B., and R nnberg K., (2017). Air-gap Flow and Thermal Analysis of Rotating Machines using CFD, Energy Procedia, Volume 105, 5153-5159.
  • Hendershot J.R., and Miller T.J.E., (2010). Design of brushless permanent magnet machine, (3rd edition), Bookmasters, Inc. Pubilished in the USA by Motor Design Book LLC, 442-443.
  • Hara S., Watanabe T., Furukawa H., and Endo S., (2015). Effects of a radial gap on vortical flow structures around a rotating disk in a cylindrical casing, Journal of Visualization, Volume 18, Issue 3, 501–510.
  • Guechi M.R., Desevaux P., Baucour P., Espanet C., Brunel R., and Poirot M., (2015). Experimental Study on the Improvement of the Thermal Behavior of Electric Motors, Int. J. of Thermal & Environmental Engineering, Volume 9, No. 2, 91-97.
  • Grriffiths D., (1999). Introduction to Electrodynamics, Annual Review of Fluid Mechanics, Third edition, New Jersey, Prentice Hall, 286.
  • Grossmann S., Lohse D., and Sun C., (2016). High–Reynolds number Taylor-Couette turbulence, Annual Review of Fluid Mechanics, Volume 48, 53-80.
  • Davin, T., Pell J., Harmand S., and Yu, R., (2015). Experimental study of oil cooling systems for electric motors, Applied Thermal Engineering, Volume 75, 1-13.
  • Carey A.A., and Hayzen A.J. (2001) The Dielectric Constant and Oil Analysis, Emerson Process Management
  • Brown S., Pyke D., and Steenhof P., (2010). Electric vehicles: the role and importance of standards in an emerging market, Energy Policy. Volume 38, 3797-3806.
  • Boutarfa R., and Harm S., (2003). Local convective heat exchanges and flow structure in a rotor-stator system, International Journal of Thermal Sciences, Volume 42(12), 1129 – 1143.
  • Bouafia M., Ziouchi A., Bertin Y., and Saulnier J.B., (1999). Experimental and numerical study of heat transfer in an annular gap without axial flow with a rotating inner cylinder, International Journal of Thermal Sciences, Volume 38(7), 547–559.
  • Borges S.S., Cezario C.A., and Kunz T.T., (2008). Design of water cooled electric motors using CFD and thermograph techniques, 18th International Conference on Electrical Machines.
  • Batchelor G. K., (1951). Note on a class of solutions of the Navier- Stokes equations representing steady rotationally-symmetric flow, Q J Mechanics Appl Math, Volume 4(1), 29–41.
  • ANSYS 16, (2016). CFX Theory guide, Chapter 1. Basic solve capability theory, Chapter 4. GGI and MRF theory, Chapter 5. Multi phase flow theory.