박사

팽창흑연이 첨가된 목분의 난연특성연구 = A Study on Flame Retardant Characteristics of Wood Particles with Expandable graphite

전관옥 2019년
논문상세정보
' 팽창흑연이 첨가된 목분의 난연특성연구 = A Study on Flame Retardant Characteristics of Wood Particles with Expandable graphite' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 난연특성
  • 목분
  • 열전도도
  • 총발열량
  • 팽창률
  • 팽창흑연
  • 팽창흑연 복합재료
  • 팽창흑연 성분 및 조직
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
106 0

0.0%

' 팽창흑연이 첨가된 목분의 난연특성연구 = A Study on Flame Retardant Characteristics of Wood Particles with Expandable graphite' 의 참고문헌

  • 기초통계학
    S. W. Kim 학지사 pp. 127 [2007]
  • 건축물 마감재료의 난연성능 및 화재 확산 방지구조 기준[시행 2015.10.13.].
    국토교통부고시 제 2015-744 호(2015.10.13., 일부 개정) [2015]
  • m.blog.naver.com/pjwes/221002034931.
  • Z. Zhang and X. Fang, 2006, “Study on paraffin/expanded graphite composite phase change thermal energy storage material”, Energy Conversion and Management, Vol. 47, No. 3, pp. 303-310.
  • Z. Li, W. G. Sun, G. Wang and Z. G. Wu, 2014, “Experimental and numerical study on the effective thermal conductivity of paraffin/expanded graphite composite”, Solar energy materials and solar cells, Vol. 128, No. 1.
  • Z. J. Duan, H. Z. Zhang, L. X. Sun, Z. Cao, F. Xu, Y. J. Zou, H. L. Chu, S. J. Qiu, C. L. Xiang and H. Y. Zhou, 2014, “Cacl2.6H2O/expanded graphite composite as form-stable phase change materials for thermal energy storage”, Journal of Thermal Analysis Calorimeter, Vol. 115, pp. 111-117.
  • Z. Huang and D. Zhai, 2015, “Theoretical study on effective thermal conductivity of salt/expanded graphite composite material by using fractal method”, Applied thermal engineering, Vol. 86, No. 2.
  • Z. Duan, H. Zhang, L. Sun, Z. Cao, F. Xu, Y. Zou, H. Chu, S. Qiu, C. Xiang and H. Zhou, 2014, “CaCl2.6H2O/Expanded graphite composite as form-stable phase change materials for thermal energy storage, Journal of Thermal Analysis Calorimeter”, Vol. 115, pp. 111- 117.
  • Youming Yu, Junfeng Hou, Zhiziang Dong, Cong Wang, Fengzhu Lu and Pingan Song, 2016, “Evaluating the flammability performance of Portland cement-bonded particleboards with different cement-wood ratios using a Cone calorimeter”, Journal of fire sciences, vol. 34, No. 3, pp. 199-211.
  • X. Wang, L. Wang and B. Liu, 2016, “Prediction of thermal conductivity of composite polymer materials filled with expanded graphite sheet fillers”, Journal of Thermoplastic Composite Materials, Vol. 29, No. 11, pp. 1573-1586.
  • X. L. Wang, Q. G. Guo and L. Y. Wang, 2013, “Thermal conductivity enhancement of form-stable HDPE/paraffin by expanded graphite addition”, Journal of Functional Materials, Vol. 44, No. 23.
  • X 선 분광기(x-ray spectrometer)
    Doosan 백과
  • Wu, Y., Yao, C., Hu, Y., Qing, Y., and Wu, Q., 2014, “Flame retardancy and hermal degradation behavior of red gum wood treated with hydrate magnesium chloride”, Journal of Industrial and Engineering Chemistry, Vol. 20, No. 5, pp. 3536-3542.
  • W. Zheng, S. C. Wong, and H. J. Sue, 2002, “Transport behavior of PMMA/expanded graphite nanocomposites”, Polymer, Vol. 73, pp. 6767.
  • W. T. Simpson, 1987, “Drying and Control of Moisture Content and Dimensional Changes ”, Wood handbook – Wood as an Engineering Material, Forest Product Laboratory U.S.D.A forest Service Madison, Wisconsin, Chapter 12, pp. 1-21.
  • W. S. Ahn, 2012, “Effects of GTR and Unexpanded Expancel Particles on Thermal Conducting Characteristics of Rigid Polyurethane Foams”, Journal of the Korea Academia- Industrial cooperation Society, Vol. 13, No. 6, pp. 2846-2851.
  • V. Babrauskas., W.H. Twilley., M. Janssens., and S. Yusa., “A Cone calorimeter for Controlled-Atmospheres Studies”, Fire and Materials, Vol 16, PP. 37-43.
  • V. Babrauskas., 1984, “Development of the Cone calorimeter - A bench scale heat release rate apparatus based on oxygen consumption”, Fire and materials, Vol. 8, pp. 81-95.
  • Thirumal, M., Khastgir, D., Singha, N. K., Manjunath, B. S., & Naik, Y. P., 2008, “Effect of expandable graphite on the properties of intumescent flame‐retardant polyurethane foam”, Journal of Applied Polymer Science, Vol. 110, No. 5, pp. 2586-2594.
  • The SFPE handbook of Fire Protection Engineering.
  • Standard test method for heat and visible smoke release rates for materials and products using an oxygen consumption calorimeter, 1997, “ASTME 1354, American society for testing and materials Philadelphia.
  • Smoke toxicity test procedure by noxious gas analyzer, 2018, KOMERI.
  • S. J. Park, K. S. Kim, 2004, “A study on oil adsorption of expanded graphites”, Korean chem. Eng. Res., Vol. 42, pp. 362-367.
  • S. J. Park, K. S. Kim and S. K. Hong, 2003, “Preparation and Characterization of Expanded Graphites by Wet Process”, HWAHAK KONG HAK, Vol. 41, No. 6, pp. 802-807.
  • S. J. Park, K. S. Kim and J. R. Lee, 2004, “Thermal and Mechanical Interfacial Properties of Expanded Graphite/Epoxy Composites”, Journal of Korean Ind. Eng. Chem., Vol. 15, No. 5, pp. 493-498.
  • S. C. Moon, J. K. Choi and B. W. Jo, 2004, “Flame Retardancy and Foaming Properties of the NBR/Ground Tire Rubber Foams Containing Expandable Graphite”, Polymer(Korea), Vol. 28, No. 5, pp. 412-425.
  • Q. Wang, Y. Li, S. Sang and S. Jin, 2015, “Effect of the reactivity and structure of expanded graphite (EG) on microstructure and properties of Al2O3-C refractories”, Journal of Alloys and Compounds, Vol. 645, pp. 388-397.
  • Penczek, P., Ostrysz, R., and Krassowski, D, 2000, “Expandable graphite as a fire retardant in unsaturated polyester resins. In Flame Retardants”, Vol. 9, pp. 105-112.
  • P. Khalili, K. Y. Tshai and I. Kong, 2017, “Natural fiber reinforced expandable graphite filled composites: Evaluation of the flame retardancy, thermal and mechanical performances”, Composites: Part A, Vol. 100, pp. 194-205.
  • Modesti, M., Lorenzetti, A., Simioni, F., & Camino, G, 2002, “Expandable graphite as an intumescent flame retardant in polyisocyanurate–polyurethane foams”, Polymer Degradation and Stability, Vol. 77, No. 2, pp. 195-202.
  • M. N. Ozisik. Heat Transfer-A Basic Approach. New York: McGraw-Hill, 1985.
  • M. J. Mochane and A. S. Luyt, 2015, “The effect of expanded graphite on the flammability and thermal conductivity properties of phase change material based on PP/wax blends”, Polymer bulletin, Vol. 72, No. 9.
  • Lowden, L. A., and Hull, T. R., 2013, “Flammability behavior of wood and a review of the methods for its reduction,” Fire Science Reviews 2(1), 4. DOI: 10.1186/2193-0414-2-4.
  • L. Xia, P. Zhang and P. Z. Wang, 2010, “Preparation and thermal characterization of expanded graphite/paraffin composite phase change material”, Carbon, Vol. 48, pp. 2538- 2548.
  • K. Wang, J. Y. Wu, R. Z. Wang and L. W. Wang, 2006, “Effective thermal conductivity of expanded graphite–CaCl2 composite adsorbent for chemical adsorption chillers”, Energy conversion and management, Vol. 47, No. 13-14.
  • K. O. Chun and D. H. Rie, 2017, “A Study for Fire Retardant-Characteristics of Expandable Graphite composite Materials”, Journal of the Korean Society of Safety”, Vol. 32, No.3, pp 28-33.
  • K. C. Tsai, H. C. Kuan, H. W. Chou, C. F. Kuan, C. H. Chen and C. L. Chiang, 2011, “Preparation of expandable graphite using a hydrothermal method and flame-retardant properties of its halogen-free flame-retardant HDPE composites”, Journal of Poiymer Research, Vol. 18, pp. 483-488.
  • J. W. Lee, B. W. Lee, S. P. Kwon, B. H. Lee, H. S. Kim and H. J. Kim, “Burning Behavior of Flooring Materials in the Cone calorimeter and Evaluation of Toxic Smoke”, Journal of Mokchae Konghak, vol. 36, No. 1, pp. 45-53, 2008.
  • J. P. Holman. Heat Transfer. 9th ed. New York: McGraw Hill, 2002.
  • J. M. Cha, S. H. Hyun, J. B. Kim and M. O. Yoon, 2011, “A Study on the Flame Retardant Performance of MDF Wood According to Flame Retardant Treatment Method”, Journal of Korean Institute of Fire Science, vol. 25, No. 6, pp. 146-155.
  • International standard-fire test-reaction to fire part 1: rate of heat release from building products (calorimeter method), 1993, “ISO 5660-1:1993(E), International organization for standardization”, Geneva.
  • ISO 5660-1, “Reaction-to-fire Tests-Heat Release, Smoke Production and Mass Loss Rate- Part 1: Heat Release Rate(Cone calorimeter Method)”, Korean Agency for Technology and Standards, KSA, 2008.
  • I. M. Afanasov, D. V. Savchenko and S. G. Ionov, 2009, “Thermal conductivity and mechanical properties of expanded graphite”, Inorganic Materials, Vol. 45, No. 5.
  • I. Krupa, Z. Nogellova, Z. Spitalsky, M. Malikova, P. Sobolciak, H. Abdelrazeq, M. Ouederni, I. Janigova and M. Al-Maadeed, 2015, “Positive influence of expanded graphite on the physical behavior of phase composite phase change material based on linear low density polyethylene and paraffin wax”, Thermochimica Acta, Vol.614, pp. 218-225.
  • Hashim, R., Sulaiman, O., Kumar, R. N., Tamyez, P. F., Murphy, R. J., and Alic, Z., 2009, “Physical and mechanical properties of flame retardant urea formaldehyde medium density fiberboard”, Journal of Materials processing Technology, Vol. 209, pp. 635-640.
  • H. J. Kruger, W. W. Focke, W. Mhike, A. Taute, A. Roberson and O. Ofosu, 2014, “Cone calorimeter study of polyethylene flame retarded with expandable graphite and intumescent fire-retardant additives”, Journal of Fire Sciences, Vol. 32, No. 6, pp. 498-517.
  • F. P. Incropera and D. P. DeWitt. Introduction to Heat Transfer. 4th ed. New York: Wiley & Sons, 2002.
  • F. Kreith and M. S. Bohn. Principles of Heat Transfer. 6th ed. Pacific Grove, CA: Brooks/Cole, 2001.
  • Delhaes, P. (Ed.), 2000, “Graphite and precursors” CRC Press, Vol. 1.
  • Cengel, Y. A, 2003, Heat transfer a practical approach, McGraw-Hill.
  • Bergman, T. L., and Incropera, F. P, 2011, “Fundamentals of heat and mass transfer”, John Wiley and Sons.
  • B. K. Choi, W. K. Choi, Y. S. Kuk, H. G. Kim and M. K. Seo, 2014, “A Study on Thermal Behaviors of Expanded Graphite/Erythritol Composite”, Appl. Chem. Eng., Vol. 25, No. 5, pp. 463-467.
  • B. J. Lee, Y. S. Lee, Y. B. Kyun, O. O. Kyun, and S. O. Choi, 2001, “Manufacturing process of expanded graphite by dry process, Machinery and Materials”, Vol. 13, No. 3.
  • B. Dittrich, K. A. Wartig, D. Hofmann, R. Mulhaupt and B. Schartel, 2013, “Flame retardancy through carbon nanomaterials : Carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene”, Polymer Degradation and Stability, Vol. 98, pp. 1495-1505.
  • A. Laachachi, N. Burger, K. Apaydin, R. Sonnier and M. Ferriol, 2015, “Is expanded graphite acting as flame retardant in epoxy resin”, Polymer Degradation and Stability, Vol. 117, pp. 22-29.
  • A. Karaipekli, A. Sari and K. Kaygusuz, 2007, “Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications”, Renew. Energy, Vol. 32, pp. 2201-2210.
  • A. F. Mills. Basic heat and mass transfer. 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 1999.
  • A. Celzard, E, McRae, J. F. Mareche, G. Furdin, M. Dufort, and C. Deleuze, 1996, “Composites based on micron-sized exfoliated graphite particles: Electrical conduction, critical exponents and anisotropy”, J. Phys. Chem. Solids, Vol. 57, pp 715.